Добірка наукової літератури з теми "Джерела карбону"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Джерела карбону".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Джерела карбону"

1

Каменський, Артем, Олег Ольшевський, Володимир Починок та Віталій Вязовик. "ЕЛЕКТРОННО-КАТАЛІТИЧНА ПЕРЕРОБКА ВУГЛЕКИСЛОГО ГАЗУ В МЕТАНОЛ ТА ФОРМАЛЬДЕГІД". Science and Innovation 17, № 5 (12 жовтня 2021): 73–82. http://dx.doi.org/10.15407/scine17.05.073.

Повний текст джерела
Анотація:
Вступ. Починаючи з середини XIX століття спостерігається стійке зростання кількості СО2в атмосфері, яке може призвести до глобального потепління, спричиненого парниковим ефектом. Міжнародні експерти зі зміни клімату в 2018 році зазначали, що при поточних темпах викидів СО2 в найближчі 10 років у світі температура підвищиться на1,5 °C, що призведе до танення льодовиків і підвищення рівня моря.Проблематика. Оксид карбону може бути використано для отримання значної кількості органічних сполук, утворення яких залежить від методу його переробки. До останніх належать такі методи як біологічні, термічна конверсія, фотохімічні, плазмові. Більшість з них потребують застосування каталізаторів. Одним із плазмових методів є електронно-каталітичний метод з використанням бар’єрного розряду.Мета. Визначення основних фізико-хімічних закономірностей процесу електронно-каталітичного перетворення СО2 в органічні сполуки, а саме в метанол та формальдегід, з використанням двох розрядників — джерела низькотемпературної плазми.Матеріали й методи. Дослідження електронно-каталітичного перетворенню СО2в метанол та формальдегід здійснювали на лабораторній установці, до складу якої входили два джерела низькотемпературної плазми — розрядників, в одному з яких знаходиться гетерогенний каталізатор. Як джерело водню використовувалися пари води.Результати. Досліджено два зразки каталізаторів за різних температур реакційної зони і напруг бар’єрного розряду. Отримано залежності утворення метанолу та формальдегіду при різних режимах роботи установки. Визначено залежності енергетичних витрат при отриманні метанолу та формальдегіду з СО2.Висновки. Використання електронно-каталітичного методу дозволяє переробляти СО2 в різноманітні органічні сполуки, які в подальшому можуть бути використані як сировина для різноманітних хімічних процесів або як паливо. Ця переробка дозволяє зменшити викиди СО2 в навколишнє середовище та підвищити асортимент продукції хімічної промисловості.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

А. Литвин, Валентина, та Роджер Абі Нйо Абі Нйо. "МІДЬ-КАРБОНОВІ НАНОКОМПОЗИТИ НА ОСНОВІ СИНТЕТИЧНИХ ГУМІНОВИХ РЕЧОВИН". Journal of Chemistry and Technologies 29, № 1 (27 квітня 2021): 19–30. http://dx.doi.org/10.15421/082113.

Повний текст джерела
Анотація:
Розроблено нову методику синтезу мідь-карбонового нанокомпозиту з використанням синтетичних гумінових речовин як джерела Карбону. В основу методики покладено піроліз купрум(ІІ) гумату, який проводили як у відновлюючій водневій, так і інертній атмосфері. Структуру та властивості Сu/C нанокомпозиту охарактеризовано методом рентгенівської дифракції, ІЧ-спектроскопії, просвічуючої електронної мікроскопії, елементного аналізу. Пористу структуру Сu/C нанокомпозиту досліджено методом об’ємної адсорбції азоту. В умовах синтезу формується карбонова матриця з дуже низьким ступенем впорядкованості. Встановлено, що розмірні та структурні харакеристики наночастинок міді залежать від умов синтезу і варіюються від 40 до 80 нм. Проведення синтезу у відновній атмосфері дозволяє одержати мідь-вуглецеві нанокомпозити, що не містять фази купрум(І) оксиду або купрум(ІІ) оксиду. Встановлено, що підвищення температури піролізу сприяє вдосконаленню будови кристалічної ґратки металічної фази, підвищенню ступеня карбонізації органічної складової та зміні текстурних характеристик від мезопористих до мікропористих.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fedoniuk, V. V., V. V. Ivantsiv та M. A. Fedoniuk. "ВПЛИВ КАРАНТИННИХ ОБМЕЖЕНЬ, ВИКЛИКАНИХ ЕПІДЕМІЄЮ COVID-19, НА ІНТЕНСИВНІСТЬ ТРАНСПОРТНОГО РУХУ ТА ЕКОЛОГІЧНИЙ СТАН У М. ЛУЦЬКУ". Transport development, № 1(12) (3 травня 2022): 168–80. http://dx.doi.org/10.33082/td.2022.1-12.14.

Повний текст джерела
Анотація:
Вступ. Актуальним питанням є дослідження екологічного впливу автомобільного транспорту в містах та розроблення шляхів зменшення такого впливу. Автотранспорт – це найбільш потужне джерело забруднення атмосферного повітря в місті. Автомобілі зумовлюють також низку негативних видів фізичного впливу на довкілля (шумове, вібраційне, електромагнітне забруднення). В умовах пандемії та загальнодержавного карантину з’явилася можливість оцінити, наскільки змінюються негативні чинники автотранспортного екологічного впливу у процесі скорочення обсягу перевезень та руху транспортних засобів. Метою дослідження стало проведення комплексної оцінки змін у структурі, динаміці, інтенсивності автотранспортного навантаження в м. Луцьку та екологічного впливу цих змін в умовах запровадженого загальнонаціонального карантину навесні 2020 р. Результати. Унаслідок проведення комплексу вимірювальнообчислювальних робіт на п’яти дослідних ділянках автомагістралей у м. Луцьку ми визначили зміни в динаміці та структурі автотранспортного трафіку, а також зміни таких показників автотранспортного впливу на екосистеми: 1) обсяги викидів у повітря сполук COх (вуглекислий газ і чадний газ у сумі, або оксиди карбону); 2) шумове навантаження на ділянці автомагістралі (стандартна акустична характеристика й акустична характеристика на довільній відстані). Встановлено, що зменшення негативних чинників екологічного впливу в разі зниження інтенсивності автотрафіку відбувається нелінійно. За послаблення автотрафіку у 2–3 рази викиди оксидів карбону скорочуються на 60–70 %, величини акустичних характеристик зменшуються лише на 10–15 %. Висновки. Отже, встановлено суттєве зниження наявних у докарантинний період перевищень за вмістом оксидів карбону у викидах автотранспорту та за рівнями шумового забруднення довкілля в Луцьку. Фактичні концентрації оксидів карбону на ділянках, що прилягають до автомагістралі, зменшилися до нормативних, акустична характеристика в житлових мікрорайонах була нижчою за норматив протягом доби. Таким чином, запровадження карантинних обмежувальних заходів у країні суттєво послабило негативний екологічний вплив автотранспортних систем на екосистеми, адже результати, отримані для м. Луцька, можна екстраполювати й на інші міста, що мають схожу конфігурацію та завантаженість транспортних систем.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bosak, P. V., V. V. Popovych, V. F. Pinder та O. V. Stokalyuk. "Температура займання та самозаймання найпоширеніших деревних порід териконів". Scientific Bulletin of UNFU 30, № 5 (3 листопада 2020): 53–58. http://dx.doi.org/10.36930/40300509.

Повний текст джерела
Анотація:
Екологічна небезпека шахтних породних відвалів в умовах урбанізованого середовища є високою. Для її оцінювання у кожному конкретному випадку потрібно проводити екологічний моніторинг для розроблення природоохоронних заходів з мінімізації негативних їх чинників. Наголошено на чинниках, які призводять до самозаймання вугільних відвалів, та на підставі наукових джерел детально описано хімізм досліджуваних процесів. Окиснення і горіння породних відвалів супроводжується значним виділенням водяної пари, яка є мінералоутворюючим середовищем для більшої частини мінералів: сульфатів, гідрокарбонатів, карбонатів, фосфатів, арсенатів. Окрім цього, внаслідок окиснення виділяється вуглекислота, нітроген оксид (IV), який з водою утворює нітратну кислоту. У разі нестачі кисню в осередках горіння в парогазових викидах міститися сірководень, вуглеводні, амоніак, оксид карбону (II). Акцентовано увагу на тому, що важливе значення в процесах окиснення належить сірці. Окиснення вугілля посилюється на дрібних частинках, через збільшення площі поверхні, що доступна для окиснення. Висвітлено, що найнадійнішим способом захисту від самозаймання вугільних відвалів є створення на їх поверхні рослинного покриву. Процес формування рослинного покриву є дуже важливим, адже при цьому відбувається як накопичення важких металів у рослинах, так і зв'язування субстрату їхніми коренями й кореневищами, що зменшує процес вивітрювання та вимивання породи, яка містить велику кількість важких металів. Встановлено показники температури займання та самозаймання зразків деревних порід відвалів вугільних шахт згідно з ДСТУ8829:2019. Дослідження показників займання та самозаймання твердих речовин і матеріалів здійснювали у весняний та літній періоди. Досліджуваними об'єктами були проби листя та деревина з терикону шахти Нововолинського гірничопромислового району (Волинська область, м. Нововолинськ). Встановлено, що для сосни звичайної температура займання становить: +225 °C, а самозаймання +475 °C. Температура займання берези повислої +260 °C, дуба звичайного +275 °C, козячої верби +280 °C, температура самозаймання – берези повислої +470 °C, дуба звичайного +475 °C, верби козячої +473 °C. Температура займання берези повислої, дуба звичайного, верби козячої ніж сосни звичайної робить їх перспективними породами дерев для запобігання самозайманню вугільних відвалів.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Кочкодан, Ольга Дмитрівна. "Реалізація особистісно-орієнтованого підходу в системі дистанційного навчання". Theory and methods of e-learning 3 (10 лютого 2014): 131–36. http://dx.doi.org/10.55056/e-learn.v3i1.329.

Повний текст джерела
Анотація:
Одним із основних завдань вищої школи, що знайшли відображення в Законах України «Про освіту», «Про вищу освіту», є формування особистості, здатної до самостійного вирішення проблем, самовизначення і творчого саморозвитку. Реалізація цього стратегічного завдання неможлива без модернізації навчального процесу з метою розвитку обдарувань, здібностей, індивідуальності студентів.Нові орієнтири розвитку вищої освіти – здійснення інноваційного підходу до освіти, оновлення її змісту, пошук нових методів підготовки, організації практики, засобів навчання тощо [1; 2].Сучасне суспільство, з одного боку, потребує дедалі глибшого особистісного розвитку людини, а з іншого – створює дедалі кращі передумови для цього. Процес глобалізації, який супроводжується розвитком сучасних інформаційних технологій, значно розширює комунікаційне середовище, в якому живе і функціонує людина, і разом з тим розширює можливості навчання.Особистісно-орієнтований підхід «передбачає нову педагогічну етику, визначальною рисою якої є взаєморозуміння, взаємоповага, співробітництво. Ця етика ... зумовлює моделювання життєвих ситуацій, включає спеціально сконструйовані ситуації вибору, авансування успіху, самоаналізу, самооцінки, самопізнання ... Основою всіх перетворень має бути реальне знання дитячих можливостей, прогнозування потреб найближчого розвитку особистості»[3].Особистісно-орієнтований підхід в навчанні, по-перше, сприяє формуванню особистості майбутнього фахівця; по-друге, є одним із факторів підвищення якості та ефективності навчання.При організації навчального процесу за особистісно-орієнтованими технологіями основними орієнтирами мають бути наступні:відмова від абсолютизації моделі навчання і реалізація її індивідуалізованого варіанту;планування цілей навчання має бути комплексним, орієнтованим на особистість кожного студента;урахування рівня складності матеріалу та реальних навчальних можливостей студента;розвиток внутрішньої мотивації;стимулювання особистісного сенсу засвоюваних знань та умінь;розвиток пізнавальної та творчої активності;залучення до діалогу, організації і планування власної навчальної діяльності;відбір таких способів навчально-пізнавальної діяльності студента, які стимулюють розвиток його творчих здібностей;збагачення змісту навчання супутніми знаннями про навколишній світ;організація процесу самостійного навчання та саморозвитку.Тільки комплексне застосування вищезазначених принципів в освітньому процесі забезпечує досить високу його ефективність та особистісний розвиток студента.В Національному університеті біоресурсів і природокористування України загальну та неорганічну хімію студенти вивчають на першому курсі, тому в першу чергу виникає необхідність забезпечення їх адаптації до навчального процесу. Студенти з різним рівнем шкільної підготовки, різними здібностями та здатністю до сприйняття навчального матеріалу. Щоб визначити рівень шкільної підготовки студентів з дисципліни, ми проводимо невелику за обсягом та часом контрольну роботу «Збереження знань». Її результати допомагають спланувати подальшу роботу зі студентами. На підставі цих результатів, застосовуючи індивідуально-диференційований підхід, можна проводити корекцію знань студентів.У навчальних програмах усіх дисциплін за вимогами Болонського процесу збільшується частка самостійної роботи студентів, яка в умовах особистісно-орієнтованої освіти виступає як спосіб формування самостійної особистості [3].Організація самостійної роботи починається з ґрунтовного інструктажу, при якому кожен студент отримує індивідуальне завдання, що враховує його схильності, рівень знань та загальну ерудицію і т.д. Виконання завдання передбачає особисту ініціативу і самостійність виконавця.Так, індивідуальні завдання для самостійної роботи з хімії різного рівня складності:Перший рівень оволодіння знаннями – рівень знайомства з предметом. Це запам’ятовування і розпізнавання інформації, розрізнення об’єктів та їх властивостей. Він розрахований на студентів з невисокою успішністю. Наприклад, тестові завдання з теми «Розчини. Електролітична дисоціація та гідроліз солей»:1. Запишіть формули та розташуйте в порядку зростання сили кислоти: карбонатна, сульфатна, фосфатна, хлорна.2. Які з наведених електролітів у водному розчині дисоціюють ступінчасто (записати формули): сульфітна кислота, хром (ІІІ) сульфат, кальцій гідроксид, калій дигідрогенфосфат?3. Які з наведених солей гідролізують: магній нітрат, манган (ІІ) нітрат, барій нітрат, ферум (ІІІ) нітрат?Другий рівень оволодіння знаннями - рівень умінь. Це здатність самостійно виконувати дії на деякій множині об’єктів. Він розрахований на основну масу студентів із середньою успішністю. Приклади тестових завдань:1. Які йони можуть одночасно міститися в розчині:а) Fe2+ i SO42-; б) Ca2+ i SO42-; в) Cu2+ i SO42- ; г) Pb2+ i SO42 ?2. Які реакції проходять до кінця:а) CaCl2 + (NH4)2SO4; б) Al(NO3)3 + K2SO4; в) (NH4)2SO4 + Na2CO3;г) Ba(CH3COO)2 + Na2CO3?3. Вкажіть продукти гідролізу солі калій фосфату за першим ступенем (записати формули та рівняння реакцій).Третій рівень оволодіння знаннями - рівень творчості. Це продуктивна діяльність на багатьох об’єктах на основі свідомо використаної інформації про ці об’єкти, тобто розуміння діяти творчо. Третій варіант завдань розрахований на успішних студентів. Приклади тестових завдань:1. Під час розчинення у воді не змінюють реакцію розчину солі (записати формули): кобальт (ІІ) сульфіт; кальцій нітрит; алюміній бромід; літій карбонат.2. Скорочене йонне рівняння Zn2+ + CO32- → ZnCO3 відповідає реакції між: а) цинк хлоридом і кальцій карбонатом; б) цинк нітратом і калій карбонатом; в) цинк сульфідом і калій гідрогенкарбонатом; г) цинк нітратом і карбонатною кислотою.3. Встановіть відповідність між значенням рН та водними розчинами солей: А.рН  71.Zn(NO3)2;4.(NH4)3PO4;Б.рН  72.FeCl3;5.KNO3;В.рН  73.Rb2SiO3;6.SnCO3Завдання повинні враховувати майбутню спеціалізацію студентів, тобто бути професійно орієнтованими, а також міжпредметні зв’язки хімії з іншими дисциплінами. Метою самостійної роботи є формування самостійної особистості. Продуктивна особистісно-орієнтована самостійна робота стимулює креативний потенціал студента. Вона сприяє не тільки якісному запам’ятовуванню і засвоєнню навчального матеріалу, а й спонукає студентів до пошуку наукової інформації, а деяких - до самостійної наукової діяльності.Студенти, що добре навчаються, за бажанням мають можливість відвідувати наукові студентські гуртки, що працюють на кафедрі за різними напрямами, зокрема гурток «Чиста вода». Під керівництвом викладача вони вчаться працювати з науковою літературою, готують виступи на цікаві теми, доповіді на студентські конференції, проводять експериментальну роботу. Щорічно проводиться конкурс «Хімічний кросворд», круглі столи та ін.Дистанційні технології навчання дають змогу забезпечити студентів електронними навчальними ресурсами для самостійного опрацювання, завданнями для самостійного виконання, реалізувати індивідуальний підхід до кожного студента тощо. Використання таких технологій у навчальному процесі вищого навчального закладу вносить зміни в елементи традиційної системи освіти. Перш за все – у методику викладання всіх дисциплін. Це пов’язано з тим, що викладач перестає бути для студента єдиним джерелом отримання знань. Багато інформації можна знайти в мережі Інтернет та за її допомогою. Посилюється роль методів активного пізнання та дистанційного навчання. Доступність інформації сприяє розвитку умінь співставлення, синтезу, аналізу та ін. Використання дистанційних технологій змінює методику проведення аудиторних занять та організації самостійної роботи студентів.Існуючий в даний час рівень розвитку інформаційно-телекомунікаційних систем дозволяє реалізувати на практиці всі вищезазначені принципи особистісно-орієнтованого підходу в дистанційному навчанні.Доступність дистанційного навчання визначає глибину проникнення особистісно-орієнтованого підходу в освітній процес. Вона забезпечується: можливістю реалізації освітнього процесу у зручний для студента час; навчання може виконуватися дистанційно в повному обсязі, незважаючи на територіальну віддаленість; контролем освітнього процесу в режимі реального часу; можливістю створити для кожного студента персональний інформаційний навчальний простір.Така програма навчання складається з урахуванням особистісної мотивації студента. Її позитивні сторони та переваги:навчальна інформація може подаватися в різній формі: мовній, письмовій, візуальній та ін.;з урахуванням індивідуальних особливостей сприйняття того, хто користується нею;є можливості достатньо об’єктивно оцінити результати навчання на всіх його етапах;можна коректувати програму індивідуально в ході навчання з метою підвищення ефективності освітнього процесу.Для реалізації особистісно-орієнтованого підходу в дистанційному навчанні необхідно:Адаптувати існуючі методики застосування особистісно-орієнтованого підходу до сучасних комп’ютерних технологій введення, обробки, аналізу та подання інформації.Розробити інтелектуальну систему формування персонального інформаційно-навчального простору.Розробити методи динамічної адаптації програми навчання, що засновані на аналізі результатів проміжного контролю знань.Забезпечити постійно захищений доступ до персонального інформаційно-навчального простору на базі існуючих комунікацій.Опрацювати правовий статус оцінки результатів навчання.Таким чином, для ефективного використання дистанційних технологій у навчальному процесі потрібен системний підхід, який забезпечує вирішення завдань із технічним, програмним, навчально-методичним, кадровим, нормативно-правовим забезпеченням, управлінням процесом дистанційного навчання та розвитком дистанційних технологій [4].Інформаційні технології розвиваються дуже динамічно, так само динамічно має розвиватися і методика їх використання в навчальному процесі.Автори [4 ] виділяють чотири моделі використання інформаційно-комунікаційних та дистанційних технологій у навчальному процесі вищого навчального закладу:Моделі, що передбачають інтеграцію денної форми, інформаційно-комунікаційних та дистанційних технологій навчання.Моделі, що передбачають інтеграцію заочної форми навчання, інформаційно-комунікаційних та дистанційних технологій навчання.Заняття в он-лайн режимі з використанням відеоконференцсистеми (центральний офіс-регіональний офіс).Електронне спілкування, електронні варіанти друкованих посібників, електронні підручники (посібники), комп’ютерні презентації, навчальні компакт-диски, комп’ютерні програми навчального призначення.Для забезпечення студентів денної форми навчання електронними навчальними матеріалами, організації та керування самостійною роботою студентів, автоматизованого тестування використовють модель інтеграції денної форми навчання з інформаційно-комунікаційними та дистанційними технологіями навчання. У Національному університеті біоресурсів і природокористування України створено навчально-інформаційний портал на базі платформи дистанційного навчання Moodle.Електронні навчальні курси, які розробляються на платформі дистанційного навчання Moodle, складаються з електронних ресурсів двох типів: а) ресурси, призначені для подання студентам змісту навчального матеріалу, наприклад, електронні конспекти лекцій, мультимедійні презентації лекцій, методичні рекомендації тощо; б) ресурси, що забезпечують закріплення вивченого матеріалу, формування вмінь та навичок, самооцінювання та оцінювання навчальних досягнень студентів, наприклад, завдання, тестування, анкетування.Особистісно-орієнтований підхід забезпечує індивідуальний розвиток кожного, сприяє успішному навчанню, максимальному розвитку здібностей та обдарувань. Він забезпечує більш високі загальні та індивідуальні результати пізнавальної діяльності; активно впливає на розвиток пізнавальних здібностей, створює умови для того, щоб кожен міг успішно виконувати вимоги навчальної програми, подолати наявні недоліки та розвинути індивідуальні інтереси; забезпечити максимально продуктивну роботу всіх студентів.Однак в реальному навчальному процесі обставини змушують працювати не строго індивідуально, а з групою подібних студентів. Застосування дистанційних технологій дає можливість більше уваги приділяти індивідуальним потребам кожного студента, але відсутність живого спілкування ускладнює завдання викладача, тому що йому важче визначити індивідуальні потреби кожного студента. Тому необхідно поєднувати особливості та переваги особистісно-орієнтованого навчання із комп’ютерними технологіями, що дасть змогу уникнути деяких недоліків.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Polishchuk, V., and O. Dugan. "PROSPECTS OF USING GLUCOSE-FRUCTOSE SYRUP IN THE RIBOFLAVIN BIOTECHNOLOGY." Food Science and Technology 14, no. 2 (May 29, 2020). http://dx.doi.org/10.15673/fst.v14i2.1512.

Повний текст джерела
Анотація:
Рибофлавін є важливим вітаміном, що широко застосовується у харчовій промисловості для збагачення харчових продуктів та в якості барвника. Важливою проблемою реалізації біотехнології рибофлавіну є підбір раціональних джерел карбону та нітрогену, що є дешевими та технологічними. Це дасть можливість значно підвищити ефективність даної технології. Відомо, що гриби роду Eremothecium здатні до синтезу ароматичних речовин, дослідження рівня накопичення ефірної олії на запропонованих джерелах карбону та нітрогену дасть можливість створення технології одночасного виробництва рибофлавіну та ефірної олії. Об’єктом дослідження був аскоміцет Eremothecium ashbyi Guillierm. F-340. Досліджували біосинтетичну активність обраного штаму-продуценту рибофлавіну на середовищах з різними джерелами карбону та нітрогену, компонентний склад раціонального поживного середовища для культивування продуценту з метою максимального накопичення рибофлавіну, здатність продуценту до синтезу ароматичних сполук на запропонованому середовищі. Встановлено вплив різних джерел карбону та нітрогену на накопичення біомаси та синтез рибофлавіну штамом E. ashbyi F-340, для максимального накопичення рибофлавіну краще підходять моносахариди (фруктоза, галактоза) та шестиатомний спирт сорбіт. Кращим джерелом нітрогену виявився дріжджовий екстракт. Отримані експериментальні дані свідчать про ефективність застосування глюкозо-фруктозного сиропу з вмістом фруктози від 8 до 12% на суху речовину (ГФС-10). Показано, що саме при використанні ГФС-10 синтезується найбільша кількість вітаміну (140 мг/дм3). Показаний широкий діапазон варіювання кількості синтезованої ефірної олії. Найбільша кількість спостерігається на середовищі, що містить в якості джерела карбону ГФС-10 (273–453 мг/дм3). Використання ГФС-10 дозволило збільшити вихід рибофлавіну у 6,7 рази, порівняно з середовищем з глюкозою, та у 3,7 рази, порівняно з середовищем з фруктозою. Вихід ефірної олії збільшився у 5 раз. Отримані данні є передумовою для оптимізації поживного середовища.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Джерела карбону"

1

Поліщук, Валентина Юріївна. "Розробка технології виробництва рибофлавіну і ефірної олії, що продукуються Eremothecium ashbyi Guill". Doctoral thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/23301.

Повний текст джерела
Анотація:
Відомим мікроорганізмом–продуцентом рибофлавіну є аскоміцет Eremothecium ashbyi, який використовується у промисловості. Крім надсинтезу рибофлавіну E. ashbyi здійснює синтез флавінаденіндинуклеотиду (ФАД). За допомогою E. ashbyi можна отримувати як кормовий рибофлавін, що використовується в якості кормової добавки для тварин, так і, при застосуванні певних методів виділення та очистки, рибофлавін медичного призначення. Одночасно з синтезом рибофлавіну E. ashbyi здійснює синтез ефірної олії, яка за ароматом та своїми властивостями ідентична ефірній олії, отриманій з пелюсток троянди. У своєму складі вона містить такі ароматичні речовини, як гераніол (69,5–84,5%), нерол, лінаноол та β-фенілетанол (12,7–27,7%). Це дає можливість розглядати E. ashbyi як перспективний продуцент ароматичних речовин, що є необхідними для парфюмерно-косметичної промисловості. Біотехнологія трояндової ефірної олії, однієї з найцінніших олій в світі, досі не розроблена. На даний момент в Україні не налагоджено виробництво рибофлавіну за допомогою біотехнології, а можливість одночасного отримання ще й ефірної олії робить тему дисертаційної роботи актуальною, своєчасною та важливою. В ході виконання роботи досліджено морфологічні та культуральні особливості штаму Eremothecium ashbyi F-340. Він відноситься до аскоміцетів, що не утворюють плодові тіла, має справжній дихотомічний розгалужений міцелій яскраво-жовтого кольору, який складається з багатоядерних клітин. Колір міцелію обумовлений присутністю рибофлавіну, який накопичується в такій кількості, що випадає у вигляді кристалів в вакуолях. Показана природна мінливість штаму. Гриб утворює пігментовані жовті та жовтогарячі колонії з високою здатністю до біосинтезу рибофлавіну, та білі колонії, з низькою. Найчастіше колонії білого кольору з’являються при відновленні музейної культури і майже не з’являються при регулярних пересівах культури та чергуванні рідких та агаризованих поживних середовищ. Досліджено умови зберігання штаму. Встановлено, що короткотривале зберігання E. ashbyi F-340 у активному стані можливе на агаризованих глюкозопептонно-дріжджовому та соєвому середовищах за температури зберігання 5°C. Довготривале зберігання культури E. ashbyi (протягом 7 місяців) можливе лише за кімнатної температури. Досліджено вплив температури на життєдіяльність міцелію Eremothecium ashbyi F-340. Нижня гранична температура для E. ashbyi становить 4°С. Верхня гранична температура дорівнює 38°С. За цієї температури ще спостерігається незначний ріст гриба, а вже при 39°С ріст міцелію не спостерігається та відновлення росту при 28°С не відбувається. Динаміка росту штаму E. ashbyi F-340 у глибинній культурі підкоряється відомим закономірностям для періодичних культур. Фаза експоненціального росту триває протягом 2 діб, потім спостерігається уповільнення росту та перехід культури у стаціонарну фазу росту, яка триває до 5 доби культивування, після чого культура переходить у фазу відмирання або автолізу. Встановлено, що під час інтенсивного росту штаму відбувається зниження рН до 5,2, а інтенсивне накопичення рибофлавіну у культуральній рідині та у біомасі пов’язане з підвищенням рН до 7,8. Найбільш інтенсивно накопичення рибофлавіну в культуральній рідині відбувається у стаціонарній фазі росту на 3–4 добу культивування та його концентрація досягає 341,6 мг/дм3. Другий етап накопичення рибофлавіну відбувається на 5-7 добу та пов'язаний з автолізом культури, вміст рибофлавіну досягає 55,22,7 мг/дм3. Рибофлавін спочатку накопичується у міцелії E.ashbyi, де досягає рівня 8,1-10,7 мг/г сухої біомаси і залишається на такому рівні протягом 4–5 доби культивування. Незважаючи на постійну підтримуючу селекцію при культивуванні штаму у лабораторних умовах протягом 3 років спостерігалося поступове значне зниження рівня накопичення рибофлавіну та відповідне збільшення рівня накопичення біомаси. З даних літератури відомо, що надсинтез рибофлавіну грибом E. ashbyi у природних умовах здійснюється як захисна реакція на дію сонячних ультрафіолетових променів. Тому нами було запропоновано здійснювати УФопромінення продуценту для підвищення синтезу рибофлавіну. Опромінення культуральної рідини продуценту призводить до збільшення біосинтезу рибофлавіну на 72–74%, опромінення водної суспензії міцелію штамупродуценту – до збільшення синтезу на 80%. Встановлено, що найбільшому виходу рибофлавіну сприяє використання посівного матеріалу у віці 3-4 діб та у кількості 1%. На наступному етапі досліджено вплив умов культивування на біосинтетичну здатність продуценту. Показано, що початковий рівень рН середовищ, призначених для отримання біомаси та рибофлавіну, має бути різним. Для отримання максимальної кількості біомаси, а також посівного матеріалу, доцільно створювати у середовищі рН на рівні 5,5–6,0, а от для максимального накопичення рибофлавіну початкове рН середовища має становити 7,5. Встановлено, що за умов аерації на качалці при 180 об/хв синтезується на 70 % більше рибофлавіну, ніж при 70 об/хв. E. ashbyi здатен рости в широкому діапазоні температур від 20 до 38С. Оптимальною температурою для максимального виходу цільового продукту є 27–29С. Досліджено вплив різних джерел карбону на накопичення біомаси та синтез рибофлавіну штамом E. ashbyi F-340. Для синтезу рибофлавіну краще підходять моносахариди (фруктоза, галактоза) та шестиатомний спирт сорбіт, а біомаса краще накопичується при наявності в середовищі фруктози, сахарози та гліцерину. Кращим джерелом нітрогену для E. ashbyi F-340 виявився дріжджовий екстракт, кількість рибофлавіну, що синтезована на середовищі з дріжджовим екстрактом на 54% більша, ніж на інших джерелах нітрогену. Однак досі не було запропоновано жодного середовища для культивування Eremothecium ashbyi, яке б містило у складі наведені вуглеводи та було досить дешевим та технологічним. Для вирішення даної проблеми запропоновано використовувати таке перспективне натуральне джерело карбону, як глюкозо-фруктозний сироп (ГФС), який виробляють з кукурудзяного крохмалю ферментативним гідролізом його до глюкози з наступною ізомеризацією частини глюкози у фруктозу та подальшим очищенням. Показано, що найбільша кількість вітаміну синтезується при використанні ГФС-10 (140 мг/дм3), що у 7 разів більше, ніж на середовищі з глюкозою, та у 3,8 разів більше, ніж на середовищі з фруктозою. З метою здійснення оптимізації поживного середовища був запланований повний факторний експеримент на двох рівнях для 3 факторів, матрицю планування доповнили «зірковими» точками та отримали ортогональний центрально-композиційний план 2-го порядку для 3-х факторного експерименту. В результаті розрахунків отримано рівняння регресії другого порядку. Статистичну значимість коефіцієнтів рівняння перевіряли за критерієм Стьюдента, адекватність отриманого рівняння за критерієм Фішера. В результаті математичної обробки експериментальних даних отримано рівняння регресії залежності концентрації рибофлавіну в культуральній рідині від концентрації ГФС-10 (m), дріжджового екстракту (w) та пептону (v): Y1= –758,483+41,029·m+9,959·w+5,777·v+0,693·m·w–0,472·m·v–3,51·w·v– –0,547·m2+5,701·v2 Аналізуючи поверхні відгуку встановлено склад модифікованого середовища: оптимальна концентрація ГФС-10 для максимального накопичення рибофлавіну становить 40 г/дм3, концентрації дріжджового екстракту та пептону у середовищі становлять відповідно 10 та 1 г/дм3. Концентрація рибофлавіну, що спостерігалася при культивуванні на модифікованому середовищі у культуральній рідині становить 350,4 мг/дм3, що у 17 раз більше, ніж на ГПД середовищі, та у 2,5 рази більше, ніж на початковому середовищі з ГФС-10. Визначення вмісту у культуральній рідини ефірної олії проводили трьохкратною екстракцією гексаном з наступним видаленням розчинника. Показаний широкий діапазон варіювання кількості ефірної олії. Найбільша кількість спостерігається на середовищі, що містить в якості джерела карбону ГФС-10 (273…453 мг/дм3). Кількість ефірної олії збільшується зі збільшенням концентрації ГФС у середовищі. Наведено технологічну схему одночасного отримання рибофлавіну та ефірної олії методом гідродистиляції з подальшим розділенням потоків виділення рибофлавіну та ефірної олії. Наукова новизна одержаних результатів: - досліджено динаміку росту, виходу біомаси, накопичення рибофлавіну та ефірної олії обраним штамом-продуцентом Eremothecium ashbyi на середовищах з різними джерелами живлення; - визначено склад та кислотність середовищ, які є сприятливими для росту штаму-продуценту в глибинній культурі; - знайдено раціональні біотехнологічні параметри для отримання максимального виходу рибофлавіну та ефірної олії: температура культивування 27-29С, початкове рН середовища 7,5, перемішування 180 об/хв; - за допомогою методів планування експерименту оптимізовано поживне середовище для накопичення рибофлавіну та ефірної олії, що складається з ГФС-10, дріжджового екстракту та пептону, та перевірена можливість одночасного отримання цих продуктів; - вперше науково обґрунтовано та створено біотехнологію отримання рибофлавіну та ефірної олії з вітчизняної відновлюваної сировини – глюкозофруктозного сиропу, що виготовляється з кукурудзи.
A well-known microorganism-producer of riboflavin is ascomycete Eremothecium ashbyi used in industry. Besides overexpression of riboflavin, E. ashbyi also performs synthesis of flavinadeninedinucleotide (FAD). Using E. ashbyi, one can obtain either forage riboflavin used as a feed additive for livestock, or, using certain isolation and purification methods, riboflavin of medical purpose. Concomitantly with riboflavin synthesis, E. ashbyi performs synthesis of essential oil, identical by its aroma and properties to essential oil derived from rose petals. It contains such aromatic substances as geraniol (69.5–84.5%), nerol, linalool, and β-phenylethanol (12.7–27.7%). This allows viewing E. ashbyi as a promising producer of aromatic substances, which are necessary for perfume and toiletry industry. Biotechnology of rose essential oil, one of the most valuable in the world, has not been developed so far. At present, manufacture of riboflavin using biotechnology is not established in Ukraine, and the potential of concomitant production of essential oil as well makes the topic of this thesis urgent, timely, and important. During the work, morphological and cultural peculiarities of the strain Eremothecium ashbyi F-340 have been investigated. It belongs to ascomycetes not generating ascocarps, has true dichotomic branched bright-yellow mycelium composed of multinucleate cells. Mycelium color is due to the presence of riboflavin, which is accumulated in such quantities that it is precipitated in vacuoles as crystals. Natural variability of the strain has been shown. The fungus forms pigmented yellow and orange colonies with high ability to riboflavin biosynthesis, and white colonies with low biosynthetic ability. Most frequently, white colonies develop upon archive culture reactivation and almost do not appear upon regular reinoculations and alterations of liquid and agar nutrient media. The strain storage conditions have been investigated. It has been established that short-term storage of E. ashbyi F-340 in the active state is possible on agar glucose-peptone-yeast and soybean media at storage temperature 5°C. Long-term storage of E. ashbyi culture (for 7 months) is possible only at room temperature. Temperature effects on viability of Eremothecium ashbyi F-340 mycelium have been investigated. The lower limit temperature for E. ashbyi is 4°С. The upper limit temperature is equal to 38°С. Minor growth of the fungus is still observed at this temperature, and at 39°С no mycelium growth is observed, and growth restoration at 28°С is not observed. Growth dynamics of E. ashbyi strain F-340 in submerged culture follows the known regularities for periodic cultures. Exponential growth phase lasts for about 2 days; after this, growth deceleration and culture switch into stationery growth phase are observed; the latter one lasts for about 5 days of culturing, after which the culture is switched into die-off or autolysis phase. It has been established that pH decrease to 5.2 occurs during intensive strain growth; intensive riboflavin accumulation in cultural fluid and biomass is associated with pH increase to 7.8. The most intensive riboflavin accumulation occurs in stationery growth phase on culturing day 3–4, and its concentration reaches 341,6 mg/dm3. The second stage of riboflavin accumulation occurs on day 5-7 and is associated with culture autolysis; riboflavin content reaches 55,22,7 mg/dm3. Riboflavin is accumulated at the beginning in E.ashbyi mycelium, where it reaches the level of 8.1-10.7 mg/g of dry biomass and remains at that level until completion of culturing. Despite continuous maintenance selection during the strain culturing under laboratory conditions for 3 years, gradual considerable decrease in riboflavin accumulation and relevant increase in biomass accumulation level has been observed. It is known from literature data that riboflavin overexpression by fungus E. ashbyi in natural conditions occurs as a defense reaction on the effect of sun ultraviolet radiation. That is why we suggested to perform UV irradiation of the producer in order to increase riboflavin synthesis. Irradiation of the producer cultural fluid results in increase of riboflavin biosynthesis by 72-74%, and irradiation of aqueous suspension of mycelium of the producer strain results in synthesis increase by 80%. It has been established that the highest riboflavin yield is achieved when the inoculum aged 3-4 days in quantity 1% is used. The effect of culturing conditions on biosynthetic ability of the producer has been investigated at the following stage. It has been shown that the initial pH level of media intended for biomass and riboflavin production has to be different. In order to obtain maximum quantities of biomass and inoculum, it is expedient to adjust the medium pH to the level 5.5–6.0, and for maximum riboflavin accumulation, initial medium рН has to be 7.5. It has been established that, under aeration conditions on a rocker at 180 rpm, 70 % more riboflavin is synthesized compared to 70 rpm. E. ashbyi is capable to growth in a wide range of temperatures from 20 to 38С. The optimal temperature for maximum target product yield is 27-29С. The effect of various carbon sources on biomass accumulation and riboflavin synthesis by E. ashbyi strain F-340 has been studied. Monosaccharides (fructose, galactose) and hexatomic alcohol sorbitol are better suitable for riboflavin synthesis, and biomass is accumulated better in the presence of fructose, sucrose, and glycerol in the medium. The best nitrogen source for E.ashbyi F-340 turned out to be yeast extract; riboflavin quantity synthesized in a medium with yeast extract was 54% more compared to other nitrogen sources. Nevertheless, no medium for Eremothecium ashbyi culturing containing the said carbohydrates and being cheap and technological enough has been suggested yet. In order to solve this problem, we have suggested to use such a promising natural carbon source as glucose-fructose syrup (GFS), manufactured from corn starch via its enzymatic hydrolysis to glucose with following isomerization of glucose parts into fructose and further purification. It has been shown that the highest vitamin quantity is synthesized with the use of GFS-10 (140 mg/dm3), which is 7 times as high as in a medium with glucose, and 3.8 times as high as in a medium with fructose. For the nutrient medium optimization, we have planned a complete factorial experiment at two levels for 3 factors; the planning matrix was supplemented with “star” points, and orthographic central composite design of second order for 3-factor experiment has been obtained. As a result of calculations, regression equation of the second order has been obtained. Statistical significance of the equation coefficients was verified according to Student’s criterion, and adequacy of the obtained equation was verified according to Fisher’s criterion. As a result of mathematical processing of experimental data, we have obtained the regression equation of relation between riboflavin concentration in cultural fluid and concentrations of GFS-10 (m), yeast extract (w) and peptone (v): Y1= –758.483+41.029·m+9.959·w+5.777·v+0.693·m·w–0.472·m·v–3.51·w·v– –0.547·m2+5.701·v2 Analyzing the response surfaces, we have established the composition of modified medium: optimal GFS-10 concentration for maximum riboflavin accumulation is 40 g/dm3, and concentrations of yeast extract and peptone in the medium are 10 and 1 g/dm3, respectively. Riboflavin concentration observed during culturing on modified medium in cultural fluid is 350.4 mg/dm3, which is 17 times higher than on GPY medium and 2.5 times higher than on initial medium with GFS- 10. Testing of essential oil content in cultural medium was performed via triple extraction with hexane with further removal of the solvent. Wide range of variation of essential oil content has been shown. The highest quantity is observed in the medium containing GFS-10 (273…420 mg/dm3) as carbon source. Essential oil quantity is increased with increase of GSF concentration in the medium. Technological flow chart for concomitant production of riboflavin and essential oil production by hydrodistillation with further separation of riboflavin and essential oil isolation flows is provided. Scientific novelty of the obtained results: - growth dynamics, biomass yield, riboflavin and essential oil accumulation by the selected producer strain Eremothecium ashbyi have been investigated in media with different nutrition sources; - composition and acid content of media, favorable for the growth of the producer strain in submerged culture, have been determined; - rational biotechnological parameters for achievement of maximum riboflavin and essential oil yield have been determined: culturing temperature 27-29С, initial medium pH 7,5, stirring 180 rpm; - nutrient medium for riboflavin and essential oil accumulation has been optimized using experiment planning methods (such medium includes GFS-10, yeast extract and peptone), and possibility of concomitant production of these products has been verified; - biotechnology for riboflavin and essential oil production from domestic renewable raw material – glucose-fructose syrup manufactured from corn – has been scientifically justified are developed for the first time.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії