Статті в журналах з теми "Віртуальна система"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Віртуальна система.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Віртуальна система".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Shpylevsky, V., and I. Krupov. "COORDINATES SYSTEMS HARMONIZATION IN THE FRONTIER DISTRICTS OF THE DANUBE." Shipping & Navigation 30, no. 1 (December 1, 2020): 152–63. http://dx.doi.org/10.31653/2306-5761.30.2020.152-163.

Повний текст джерела
Анотація:
Геодезична мережа як віртуальна, так і реальна розглядається сьогодні як важлива інфраструктура подібна електричним мережам або транспортним. Кожна країна має свою національну мережу, яку будують так, щоб вона була якомога близько до поверхні геоїда цієї країни. Але геоїд не є правильною геометричною фігурою і саме тому при зустрічі геодезичних мереж на кордоні сусідніх країн існує так званий координатний стрибок Δx; Δy; Δz, який треба знайти та розподілити у вигляді поправок до геодезичних пунктів, розташованих близько кордону. Що стосується висотної референсної системи, то вихідні дані відлікових рівневих поверхонь також можуть відрізнятися на суттєві значення. Референсна система імплементована у вигляді закріплених на місцевості геодезичних пунктів. Так наприклад в Європі використовують такі референсні системи як ETRS (European Terrestrial Reference System) i ERTF (European Reference Terrestria Frame), а також EVRS (V- Vertical) i EVRF. В Україні використовують для планової системи координат еліпсоїд WGS 84 з визначеними параметрами та Балтійську систему висот. В роботі розглянуто можливість приведення систем координат на прикордонних ділянках на річці Дунай до загально обраної референсної системи. Метою даного дослідження є намір розробити такий алгоритм, який дозволив би привести всі системи координат, що використовують придунайські країни до гармонізованого стану, шляхом введення постійно діючих величин на кордоні цих країн. В роботі показано як можна це реалізувати на прикладі прикордонних геодезичних мереж між Україною, Румунією та Болгарією. Запропоновано використання програмного продукту DaWAT, який дозволяє автоматично трансформувати дані з вертикальної референсної системи Румунії (MN75) До Української і Болгарської (Балтійська система висот).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Жеребко, Валерій Анатолійович. "Концепція віртуалізації об’єктів автоматизації в навчально-наукових задачах проектування систем управління". Theory and methods of learning mathematics, physics, informatics 13, № 2 (12 квітня 2018): 294–303. http://dx.doi.org/10.55056/tmn.v13i2.594.

Повний текст джерела
Анотація:
Розглянуто проблему використання технології віртуалізації імітаційних моделей технічних об’єктів управління (ОУ) при розробці керуючих програм для контролерних платформ (ПЛК) польового рівня промислової автоматизації. Пропонується узагальнена концепція віртуальних об’єктів автоматизації (ВОА), що дозволяє значно підвищити якість та швидкість розв’язання системними інтеграторами проектних рішень при розробці автоматизованих систем управління як у навчальному процесі так і у промисловій галузі. Структурними елементами ВОА є віртуальні технічні засоби автоматизації та віртуальна імітаційна модель ОУ. Розглянуто приклад впровадження концепції ВОА у навчально-методичній сфері технічного університету. У якості засобів розробки ВОА в лабораторному практикумі пропонується використовувати вільний програмний симулятор ПЛК та мову програмування BASIC. У якості розширення запропонованої концепції пропонується віртуалізувати розподілену систему управління, до складу якої входитимуть декілька відокремлених ВОА та один віртуальний контролер.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Кульбака, Н., A. Писаренко та O. Бондаренко. "Програмне забезпечення для віртуальних турів". Адаптивні системи автоматичного управління 2, № 39 (15 грудня 2021): 84–97. http://dx.doi.org/10.20535/1560-8956.39.2021.247415.

Повний текст джерела
Анотація:
У статті розглядаються методи та засоби реалізації діалогової системи з використанням сучасних технологій обробки природної мови, що дозволить відвідувачам віртуальних художніх виставок отримувати інформацію про виставку, автора та роботи у формі інтерактивної бесіди, яка є побудована за правилами освітня функція в системі «Виставка», яку сучасні веб-сервіси віртуальних виставок не підтримують. Проаналізовано архітектури діалогових систем, класифікатори текстів, корпуси українських текстів, засоби реалізації діалогових систем для веб-додатків на JavaScriptта Python. Виходячи з їх можливостей, недоліків та переваг було обрано інструменти для розробки віртуального довідника. Розглянуто існуючі системи штучного інтелекту для екскурсій, а саме роботи «Promobot» та «Pepper», а також існуючі діалогові системи «Siri» та «Alice». Виявлено та обґрунтовано необхідність створення модуля «Довідник»у системі «Виставка». Розроблено архітектуру діалогової системи для проведення віртуальних екскурсій у співпраці з веб-сервісом художніх виставок. Результатом стала система діалогу «Exi», яка була інтегрована у веб-сервіс дляорганізації та проведення художніх виставок «Xolst». Експериментально доведено, що віртуальний гід реалізує необхідний функціонал для проведення екскурсій, підвищує інтерес користувачів до виставки, покращує сприйняття творів мистецтва та створює позитивне емоційне середовище. Бібл. 29, іл. 5.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Піткевич, П. "Принципи захисту від несанкціонованого доступу до ресурсів системи хмарних обчислень." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 44 (30 жовтня 2021): 120–26. http://dx.doi.org/10.36910/6775-2524-0560-2021-44-19.

Повний текст джерела
Анотація:
У статті розкрито принципи захисту від несанкціонованого доступу до ресурсів системи хмарних обчислень. Наголошено, що продуктивність є важливим фактором для розгляду системи хмарних обчислень. Доступ до загальнодоступних хмар здійснюється через Інтернет і стикається з обмеженнями смуги пропускання, наданими їх відповідними постачальниками інтернет-послуг. Підкреслено, що масштабування до більшої пропускної здатності Інтернету може значно збільшити загальну вартість володіння хмарними рішеннями. Розглянута архітектура модулю контролю доступу, щодо забезпечення захисту від несанкціонованого доступу до ресурсів системи хмарних обчислень, а також запропонована концептуальна схема реалізації процесів автентифікації та авторизації за допомогою модулю контролю доступу, яка відрізняється від існуючих комплексним підходом до класифікації облікових даних користувача і засобів, методів захисту, і може бути застосована до всіх інформаційних систем. Визначено основні архітектурні рішення побудови архітектури модулю контролю доступу, виявлено її переваги та недоліки з точки зору інформаційної безпеки, визначено основні моделі обслуговування хмарних обчислень, описана еталонна архітектура хмарних обчислень з точки зору захисту даних і моделі безпеки. Підкреслено, що архітектура контролю доступу має три основні частини, які працюють разом для обробки запитів доступу: модуль контролю доступу, який приймає/відхиляє/перенаправляє запити на доступ, віртуальна розподілена мережа, яка розгортає та контролює ресурси та послуги, а також централізована глобальна система управління ресурсами, яка обробляє переміщення запитів до інших хмар для віддаленого використання послуг/ресурсів. Наголошено, що глобальна система управління ресурсами діє як бар'єр між різними хмарними службами на одному рівні або різних шарах, а використання однієї централізованої глобальної системи управління ресурсами у запропонованій архітектурі ґрунтується на тому, щоб уникнути використання угоди про рівень послуг для кожного рівня обслуговування.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

VOITOVSKA, Oksana. "АPPLICATION OF ІCТ IN THE PROCESS OF PROFESSIONAL DEVELOPMENT OF TEACHERS IN HIGHER AND POSTGRADUATE PEDAGOGICAL EDUCATION INSTITUTIONS". Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1 (29 квітня 2021): 232–38. http://dx.doi.org/10.31494/2412-9208-2021-1-1-232-238.

Повний текст джерела
Анотація:
У статті на основі аналізу науково-педагогічної літератури визначено, що головними властивостями освітніх інновацій є планомірні зміни, пов’язані з переходом із нижчого якісного стану до вищого в організації, здійсненні моніторингу, системах управління якістю освітньо-наукового процесу, а також специфічних особливостях розумової діяльності, що є результатом упливу нових соціально-економічних, психологічних суспільних процесів у діяльності та мисленні всіх її учасників. Зазначено, що підготовка майбутнього вчителя до інноваційної діяльності є тривалим поетапним процесом становлення його особистості. Вказано, що кожний заклад, як складник системи освіти, під час організації та безпосереднього здійснення освітньо-наукового пізнавального процесу повинен на достатньому для вирішення освітніх завдань рівні використовувати можливості та потужності ІКТ – здійснювати електронне навчання (e-learning), що зі свого боку потребує створення та постійного розвитку інформатизації методичної системи закладів вищої та післядипломної педагогічної освіти. Встановлено, що сучасна система вищої та післядипломної педагогічної освіти має значний досвід використання ІКТ у процесі професійного розвитку вчителів. Серед них найбільш визнаними та зручними є: гіпертекстова технологія, Інтернет (електронна пошта, теле-відеоконференція, чат тощо), «віртуальна реальність» і технологія мультимедіа. Зазначено, що використання сучасних інформаційних телекомунікаційних мереж суттєво змінило комунікативне середовище, відкрило нові шляхи до пошуку інформації, розширило спектр використання Інтернету в різних сферах життєдіяльності. Визначено, що останніми роками в різних країнах особлива увага приділялася можливостям використання комп’ютерних телекомунікаційних технологій в організації навчання. Вони забезпечують ефективний зворотній зв’язок, що передбачає як організацію вивчення навчального матеріалу, так і спілкування з викладачем, коли виникає потреба в цьому. Таке навчання на відстані отримало назву дистанційного. Охарактеризовано найбільш значущі для освітнього процесу послуги, що надаються технологією Інтернет: електронну пошту, теле- і відеоконференції, «віртуальну реальності». Ключові слова: професійний розвиток вчителів, післядипломна педагогічна освіта, неперервна освіта.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Сащук, Ганна Миколаївна. "Віртуалізація реальності як феномен культури сучасного інформаційного суспільства". S.P.A.C.E. / Society, Politics, Administration in Central Europe, № 10 (7 лютого 2019): 22–29. http://dx.doi.org/10.32837/space.v0i10.131.

Повний текст джерела
Анотація:
Визначено, що віртуальна реальність – це новий організований соціальний простір, який на противагу відображення реальної дійсності є джерелом відмінності, заміщення, маніпуляцій, симулякрів - особливих об'єктів «відчужених знаків». З’ясовано, що важливою характеристикою віртуальної культури є її мозаїчність, пов'язана з особливостями процесу пізнання, а також структурування та ціннісного відбору соціального досвіду життєдіяльності. Як наслідок інтенсивного впровадження комп'ютерних інформаційних технологій у повсякденну культуру, безперервного і безладного потоку інформації, формується певний тип віртуальної культури, що поєднує в собі випадкові елементи культур різних народів та епох. Продемонстровано як дані елементи осідають за певними статистичними законами у свідомості індивідів, утворюючи щось на зразок «сховища повідомлень». Досліджено, що визначальною рисою віртуальної культури є побудований за принципом мультимедійного гіпертексту віртуальний простір, тобто специфічна організація інформаційних масивів, елементи яких пов'язані між собою асоціативними відносинами. Зазначено, що через специфіку просторової організації віртуальної реальності, у віртуальній культурі формується інша логіка мислення: нелінійна, непослідовна, недетерміністская, асоціативна. Ці ефекти досягаються завдяки моделюванню «іншого соціуму» та «іншого часу», відмінного від реального соціального часу - неодновимірного, оборотного, різноспрямованого і нескінченного. Підсумовується, що завдячуючи віртуальній реальності, не відбувається ціннісного відбору і структурування соціального досвіду, як у випадку спрямованого процесу пізнання, що реалізується за допомогою системи освіти. У цьому полягає основна відмінність віртуальної культури від культури в її традиційному розумінні в науці як ціннісно-відібраного та символіко-семіотично організованого досвіду багатьох людей.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Кошелєва, Оксана Борисівна, Олена Анатоліївна Кравчук та Оксана Володимирівна Цисельська. "КОМУНІКАЦІЙНА КУЛЬТУРА В УМОВАХ ГЛОБАЛІЗАЦІЇ ТА ЇЇ ВПЛИВ НА ФОРМУВАННЯ ІМІДЖУ КРАЇНИ". Питання культурології, № 38 (29 жовтня 2021): 287–300. http://dx.doi.org/10.31866/2410-1311.38.2021.247170.

Повний текст джерела
Анотація:
Мета статті — визначити вплив комунікаційної культури на формування міжнародного іміджу країни. Методологія дослідження полягає у використанні методів аналізу і синтезу для вивчення «комунікаційної культури» та комунікативних технологій. Структурний метод дозволив визначити процеси комунікації та комунікативних функцій. Міждисциплінарний підхід застосовувався для виявлення інформаційних та комунікаційних технологій, спрямованих на формування міжнародного іміджу. Наукова новизна полягає у визначенні понять «комунікативна культура» та «віртуальна реальність» як особливого культурного простору з позицій формування іміджу країни на міжнародному рівні. Висновки. Доведено, що в умовах глобалізації відбувається розширення інформаційних систем та комунікаційних технологій, які характеризуються оперативністю, вільним доступом та впливом на суспільство. На міжнародному рівні типологія сучасних комунікацій охоплює медіадипломатію, публічну, електронну, іміджеву та культурну дипломатію, державний брендинг, інвестиційне іміджування, медіазв’язки, адвокасі, соціально-комунікаційні платформи, за допомогою яких створюється соціально-психологічний образ того чи іншого суб’єкта, який впливає на поведінку особистості в культурній та політичній сфері. Комунікаційна культура визначається панівними в суспільстві нормами та способами фіксації, збереження і поширення культурних змістів, а суспільна комунікаційна система є упредметненою комунікаційною культурою. Комунікативні технології розглядаються як суспільно-політичний феномен, що функціонує в різних формах, реалізується через інструменти та механізми задоволення національних (державних) корпоративних та суспільних інтересів. Отже, в інформаційному суспільстві комунікація займає домінуючі позиції, а віртуальна реальність сприймається як особливий культурний простір.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vorona, I. I., та T. V. Savaryn. "ВИКОРИСТАННЯ ВІРТУАЛЬНИХ НАВЧАЛЬНИХ ПРОГРАМ ДЛЯ ВИВЧЕННЯ ЛАТИНСЬКИХ МЕДИЧНИХ ТЕРМІНІВ". Медична освіта, № 3 (2 грудня 2019): 14–18. http://dx.doi.org/10.11603/me.2414-5998.2019.3.10643.

Повний текст джерела
Анотація:
У статті вказано на ефективність використання віртуальної програми на заняттях латинської мови, проаналізовано науково-методичні підходи до використання віртуального середовища для вивчення латинської медичної термінології студентами у вищих медичних навчальних закладах. Узагальнено досвід використання віртуальної навчальної програми на заняттях з латинської мови у студентів-медиків. Зазначено, що використання віртуальних навчальних програм значно розширює можливості викладачів, сприяє індивідуалізації навчання, активізації пізнавальної діяльності студентів; дає змогу максимально адаптувати процес навчання до їхніх індивідуальних особливостей. Сьогодні в системі вищої освіти значна увага приділяється інформатизації навчального процесу. Використання комп’ютерних технологій дає змогу організувати процес передачі інформації студентам більш ефективно, із застосуванням усіх можливих каналів. Арсенал наявних навчальних програм досить вагомий. Чільне місце в навчанні посідає застосування віртуальних навчальних програм. Інформатизація та комп’ютеризація освіти в сучасному глобалізованому світі передбачає як підготовку виклада­ча до використання інноваційних технологій, так і готовність студента працювати самостійно, особливо у процесі вивчення фахової термінології. Віртуальні навчальні програми можуть застосовуватися в процесі навчання латинської мови професійного медичного спрямування як потужне джерело інформації, як засіб індивідуалізації навчання, оцінювання та контро­лю знань, а також як засіб активізації творчої діяльності студентів та заохочення до навчання. Виконання віртуальних програм значно прискорює процес освоєння навчального матеріалу, урізноманітнює його, робить цікавішим. Оскільки комп’ютерна віртуальна програма з латинської мови містить необхідні відомості як з теорії, так і з практики, це допомагає студентам перед опитуванням проконтролювати свої знання за методикою виконання, а також полегшити засвоєння матеріалу на занятті.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Поліщук, Олександр Павлович, та Євген Володимирович Гожев. "Дослідження динаміки та прогнозування курсів цінних паперів". New computer technology 5 (7 листопада 2013): 77–78. http://dx.doi.org/10.55056/nocote.v5i1.89.

Повний текст джерела
Анотація:
Розвиток людини, суспільства й економіки має спрямованість у майбутнє, що знайшло відображення у виникненні таких понять, як «передбачення», «прогноз». Прогнозування («наукове передбачення») – це та сторона пізнавальної діяльності суб’єкта, результатом якого є одержання знань про майбутні події.Моделі складних систем, таких як фінансові ринки, не завжди можуть давати однозначні рекомендації або прогноз.Серед факторів, що характеризують динаміку ринку та впливають на неї, є велика кількість даних нечислової природи, значення яких мають імовірнісну природу.Для подолання проблем, з якими доводиться зіштовхуватися при аналізі фінансової ситуації, робляться спроби застосування таких розділів сучасної фундаментальної й обчислювальної математики, як нейрокомп’ютери, теорія стохастичного моделювання (теорія хаосу) і теорія ризиків, теорія катастроф, синергетика й теорія систем, що самоорганізуються (включаючи генетичні алгоритми), теорія фракталів, нечіткі логіки й навіть віртуальна реальність.Правильне розуміння ситуації на ринку, аналіз його динаміки, прогнозування поводження ринку приводить до обґрунтованого прийняття рішень.Основна мета роботи полягала у розробці програмного забезпечення для дослідження динаміки й прогнозування курсу цінних паперів.Вiдповiдно до мети, було необхiдно вирiшити наступнi задачi:Розглянути основні підходи до аналізу ринку цінних паперів.Дослідити можливості програмного комплексу MetaTrader 4 по керуванню ринком цінних паперів.Проаналізувати можливості мови MQL 4 по створенню ринкових індикаторів і експертних систем аналізу ринку цінних паперів.Розробити й протестувати індикатор для аналізу динаміки курсів валют і експертну систему для короткочасного прогнозування й прийняття рішень на валютному ринку.Аналіз літератури з проблеми дослідження дозволив виділити наступні суттєві характеристики об’єкта дослідження:валютний ринок Forex має високу ліквідність;відсутність обмежень за часом роботи забезпечує неперервність процесу дослідження;децентралізованість забезпечує незалежність від локальних геополітичних факторів;велика кількість учасників ринку дозволяє абстрагуватися від індивідуальних особливостей гравців;об’єкт дослідження являє собою складну систему з великою кількістю нелінійних зв’язків.Виділені властивості валютного ринку дозволяють розглядати його як динамічну систему, що може бути проаналізована. Прогноз стану системи є актуальною проблемою, безпосередньо пов’язану з отриманням прибутку.Розгляд алгоритмів отримання якісних і кількісних характеристик ринку засобами фундаментального, технічного та комп’ютерного аналізу дозволив зробити наступні висновки:1. На практиці можна знайти випадки, коли кожен з представлених підходів до аналізу ринку дасть прийнятний результат. Для трейдерів, що не є ринкоутворювачами, найбільш прийнятним є комп’ютерний індикаторний аналіз з автотрейдингом за короткочасними прогнозами.2. Автоматичні індикатори є ефективним засобом графічного аналізу часових рядів, надаючи трейдеру можливість прийняття обґрунтованого рішення.3. При розробці експертної системи для робочого місця трейдера необхідно розрізняти поняття «прогнозування руху цін на ринку», з одного боку, та «ігрові робочі гіпотези», зважені за ймовірністю подій, з іншого.4. Критеріями вибору трейдингової системи є підтримка великого набору індикаторів і експертів, можливість розширення системи компонентами користувача, наявність вбудованої мови програмування та локалізація.В результаті дослідження було створено експертну систему, призначену для автоматичного ведення торгів на ринку цінних паперів. Експертна система реалізована засобами мови програмування MQL 4, що вбудована в термінал MetaTrader 4.Розгляд підходів до написання технічних індикаторів та експертних систем для підтримки прийняття рішень на основі аналізу динаміки курсу цінних паперів та короткочасного прогнозування дозволило зробити наступні висновки:Мова програмування MQL 4 має всі необхідні інструменти для забезпечення якісного технічного аналізу курсу валют.Можливість написання та тестування експертів в торговій системі MetaTrader дозволяє користувачу створити систему торгівлі, що приносить прибуток.Аналіз присутніх на ринку торгових систем виявив типові помилки в написанні експертних систем, що були враховані при розробці власного автотрейдингового експерта.Подальший розвиток даної роботи планується у напрямку дослідження динаміки валютних ринків з метою удосконалення алгоритмів прогнозування курсу та оптимізації роботи торгових експертних систем із застосування механізму нейронних мереж.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lukianova, Larysa B., Hanna V. Tovkanets, Halyna I. Sotska та Olena V. Trynus. "СОЦІАЛЬНО-ПЕДАГОГІЧНІ АСПЕКТИ ДІЯЛЬНОСТІ ВІРТУАЛЬНИХ УНІВЕРСИТЕТІВ У ЄВРОПЕЙСЬКОМУ ОСВІТНЬОМУ ПРОСТОРІ". Information Technologies and Learning Tools 72, № 4 (21 вересня 2019): 14–25. http://dx.doi.org/10.33407/itlt.v72i4.2892.

Повний текст джерела
Анотація:
У статті розглянуто освітньо-педагогічні аспекти діяльності віртуальних університетів у європейському освітньому просторі. Досліджено історичну ретроспективу розвитку технологій відкритого й дистанційного навчання в європейських країнах. Проаналізовано роль комп’ютерних і телекомунікаційних технологій у розвитку університетської освіти. Підкреслено, що віртуальна освіта сприяє розвитку якісно нового за змістовими характеристиками спілкування, у контексті якого формується символічний образ сучасної особистості. З’ясовано, що віртуальний університет – це корпоративний навчальний центр, некомерційна державна освітня установа, яка функціонує з метою забезпечення багатовекторної, багатонаціональної та міжнародної навчальної співпраці на основі дистанційного навчання. Це надає можливість студентам отримати освітній досвід та відповідну підтримку частково або повністю онлайн. Проаналізовано напрями використання систем віртуальної освіти в міжнародній практиці. Наведено приклади діяльності навчальних закладів, яка ґрунтується: на використанні інтернет-технологій, інтернет-ресурсів як внутрішнього комунікаційного середовища, поєднанні традиційних форм навчання з технологічними інтернет-нововведеннями. Підкреслено, що в умовах ефективного здійснення та поширення в розвинених країнах світу віртуалізації системи навчання розпочато діяльність щодо створення віртуальних університетів в Україні. Зроблено висновок, що інформаційне суспільство забезпечує активізацію ресурсів, які були незалежні від попередньої соціокультурної парадигми, що вимагає переходу до віртуального способу передачі, освіти, зберігання інформації в усіх сферах людської діяльності. Суб’єктивна потреба у віртуальних способах передавання, інтеріоризації,використання та зберігання інформації в усіх сферах людської діяльності, включно й сфері освіти, визначається необхідністю технічної інтеграції або диференціації концептуального і технологічного моделювання діяльності людини. Ці процеси своєю чергою уможливлюють реалізацію дій і явищ мікро- і макросвіту у великому діапазоні реального часу й простору, сприяють віртуалізації культури і вираженню в образно-символічній формі норм, ідеалів, цінностей.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Bohdanets, I. M. "ANTHROPOLOGICAL ASPECT OF VIRTUAL CONSTRUCTION." Актуальні проблеми філософії та соціології, no. 33 (March 27, 2022): 8–12. http://dx.doi.org/10.32837/apfs.v0i33.1064.

Повний текст джерела
Анотація:
Дослідження спрямовано на пошуки алгоритму віртуального конструювання з урахуванням антропологічного параметра. Об’єкти віртуальної реальності досі по замовчуванню ототожнюють з реальними об’єктами не зважаючи на різні матерії втілення та відмінності у закономірностях їх існування. Стрімкий розвиток комп’ютерних технологій та підвищення значення віртуальної реальності для людства обумовлюють логічну необхідність вивчення віртуальних конструктів, особливо антропологічного контексту їх існування, адже заміна матерії сконструйованим людиною знаком захищає об’єкти віртуальної реальності від руйнування, що зрештою призводить до віртуальної експансії шляхом нагромадження інформаційних потоків, а отже до посилення залежності людини від віртуальної реальності. Як засвідчує проведений аналіз, тенденція до дублювання основних закономірностей творення конструктів матеріальної реальності віртуальною не є гарантією онтологічної ідентичності, адже на відміну від предметного поля реальності, кожен віртуальний конструкт та кожен етап його створення є антропологічно обумовленим. У контексті трансформацій сучасного суспільства, спричинених зростанням споживчих потреб людства, феномен віртуальної реальності вимагає теоретичного доповнення системи та переосмислення її з антропологічних позицій. На тлі підвищення інформаційного попиту та прагнення до самореалізації шляхом захоплення абсолютної влади над відкритим для маніпуляції кіберпростором виникає потреба у створенні самодостатнього та онтологічно незалежного образу віртуальної реальності, який дозволить контролювати вплив здійснюваний на людину шляхом впорядкування сутнісних структур віртуальної реальності. У перспективі, необхідною умовою розвитку віртуального конструювання є наслідування природної регуляції, яка реалізується у науці за допомогою синергетичного підходу.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Нечипуренко, Павло Павлович. "Деякі аспекти імітації реальних хімічних процесів та систем у віртуальних хімічних лабораторіях". Theory and methods of e-learning 3 (11 лютого 2014): 238–44. http://dx.doi.org/10.55056/e-learn.v3i1.344.

Повний текст джерела
Анотація:
Перехід сучасного суспільства до інформаційної епохи свого розвитку висуває як одне з основних завдань, що стоять перед системою освіти, завдання формування основ інформаційної культури майбутнього фахівця. Процеси модернізації та профілізації вітчизняної шкільної освіти так само, як і модернізації вищої освіти (участь у створенні єдиного європейського простору, впровадження дистанційної освіти тощо) ведуться на базі інформаційно-комунікаційних технологій навчання. Метою даної статті є обговорення ролі сучасних комп’ютерних моделей у навчанні хімії, та проблеми якості відображення реальних хімічних процесів у комп’ютерних моделях, якими є віртуальні хімічні лабораторії.Дидактична роль нових інформаційних технологій полягає, перш за все, в активізації пізнавальної діяльності і творчого потенціалу учнів [5]. Необхідно створювати умови, аби учень став активним учасником навчального процесу, а вчитель був організатором пізнавальної діяльності учня. Адже вивчення будь-якої навчальної дисципліни – не мета, а засіб розвитку особистості. Ефективність застосування комп’ютерів у навчальному процесі залежить від багатьох чинників, у тому числі й від рівня самої техніки, від якості навчальних програм і від методики навчання, що застосовується вчителем. Більшість педагогів переконані в тому, що комп’ютер є потужним засобом для творчого розвитку дітей, дозволяє звільнитися від багатьох рутинних видів роботи і розробити нові ідеї в методиці навчання, дає можливість вирішувати більш цікаві і складні проблеми [5].Будь-який ілюстративний матеріал (мультимедійні й інтерактивні моделі в тому числі) значно розширюють можливості навчання, роблять зміст навчального матеріалу більш наочним, зрозумілим, цікавим. Не можна скидати з рахунків і психологічний чинник: сучасному учневі чи студенту набагато цікавіше сприймати інформацію саме в інтерактивній формі, ніж за допомогою застарілих схем і таблиць. Використання комп’ютерних моделей, комп’ютерних засобів візуалізації значно підвищує ефективність засвоєння матеріалу[5].Сучасні школярі, які здебільшого є представниками «покоління відеоігор», орієнтовані на сприйняття високоінтерактивного, мультимедіа насиченого навчального середовища. Згаданим вище вимогам якнайкраще відповідають освітні програми, що моделюють об’єкти і процеси реального світу і системи віртуальної реальності. Прикладом таких навчальних систем є віртуальні лабораторії, які можуть моделювати поведінку об’єктів реального світу в комп’ютерному освітньому середовищі і допомагають учням опановувати нові знання й уміння в науково-природничих дисциплінах, таких як хімія, фізика і біологія [3].Хімія – наука експериментальна, її завжди викладають, супроводжуючи демонстраційним експериментом. Ні для кого не є секретом, що матеріальний стан більшості шкіл в Україні є, м’яко кажучи, неідеальним. Дуже часто для демонстрації хімічного досліду не вистачає необхідних реактивів чи обладнання, тому доводиться обходитись теоретичним розглядом лабораторної роботи або проводити один дослід на весь клас. У такому випадку на допомогу вчителеві приходять саме спеціалізовані комп’ютерні програми, на кшталт віртуальних хімічних лабораторій, що дозволяють провести (саме провести, а не спостерігати) дослід у наближених до реальності умовах. Також, наприклад, при вивченні токсичних речовин, зокрема галогенів, віртуальне середовище надає можливість проводити хімічний експеримент без ризику для здоров’я учнів [4].На даний момент розроблена велика кількість навчальних програм для шкільного курсу хімії. Жодна з цих програм не є досконалою, проте сам факт їх створення свідчить про те, що в них існує потреба і вони мають безперечну цінність. Для того, щоб у дитини виник інтерес до співпраці з комп’ютером і в процесі цієї спільної творчості стійка пізнавальна мотивація до вирішення освітніх, дослідницьких завдань, необхідне створення таких умов, при яких учень стає безпосереднім учасником подій, що розвиваються на екрані монітора, тобто умов для повноцінного діяльнісного підходу до навчання.Умова успішного застосування комп’ютерних моделей в освітньому процесі сучасної школи закладена в добре відомих принципах педагогіки співпраці, які можна перефразовувати так: «не до комп’ютера за готовими знаннями, а разом з комп’ютером за новими знаннями» [3].Головна перевага віртуальних хімічних лабораторій полягає в тому, що віртуальні хімічні експерименти безпечні навіть для непідготовлених користувачів. Учні можуть також проводити такі досліди, виконання яких в реальній лабораторії може бути небезпечне або коштує надто дорого. Звичайно, за допомогою віртуальних дослідів не можна опанувати навички реального хімічного експерименту, але віртуальні досліди можуть застосовуватися, наприклад, для ознайомлення учнів з технікою виконання експериментів, хімічним посудом і устаткуванням перед безпосередньою роботою в лабораторії. Це дозволяє учням краще підготуватися до проведення цих або подібних дослідів в реальній хімічній лабораторії. Також проведення віртуальних експериментів допомагає учням та студентам засвоїти навички запису спостережень, складання звітів та інтерпретації даних в лабораторному журналі. Іще слід наголосити на тому, що комп’ютерні моделі хімічної лабораторії за певних умов можуть спонукати учнів експериментувати і отримувати задоволення від власних відкриттів [3].За способом візуалізації розрізняються лабораторії, в яких використовується двовимірна, тривимірна графіка і анімація. Крім того, віртуальні лабораторії можна поділити на дві категорії залежно від способу представлення знань у предметній області. Віртуальні лабораторії, в яких представлення знань у предметній області засновано на окремих фактах, обмежені набором заздалегідь запрограмованих експериментів. Цей підхід використовується при розробці більшості сучасних віртуальних лабораторій. В таких програмах змінити умови проведення експерименту і одержати якісь інші результати неможливо. Інший підхід дозволяє учням проводити будь-які експерименти, не обмежуючись заздалегідь підготовленим набором результатів. Це досягається за допомогою використання математичних моделей, що дозволяють визначити результат будь-якого експерименту і відповідний візуальний супровід. На жаль, подібні моделі поки що можливі тільки для обмеженого набору дослідів [3]. Переваги і недоліки вищезгаданих програмних продуктів достатньо повно були висвітлені Т. М. Деркач, яка, до речі, пропонує використовувати термін «імітаційні хімічні лабораторії» [1; 2].Суттєвою перевагою таких віртуальних лабораторій як ChemLab (виробник: Model Science Software), Croсоdile Chemistry (Crocodile Clips Ltd), Virtual Lab (The ChemCollective) є можливість активного втручання учня у хід роботи, а не пасивне спостерігання за відеофрагментом чи анімацією, що запрограмовані заздалегідь. При виконанні лабораторної роботи за допомогою вищезгаданих програм учень може повторити її безліч разів, при цьому щоразу змінюючи один чи декілька параметрів на власний вибір. В більшості випадків (якщо дії учня не суперечать логіці і можливі для виконання і у реальній лабораторії) учень отримає правильні результати, що лише підкреслить ті закономірності, виявлення яких і було метою роботи. Скажімо у лабораторній роботі «Гравіметричне визначення хлорид-йонів» («Gravimetric Analysis of Chloride») у віртуальній лабораторії ChemLab учень чи студент може замість запропонованих в інструкції 5 г речовини, що містить хлорид-йони, взяти 3, чи 6, чи 10 г її. Але в кожному випадку він отримає і відповідну масу осаду арґентум хлориду, за якою, при виконанні обчислень, прийде до одних і тих самих результатів і висновків.Подібний підхід, коли учень може проявити власну ініціативу при виконанні роботи, дуже позитивно відбивається і на навчальних досягненнях і на зацікавленості учнів. Але разом з ініціативою учні можуть також підключити і власну фантазію – спробувати виконати такі дії, які не були передбачені сценарієм проведення даної роботи (наприклад, нагріти розчин до кипіння, або навпаки охолодити його до температури замерзання) просто із цікавості, тим більше, що у ChemLab можна використовувати обладнання, застосування якого не передбачалось сценарієм виконання роботи. Результати таких незапланованих дій можуть переноситись учнями і на відповідні об’єкти та процеси реального світу, а тому до віртуальних лабораторій завжди висувалась жорстка вимога суворої відповідності віртуальних об’єктів та процесів реальним об’єктам і процесам.Тут доводиться констатувати протиріччя, яке існує в середовищі користувачів віртуальних хімічних лабораторій: методистів, розробників, вчителів, учнів тощо. Справа в тому, що немає і, мабуть, не може бути єдиної думки з приводу того, наскільки повно віртуальні процеси повинні відтворювати об’єктивну реальність. З одного боку, чим більше віртуальний світ схожий на реальний, тим нібито краще – в такому випадку навчання хімії за допомогою віртуальних комп’ютерних лабораторій виходить на якісно новий, більш високий рівень, з’являється набагато більше можливостей і форм застосування навчальних лабораторій у навчанні хімії, зникають передумови для одержання хибних висновків при їх використанні. Але, з іншого боку, врахування найменших дрібниць і максимальної кількості можливих варіантів розвитку подій неминуче призведе до значного ускладнення комп’ютерних програм, суттєвого збільшення баз даних і, як наслідок, подорожчання та подовження часу на розробку відповідних програмних продуктів, та, скоріш за все, суттєво ускладнить використання таких програм людьми без спеціальної підготовки. Не кажучи вже про те, що передбачити всі можливі варіанти дій користувача у віртуальній лабораторії просто неможливо.Інша точка зору полягає в тому, що віртуальні хімічні лабораторії в першу чергу є моделями, тобто системами, що відтворюють, імітують, відображають принципи внутрішньої організації або функціонування, певні властивості, ознаки чи характеристики об’єкта дослідження (оригіналу). Модель завжди є спрощеною версією модельованого об’єкта або явища (прототипу), що в достатній мірі повторює властивості, суттєві для цілей конкретного моделювання (опускаючи несуттєві властивості, в яких вона може відрізнятися від прототипу).Подібне визначення поняття «модель» фактично означає, що такі програми як віртуальні хімічні лабораторії, не повинні перевантажуватись «зайвими дрібницями» – несуттєвими для виконання певної роботи чи досліду зовнішніми ознаками, фактами і процесами. Окрім того, так само як викладач не залишить без догляду учнів у реальній лабораторії, так і викладач, що застосовує віртуальну лабораторію на занятті, повинен бути постійно поруч з учнями, надаючи їм відповідних порад або роз’яснюючи результати спостережень, що викликали питання або сумніви. Таким чином, можна попередити формування в учнів хибних уявлень, неправильних висновків тощо.У представників обох точок зору є свої аргументи. Наприклад, при виконанні стандартної лабораторної роботи в середовищі програми ChemLab «Фракційне розділення солей» («Fractional Crystallization»), сутність якої полягає в тому, що учневі пропонується розділити суміш солей (натрій хлориду та калій дихромату), використовуючи їх різну розчинність у воді за різних температур. Подібні процеси досить поширені як в промисловості (виробництво калійних добрив), так і в лабораторії (перекристалізація солей з метою їх очищення), хоча і в більш складному вигляді. Хід роботи включає в себе такі стадії: відбір наважок солей певної маси; їх розчинення у воді кімнатної температури; нагрівання розчину до повного розчинення калій дихромату; охолодження розчину до 0оС; відділення осаду калій дихромату; зважування калій дихромату, що випав в осад, та відповідні розрахунки.Якщо прискіпливо проаналізувати дану роботу, в ній можна знайти ряд неточностей або спрощень:1) при розчиненні калій дихромату у воді розчин залишається безбарвним;2) відсутній тепловий ефект при розчиненні обох солей;3) не враховано взаємний вплив солей на їх розчинність;4) розчин солей при охолодженні до температури замерзання не кристалізується;5) температура кипіння розчину солей дорівнює температурі кипіння ізомолярного з ним розчину будь-якого неелектроліту;6) зважування одержаного калій дихромату можна провести з високою точністю без попереднього промивання і висушування;7) відсутність допоміжного лабораторного обладнання (штативів, тримачів, шпателів, вакуум-насосу тощо) та можливість відбору наважок речовин без використання терезів.Подібні неточності можна знайти і у всіх інших лабораторних роботах програми ChemLab, але в більшості випадків ці неточності неочевидні, і, найголовніше, не відбиваються ані на одержанні результатів експерименту, ані на їх інтерпретації.Крім того, застосовуючи інструментарій майстра LabWіzard, що дозволяє користувачу створювати власні лабораторні роботи у ChemLab, певну кількість подібних невідповідностей можна заздалегідь передбачити й усунути у створених власноруч лабораторних проектах.[2; 4]Викладач, що використовує віртуальні хімічні лабораторії, обов’язково повинен наголосити на тому, що у віртуальній хімічній лабораторії присутні певні спрощення та невідповідності з об’єктивною реальністю. У групі учнів, що мають високий рівень знань і хімічного мислення, можна навіть побудувати роботу на тому, щоб знайти і обговорити подібні неточності. Наприклад, в рамках курсу «Комп’ютерне моделювання хімічних процесів», що викладається на ІІІ курсі спеціальності «Хімія» у Криворізькому педагогічному інституті, при розгляді особливостей віртуальної лабораторії ChemLab перед студентами була поставлена задача обґрунтовано довести наближений характер розрахунку температури початку кипіння розчину натрій хлориду у даній програмі (в межах лабораторної роботи «Fractional Crystallization»). Студенти на основі другого закону РауляΔtкип=kеб*b – для розчинів речовин-неелектролітів (1)Δtкип=i*kеб*b – для розчинів речовин-електролітів; (2)де kеб – ебуліоскопічна константа розчинника, b – моляльна концентрація розчиненої речовини (моль/кг), і – ізотонічний коефіцієнт, обчислювали температуру початку кипіння для розчину натрій хлориду тієї концентрації, яку вони самі створили у віртуальній хімічній лабораторії. Далі утворений віртуальний розчин нагрівали до кипіння і зазначали температуру початку кипіння. Вона збігалась із розрахованою за формулою (1), тобто без урахування ізотонічного коефіцієнту, який для розчину натрій хлориду повинен наближатись до 2. Значить реальна Δtкип розчину майже вдвічі повинна була б перевищувати Δtкип розчину у віртуальній лабораторії. Висновок зроблений студентами: в даній лабораторній роботі з метою спрощення не враховувався процес іонізації солі, оскільки для моделювання процесів розчинення солей за різних температур він особливого значення не має.Подібний недолік комп’ютерної програми може створити незручності з одного боку, але може бути перевагою з іншого: на основі розгляду подібних фактів можна в цікавій і нестандартній формі залучити групу студентів до повторення навчального матеріалу з різних розділів хімії та розв’язку розрахункових задач.Таким чином, можна зробити висновок про те, що віртуальні хімічні лабораторії є безумовно ефективним інструментом в руках вчителя або викладача хімії. Кожна з віртуальних хімічних лабораторій є моделлю, що описує реальні явища і процеси, а тому неминуче містить ряд спрощень і неточностей, як в плані графічного відображення об’єктів, так і в плані причинно-наслідкових зв’язків між діями користувача та їх результатами у віртуальному середовищі. Головною метою проведення дослідів у віртуальних комп’ютерних лабораторіях є усвідомлення самої сутності явища, що вивчається, його головних закономірностей, а недосконалість візуальних чи інших ефектів має другорядне значення. Подальший розвиток і вдосконалення віртуальних хімічних лабораторій, скоріш за все, буде відбуватись у напрямку збалансування простоти представлення моделі та максимальної її реалістичності.Враховуючи все, сказане вище, можна з упевненістю сказати, що розробка і впровадження віртуальних хімічних лабораторій залишається одним з пріоритетних напрямків у процесі вдосконалення навчання хімії у середній та вищій школі.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Fedchyshyn, N. O., H. I. Klishch, N. I. Yelahina та T. I. Horpinich. "ІНШОМОВНА ГРАМАТИЧНА КОМПЕТЕНТНІСТЬ ЯК СКЛАДОВА ЗАГАЛЬНОЇ ПІДГОТОВКИ МАЙБУТНЬОГО ЛІКАРЯ У КОНТЕКСТІ ВІРТУАЛЬНО-НАВЧАЛЬНОГО СЕРЕДОВИЩА". Медична освіта, № 2 (16 серпня 2019): 114–21. http://dx.doi.org/10.11603/me.2414-5998.2019.2.10351.

Повний текст джерела
Анотація:
У статті узагальнено досвід використання віртуальної навчальної програми на заняттях з іноземної мови за професійним спрямуванням у студентів-медиків. Розкрито практичний аспект формування граматичних навичок та вмінь (граматичної компетентності, повторення вивченого матеріалу) шляхом використання на заняттях з іноземної мови віртуальних програм. Розглянуто загальні науково-методичні підходи до використання віртуальних веб-орієнтованих освітніх середовищ для вивчення іноземної мови професійного спрямування студентами-медиками у вищих медичних навчальних закладах. Представлено віртуальну інформаційну модель з німецької мови за професійним спрямуванням «Augenerkrankungen» та доведено ефективність використання віртуальних навчальних програм загалом. Розвиток граматичної компетентності студентів-медиків шляхом використання віртуальної програми сприяє не лише якісному урізноманітненню та інтенсифікації освітнього процесу, але й значному підвищенню рівня знань та іншомовно-комунікативної компетентності студентів. Тому впровадження ІТ-технологій у навчальний процес вимагає розробки відповідної науково-методичної бази, інструментальних засобів і систем комп’ютерного навчання та контролю знань, системної та раціональної інтеграції цих технологій в існуючі навчальні програми.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ванькевич, Дмитро Євгенійович. "Навчальний полігон на базі дистрибутиву Proxmox VE для проведення лабораторних робіт з курсу «Системне адміністрування ОС Linux»". Theory and methods of e-learning 4 (13 лютого 2014): 25–29. http://dx.doi.org/10.55056/e-learn.v4i1.365.

Повний текст джерела
Анотація:
Виконання лабораторних робіт в рамках курсу «Системне адміністрування ОС Linux» вимагає наявності більше ніж одного комп’ютера на одного студента. Наприклад, проведення лабораторних робіт із встановлення та налагодження маршрутизатора передбачає, як мінімум, наявності двох комп’ютерів: маршрутизатора і робочої станції.Одним з варіантів є використання у якості маршрутизаторів старих комп’ютерів, звісно, за їх наявності. Але такі комп’ютери мають вже відпрацьований ресурс і, як наслідок, невелику надійність. Тому в ході виконання лабораторної роботи важко визначити причину, через яку виникла помилка – внаслідок неправильного конфігурування програмного забезпечення чи через апаратну несправність. До того ж апаратне забезпечення застарілої ПЕОМ може не відповідати вимогам сучасного програмного забезпечення.Також можливий варіант, коли студенти об’єднуються у групи для вивільнення необхідної кількості комп’ютерів. Лабораторні роботи з встановлення маршрутизатора передбачають наявність в ПЕОМ двох мережевих контролерів, для чого потрібно встановити в системному блоці ще один мережевий контролер, а також замінити жорсткий диск з робочою операційною системою на інший. На жаль, така можливість є не завжди через відсутність додаткових жорстких дисків та мережевих контролерів або через умови гарантійного обслуговування комп’ютерної техніки, які не дозволяють відкривати опломбовані системні блоки.Оптимальним варіантом, на думку автора, є використання технологій віртуалізації [1; 2]. В якості системи віртуалізації було використано дистрибутив з вільним вихідним кодом Proxmox Virtual Environment (Proxmox VE), який дозволяє використовувати у якості гіпервізорів KVM (Kernel-based Virtual Machine) та OpenVZ [3].Для виконання лабораторних робіт був створений полігон, схема якого зображена на рис. 1.Для кожної групи студентів були створені користувачі в системі Proxmox VE (grp00..grp5). Кожному з користувачів було надано доступ до двох віртуальних машин і до сховища, де зберігаються ISO-образи з операційними системами. Причому, з міркувань безпеки, доступ до параметрів конфігурації віртуальних машин був примусово обмежений. Користувач мав право змінювати тільки один параметр – назву файла з образом операційної системи. На рис. 2 зображено інтерфейс керування віртуальними машинами, які доступні користувачу grp00. Комп’ютерна лабораторія під’єднана до загальноуніверситетської мережі через маршрутизатор комп’ютерної лабораторії. Це дає змогу уникнути небажаних наслідків у разі неправильного конфігурування ПЕОМ в лабораторії. Мережа лабораторії розділена на підмережі (рис. 1). У підмережу 192.168.30.X увімкнені фізичні ПЕОМ, маршрутизатор та фізичний комутатор а також сервер віртуальних машин з системою віртуалізації Proxmox VE. На сервері віртуальних машин створено декілька віртуальних підмереж з віртуальними маршрутизаторами та комутаторами. Підмережа 192.168.34.X створена з метою унеможливити втрату непрацездатності комп’ютерної лабораторії через некоректне конфігурування студентами віртуальних маршрутизаторів grp00 – grp05. Підмережі 192.168.1.X – 192.168.6.X створені, відповідно, для користувачів grp00 – grp05. Інтерфейс керування для створення віртуальних комутаторів зображено на рис. 3, де vmbr0 – віртуальний комутатор підмережі 192.168.30.X, за допомогою якого здійснюється під’єднання до ПЕОМ та маршрутизатора і комутатора навчальної лабораторії, vmbr34 – віртуальний комутатор підмережі 192.168.34.X, vmbr9000 – vmbr9005 – віртуальні комутатори підмереж 192.168.1.X – 192.168.6.X.Студенти з ПЕОМ навчальної лабораторії за допомогою Інтернет-переглядача мають доступ до екранів своїх віртуальних машин (рис. 4). У разі втрати працездатності підмереж 192.168.30.X та 192.168.1.X – 192.168.6.X доступ до екранів віртуальних машин збережеться завдяки тому, що ПЕОМ навчальної лабораторії та сервер віртуальних машин знаходяться в підмережі 192.168.30.X, доступ до якої студентам заборонено. Наведену схему навчального полігону можна використовувати у комп’ютерних класах загального використання, тому що вона не потребує зміни критичних параметрів операційної системи на ПЕОМ класу і зводить ризик втрати працездатності комп’ютерного класу до мінімуму.У разі виникнення потреби збільшення обчислювальної потужності можна використати декілька серверів віртуальних машин, об’єднавши їх у кластер [4].
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Волинець, Вікторія Олексіївна. "ВІРТУАЛЬНА, ДОПОВНЕНА І ЗМІШАНА РЕАЛЬНІСТЬ: СУТНІСТЬ ПОНЯТЬ ТА СПЕЦИФІКА ВІДПОВІДНИХ КОМП’ЮТЕРНИХ СИСТЕМ". Питання культурології, № 37 (28 травня 2021): 231–43. http://dx.doi.org/10.31866/2410-1311.37.2021.237322.

Повний текст джерела
Анотація:
Мета статті — розкрити сутність понять «віртуальна реальність», «доповнена реальність», «змішана реальність»; з’ясувати типологічні відмінності відповідних комп’ютерних систем. Методологія дослідження ґрунтується на застосуванні діалектичного методу, що дав змогу розкрити специфіку віртуальної / доповненої / змішаної реальностей крізь призму діалектики взаємодії техніки та людини. Наукова новизна полягає в розмежуванні понять «віртуальна реальність», «доповнена реальність», «змішана реальність» — ключових категорій імерсивних інформаційних технологій, неправомірність вживання яких як синонімів призводить до необґрунтованого використання специфічної лексики. Крім того, у статті розкрито сутність та головні відмінності між комп’ютерними VR-, AR-, XR-системами, що є вкрай важливим у межах української культурології — науки, яка наразі активно займається дослідженням безпрецедентних суспільних змін під впливом новітніх інформаційно-комунікаційних технологій. Висновки. Наявна в науці різноплановість думок вчених і практиків щодо питань типології віртуальної реальності, як і понять «віртуальна реальність», «доповнена реальність», «змішана реальність», пояснюється неправомірним ототожненням технологій віртуальної реальності кінця 1990-х рр. і сучасних розробок у цій сфері; відсутністю чітких критеріїв типології і відповідних методологічних підходів, що ускладнює процес класифікації видів віртуальної реальності; швидкими темпами розвитку VR-технологій, що провокує істотне відставання теорії від практики. Тим часом сфера досліджень віртуальної реальності продовжує невпинно розширюватися, триває інтеграція VR з різними сферами людського життя. VR- і AR-технології набувають популярності у культурних, освітніх, ігрових, бізнес-середовищах тощо. Порушена проблематика лише починає вивчатися в українській культурології, що спонукає до глибшого проникнення у сутність процесів, які відбуваються в культурі під впливом новітніх інформаційно- комунікаційних розробок.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Лозовський, А. В. "Небанківська електронна платіжна система як середовище обігу віртуальної валюти". Актуальні проблеми держави і права, № 85 (14 серпня 2020): 133–40. http://dx.doi.org/10.32837/apdp.v0i85.1859.

Повний текст джерела
Анотація:
У статті аналізується особливості діяльності небанківських електронних платіжних систем з використанням віртуальної валюти - приватних платіжних систем і платіжних систем децентралізованої довіри, діяльність яких не врегульована законодавчо та становить потенційну загрозу діючій грошовій системі країни. Діяльність таких електронних платіжних систем, будучи неврегульованою у законодавствах більшості країн, часто не суперечить йому та є предметом правової дискусії науковців усього світу. Основну причину такої ситуації я вбачаю в особливостях суспільних відносинах, що мають ширше коло засобів регулювання, ніж засоби, які використовуються об'єктивним правом у випадку впорядкування діяльності вже відомих операторів платіжних послуг та електронних платіжних систем. Виключно публічно-правові методи регулювання грошового обороту виявилися не ефективними у відносинах з приватними електронними платіжними системами і платіжними системами децентралізованої довіри. За таких обставин адміністративне регулювання грошового обороту, а разом з тим і вплив державної влади на суспільні процеси у сфері обігу грошових коштів може бути обмеженим і залишитися лише в рамках публічних фінансів, де використовуються законні платіжні засоби. Своє завдання вбачаю у дослідженні сутності суспільних відносин, які виникають з приводу діяльності нових типів небанківських електронних платіжних систем і використання віртуальних валют як особливого виду електронних грошей. Отримані висновки можуть бути використані у пропозиціях щодо ефективного врегулювання таких суспільних відносин з огляду на їх особливості, що необхідно враховувати у нормотворчій діяльності. Варто також наголосити, що необхідність у такому дослідженні зумовлена й тим, що діяльність таких платіжних систем та подальше її правове врегулювання відповідає суспільним інтересам та інтересам цивільного обороту з огляду на значне поширення цифрових і віртуальних валют серед населення. Відповідно і суспільні відносини, які виникають у процесі їх використання, можуть бути предметом законного інтересу кожного громадянина, який бере в них участь.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hrebeniuk, D., та V. Davydov. "МЕТОД ПЕРВИННОГО ВИДІЛЕННЯ ХМАРНИХ ОБЧИСЛЮВАЛЬНИХ РЕСУРСІВ НА ОСНОВІ АНАЛІЗУ ІЄРАРХІЙ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 61 (11 вересня 2020): 80–85. http://dx.doi.org/10.26906/sunz.2020.3.080.

Повний текст джерела
Анотація:
Предметом дослідження в статті є моделі та методи розмежування навантаження і ресурсів в системах хмарних обчислень, зокрема, які базуються на моделі надання послуг інфраструктури як сервісу. Метою роботи є оптимізація первинного виділення ресурсів в системах хмарних обчислень шляхом адаптації методу аналізу ієрархій для впровадження в хмарні обчислення. Це дозволить запускати нові віртуальні машини з мінімальним зниженням продуктивності вже функціонуючих екземплярів. У статті вирішуються наступні завдання: дослідження доцільності використання моделі аналізу ієрархій в хмарних обчисленнях; адаптація методу аналізу ієрархій для впровадження в системи хмарних обчислень; оцінка ефективності впровадженого методу. Для вирішення поставлених завдань були використані підходи і методи теоретичних досліджень, які засновані на наукових положеннях статичного, функціонального і системного аналізів. Отримані наступні результати: запропоновано використання методу аналізу ієрархії для розподілу ресурсів у системах хмарних обчислень. Наведено переваги та недоліки цього методу для використання у хмарних обчисленнях. Метод аналізу ієрархій був адаптовано для систем хмарних обчислень. Наведено алгоритм його використання. Проведена оцінка ефективності розробленого метода, який показав доцільність його використання при розподілу ресурсів у системах хмарних обчислень. Висновки. Вдосконалення методу первинного розмежування ресурсів в системах хмарних обчислень дозволило підвищити здатність цих систем запускати нові віртуальні машини з мінімальним зниженням продуктивності вже функціонуючих екземплярів
Стилі APA, Harvard, Vancouver, ISO та ін.
18

А.І. Коробко та В.Є. Шатіхіна. "ВІРТУАЛЬНИЙ ТРЕНАЖЕР АКРЕДИТОВАНОЇ ВИПРОБУВАЛЬНОЇ ЛАБОРАТОРІЇ". Перспективні технології та прилади, № 17 (24 грудня 2020): 72–78. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-11.

Повний текст джерела
Анотація:
В статті запропоновано концепт віртуального тренажера випробувальної лабораторії призначеного для використання у навчальному процесі при навчанні майбутніх фахівців випробувачів. Тренажер побудовано на принципах миследіяльністної методології: рівні ієрархії визначаються рівнем встановлених вимог, фази послідовністю впровадження нових редакцій нормативних документів, що регламентують діяльність випробувальної лабораторії, і визначаються редакцією (версією) цих документів, види функцій визначають роль окремих елементів системи управління в загальній системі. Застосування запропонованого тренажера направлене на формування у студентів професійних знань, умінь і навичків самостійно приймати рішення та формування індивідуальних рішень розв’язання ситуацій, здобуття надпрофесійних навичків (soft skills), здобуття професійних навиків роботи з нормативними документами (зокрема, стандартами), випробувальним устаткованням, засобами вимірювальної техніки, роботи з адміністрування систем управління якістю. При роботі з тренажером студенти самомотивуються для досягнення поставленої цілі шляхом усвідомлення важливості оптимального вирішення поставленої задачі.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Романишин, Юлія Любомирівна. "ВЕБОРІЄНТОВАНІ ВІРТУАЛЬНІ СПІЛЬНОТИ ТА КОМУНІКАЦІЇ В НАВЧАННІ ФАХІВЦІВ ІНФОРМАЦІЙНОЇ СФЕРИ". Information Technologies and Learning Tools 85, № 5 (1 листопада 2021): 228–43. http://dx.doi.org/10.33407/itlt.v85i5.3850.

Повний текст джерела
Анотація:
У статті розглядаються віртуальні навчальні спільноти у веббазованому середовищі ЗВО. Досліджується сутність вебспільнот рівня Web 2.0. Охарактеризовано віртуальні комунікації як ключові елементи обміну даними й знаннями у таких спільнотах. Підкреслено важливу роль електронної модерації, яка є першим кроком до введення віртуальної сутності викладача на виділеному рівні представлення спільноти. Сьогодні віртуальні навчальні спільноти не є черговим популярним інформаційним трендом, а, навпаки, є результатом глибоких процесів та явищ усередині інтернет-спільноти. Одним з видів досліджуваних спільнот є експертні спільноти, основними питаннями в яких є питання віртуальних зустрічей членів спільнот, комунікація між ними і мережевий процес обміну знаннями. Експертні спільноти у сфері освіти досягли особливого статусу, адже результати командної роботи перевищують потенційні результати окремих членів спільноти. Оскільки комунікація вважається взаємозамінною передачею даних або сигналів, які мають чітко визначену інтерпретацію, то вона може відбуватись як між людьми, так і між технічними об’єктами та системами. У цьому дослідженні комунікацією виступає процес обміну даними та знаннями між членами спільноти межах платформ, що підтримують спільноти, наприклад, у формі дописів на дискусійних форумах, блогах та wiki. Існує багато можливостей реалізації електронної навчальної комунікації від засобів е-пошти, дискусійних форумів, інтернет навчальних платформ та порталів до віртуальних навчальних каналів. Це відкриває значні можливості щодо обміну даними та знаннями як у формі документів та зображень, так і у формі «живої» інтернет-комунікації. Сучасні процеси спільного навчання є видом процесів навчальної кооперації, кінцевою метою яких є формування рівня навчальної спільноти з акцентом на процеси комунікації. Водночас в умовах ІТ-орієнтованого інформаційного та постінформаційного суспільства основний акцент переноситься на елементи формування інноваційних процесів і побудови сервіс-орієнтованих спільнот. Це відповідає сучасному стану ІТ-сфери, яка орієнтована на виробництво програмних сервісів більше, ніж на виробництво конкретних програмних продуктів.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Гайдукевич, С. В., Н. П. Семенова та Я. А. Леськів. "ОСОБЛИВОСТІ SMART-ТЕХНОЛОГІЙ НА ПРИКЛАДІ АВТОМАТИЗАЦІЇ ЖИТЛОВОГО БУДИНКУ". Таврійський науковий вісник. Серія: Технічні науки, № 1 (8 квітня 2022): 12–21. http://dx.doi.org/10.32851/tnv-tech.2022.1.2.

Повний текст джерела
Анотація:
У статті розглядаються особливості smart-технологій у процесі автоматизації житлового будинку з метою підвищення рівня життя людей. На прикладі лабораторної роботи з дисципліни «Віртуальні управляючі пристрої» розроблено та виготовлено систему керування електропристроями житлового будинку. На базі цієї системи здобувачі вищої освіти виконують автоматизацію змодельованого житлового чи виробничого приміщення, що сприяє підвищенню інтелектуального розвитку майбутніх спеціалістів і реалізації проєктів щодо їх підготовки в галузі проєктування систем електрифікації, автоматизації та енергопостачання на базі сучасних smart-технологій, здатності розробляти й реалізовувати програми для точного функціонування різних пристроїв. Розроблена система охоплює інформаційно-управляючі та комунікаційні технології і системи, сучасну елементну базу, програмне забезпечення для створення централізованої мережі, що дає можливість виконувати дистанційне керування електричними пристроями будівлі, контролювати параметри в будь-якій точці приміщення та їх моніторинг для забезпечення точного й надійного підтримання контрольованих параметрів з урахуванням їхніх зовнішніх і внутрішніх змін. Ця система, яка розроблена й виготовлена на базі «розумних» пристроїв, повністю в автоматичному режимі керує всіма типами виконавчих механізмів спроєктованої здобувачами вищої освіти будівлі із суворим лімітованим дотриманням усіх показників, що покращує функціональні можливості електрообладнання, підвищує надійність роботи, забезпечує необхідну точність контрольованих параметрів. За результатами досліджень встановлено, що використання smart-технологій і запропонованого алгоритму роботи електричного обладнання дає змогу знизити використання теплової та електричної енергії, налагодити роботу всіх пристроїв так, щоб вони працювали злагоджено та взаємопов’язано, що приводить до розширення меж самодіагностування, мінімізації втрат і до надійності. Таку розроблену й виготовлену автоматичну систему можна використовувати не лише для вироблення навичок майбутніми фахівцями у сфері проєктування, а й для впровадження у практику, тобто автоматизації як у житлових будинках (для створення комфортних умов проживання людей), так і у виробничих приміщеннях.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Шишкіна, Марія. "ОРГАНІЗАЦІЯ НАВЧАЛЬНОГО Й НАУКОВОГО СПІВРОБІТНИЦТВА У ВІРТУАЛЬНИХ СИСТЕМАХ ВІДКРИТОЇ НАУКИ У ЗАКЛАДАХ ВИЩОЇ ОСВІТИ". ОСВІТА ДОРОСЛИХ: ТЕОРІЯ, ДОСВІД, ПЕРСПЕКТИВИ 18, № 2 (25 грудня 2020): 122–30. http://dx.doi.org/10.35387/od.2(18).2020.122-130.

Повний текст джерела
Анотація:
У статті розглянуто особливості формування віртуальних систем відкритої науки у закладах вищої освіти, що є суттєвою передумовою підготовки ІКТ-компетентних фахівців, здатних до активного, доцільного, науково обґрунтованого застосування найсучасніших ІКТ у своїй професійній діяльності. У результаті дослідження уточнено поняттєвий апарат; виявлено перспективи та сучасні європейські тенденції формування хмаро орієнтованих систем відкритої науки у закладах вищої освіти; визначено перспективні шляхи застосування хмаро орієнтованих платформ і адаптивних сервісів управління контентом у діяльності викладавча, науковця; узагальнено досвід впровадження окремих сервісів хмаро орієнтованих систем відкритої науки у процесі підтримування наукового співробітництва у закладах вищої освіти. Встановлено, що завдяки ширшому залученню в освітній у процес закладів вищої освіти засобів і сервісів науково-освітніх хмаро орієнтованих платформ, а також різних типів корпоративних хмарних сервісів вдається досягти позитивних змін у здійсненні навчальної і наукової діяльності, поліпшенні її якісних і кількісних показників, застосуванні нових форм і моделей її організації, що позитивно впливає як на результати навчання, так і на розвиток наукових досліджень, поліпшення рівня їх організації, підвищення ефективності. Узагальнено досвід використання відкритих хмаро орієнтованих систем відкритої науки для підтримування комунікації; спільної роботи; адаптивного управління контентом; створення і використання електронних освітніх ресурсів у процесі організації освітньо-наукового співробітництва у віртуальних міжнародних колективах, створених на базі декількох закладів вищої освіти. Ключові слова: відкрита наука; системи відкритої науки; віртуальні колективи; інструменти відкритої науки; заклади вищої освіти.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

ЖМАКІН, Андрій, Віталій КОВАЛЬ, Володимир ЛЮБЧАК та Святослав ШПІЦГЛУЗ. "ПРОГРАМНО-ТЕХНІЧНІ РІШЕННЯ СТВОРЕННЯ БЮДЖЕТНОГО ВАРІАНТУ КОМП’ЮТЕРНИХ СИСТЕМ НАВЧАЛЬНОГО ТА ОФІСНОГО ПРИЗНАЧЕННЯ". INFORMATION TECHNOLOGY AND SOCIETY, № 1 (12 травня 2022): 23–30. http://dx.doi.org/10.32689/maup.it.2022.1.3.

Повний текст джерела
Анотація:
Анотація. У статті розглянуто впровадження системи клієнт-серверної технології на основі VMware Horizon в діяльність закладу вищої освіти. Метою роботи є розробка технічного рішення створення систем навчального або офісного призначення на основі використання застарілого обладнання, яке потрібно залучати до роботи та оптимізовувати фінансові витрати на закупівлю нового обладнання. На основі інформаційного огляду можливих шляхів використання застарілої комп’ютерної техніки в діяльності освітнього закладу, для оптимального визначеня методів і інструментів вирішення проблеми, методологією обрано хмарні та клієнт-серверні рішення. Наукова новизна полягає у використанні платформи VMware Horizon для розгортання віртуальних робочих столів та додатків для кінцевих користувачів на базі застарілої комп’ютерної техніки. Для взаємодії між користувачем та віртуальним робочим столом використовуються спеціальні протоколи віддаленого відображення. На основі інструментарію VMware Horizon розроблені та впровадженні системи в діяльність Сумського державного університету (СумДУ). Дослідження функціональних характеристик шляхом порівняння часу завантаження системи та стандартних додатків для користувача, який використовує технологію VMware Horizon, з сучасними ПК, на яких встановлено ОС Windows 10/11, підтверджує достатньо швидку та комфортну роботу із системою. Висновки: досвід створення та експлуатації системи віртуальних робочих столів на базі VMware Horizon підтверджує доцільність та оптимальність рішень щодо використання застарілої техніки в підрозділах та навчальних класах закладів освіти. Це дає можливість достатньо швидко та дешево розгорнути використання застарілих персональних комп’ютерів в роботі, зручно та безпечно надавати користувачам можливість працювати з сучасними програмними продуктами.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ліннік, Олена Петрівна, Олександр Павлович Поліщук та Ілля Олександрович Теплицький. "Моделювання мовленнєвої поведінки людини у програмах-співрозмовниках". New computer technology 5 (6 листопада 2013): 60–61. http://dx.doi.org/10.55056/nocote.v5i1.80.

Повний текст джерела
Анотація:
Розвиток систем штучного інтелекту нерозривно пов’язаний з розвитком інформатики як науки, адже саме завдяки використанню систем управління із зворотним зв’язком при моделюванні мислення людини і виникла кібернетика.Обробка природної мови – загальний напрямок штучного інтелекту та лінгвістики, що вивчає проблеми комп’ютерного аналізу та синтезу природної мови. В області штучного інтелекту аналіз означає розуміння мови, а синтез – генерацію грамотного тексту. Рішення цих проблем буде означати створення набагато зручнішої форми взаємодії комп’ютера і людини. Розуміння природної мови інколи вважають AI-повною задачею, оскільки розпізнавання живої мови потребує величезних знань системи про навколишній світ і можливість із ним взаємодіяти. Саме визначення змісту слова “розуміти” – одне з головних завдань штучного інтелекту.Програми, здатні розуміти окремі висловлення користувача, утворюють клас програм із природно-мовним інтерфейсом.Віртуальний співрозмовник (англ. Chatterbot) – це комп’ютерна програма, створена для імітації мовленнєвої поведінки людини при спілкуванні з одним або декількома користувачами. По відношенню до віртуальних співрозмовників вживається також назва програма-співрозмовник. Одним з перших віртуальних співрозмовників була програма Еліза, створена у 1966 р. Джозефом Вейзенбаумом, яка пародіювала мовленнєву поведінку психотерапевта, реалізуючи техніку активного слухання, перепитуючи користувача та використовуючи фрази типа «Будь ласка, продовжуйте». Передбачалося, що ідеальна програма-співрозмовник повинна пройти тест Тюрінга. Щороку проводяться конкурси програми-співрозмовників (здебільшого англомовних). Один з найвідоміших – конкурс Лебнера.Створення віртуальних співрозмовників граничить з проблемою загального штучного інтелекту, тобто єдиної системи (програми, машини), що моделює інтелектуальну діяльність людини.Основна мета дослiдження полягала в розробці програми, що моделює мовленнєву поведінку людини.Нами було розроблено алгоритм побудови віртуального співрозмовника на основі стандарту мови AIML як найзручнішого засобу створення програм-співрозмовників. Основні структурні одиниці даного стандарту – категорія, зразок, шаблон.Особливості баз знань програм-співрозмовників:1. Реакція на ключові слова. Даний метод був використаний у Елізі. Наприклад, якщо фраза користувача містила слова «батько», «мати», «син» та інші, Еліза могла відповісти: «Розповіси більше про свою родину?».2. Збіг фрази – подібність фрази користувача до вже наявних у базі знань. Може враховуватися також порядок слів.3. Збіг контексту. Часто в посібниках до програм-співрозмовників просять не використовувати фрази, насичені займенниками, типу: «А що це таке?» Для коректної відповіді деякі програми можуть проаналізувати попередні фрази користувача і вибрати придатна відповідь.На основі існуючого програмного забезпечення було створено російськомовний віртуальний співрозмовник, база знань якого має стандарт AIML.Результати дослідження можуть бути застосовані при побудові автоматизованих діалогових систем-консультантів в розподілених мережах.Подальший розвиток даної роботи може бути у напрямку дослідження проблеми наповнюваності баз знань віртуальних співрозмовників та генерації осмислених текстів для побудови ефективної інтелектуальної системи.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Олексюк, Василь. "ЗАСТОСУВАННЯ ЕЛЕКТРОННИХ СИСТЕМ ВІДКРИТОГО ДОСТУПУ У ПРОЦЕСІ ПІДГОТОВКИ МАЙБУТНІХ МАГІСТРІВ СЕРЕДНЬОЇ ОСВІТИ В ГАЛУЗІ ІНФОРМАТИКИ". Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: педагогічні науки 16, № 1 (12 червня 2021): 312–25. http://dx.doi.org/10.32453/pedzbirnyk.v16i1.707.

Повний текст джерела
Анотація:
У статті розглянуто проблему підготовки майбутніх магістрів середньої освіти в галузі інформатики та їх залучення до науково-дослідницької роботи в умовах цифрової та гуманістичної педагогіки. Коротко розглянуто процес інформаційно-аналітичної підтримки науково-педагогічних досліджень за допомогою електронних систем відкритого доступу, зокрема електронні бібліотеки, електронні відкриті журнальні системи, електронні бібліометричні системи, інформаційно-аналітичні системи відкритого доступу, відкриті конференційні платформи. Описано методику застосування електронних систем відкритого доступу. Її складові можуть бути застосовані у процесі підготовки майбутніх магістрів середньої освіти в галузі інформатики. Методика передбачає розгортання в академічній хмарі віртуальних дослідних зразків електронних бібліотек та електронних відкритих журнальних систем. У статті такими системами обрані відкриті платформи DSpace та Open Journal Systems. Описано процедуру розгортання електронних систем відкритого доступу, зокрема конкретизовано зміст діяльності на кожному з її семи етапів: прогностичному, підготовчому, технічному, організаційному, практичному, узагальнювальному, перспективному. Розглянуті особливості підготовки майбутніх магістрів інформатики до впровадження електронних наукових журналів. Для ефективного навчання впровадження і використання електронних систем відкритого доступу за доцільне рекомендовано організувати повноцінне моделювання студентами зазначених процесів. Очікуваним результатом навчання автор вважає сформовані компетентності майбутніх магістрів щодо проектування, установлення, конфігурування, супроводу та використання у майбутній професійній діяльності електронних систем відкритого доступу.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Krasniakova, Alla. "Мережа інтернет як комунікативний простір національної та громадянської самоідентефікації кіберпокоління". Проблеми політичної психології 21 (6 грудня 2018): 174–84. http://dx.doi.org/10.33120/popp-vol21-year2018-15.

Повний текст джерела
Анотація:
Інформаційно-комунікаційне середовище мережі Інтернет розглядається як мультикультурне віртуальне середовище взаємодії носіїв різних мов і культур. Наголошується, що інтернет-простір є гібридним середовищем, яке утворюється за допомогою інформаційно-комунікаційних технологій (ІКТ) у результаті інтеграції елементів реального і віртуального життя. У процесі комунікативної взаємодії різних соціальних суб’єктів в інтернет-середовищі формуються ідентифікаційні характеристики користувача. Висвітлено особливості самоідентифікації кіберпокоління у віртуальному інтернет-просторі, зокрема: 1) процес самоідентифікування відбувається синхронно в реальному соціокультурному просторі і віртуальному мультикультурному інтернет-середовищі; 2) у віртуальному інтернет-просторі конструювання образу “Я” може здійснюватися як а) копіювання реальної ідентичності, зокрема національної та громадянської; б) утворення віртуального образу, відмінного від реальної ідентичності, а також як в) поєднання елементів віртуальної і реальної ідентичності в гібридній (за Дж. Сулером) моделі. Звертається увага на те, що можливість створювати різні “Я” образи у віртуальному інтернет-просторі приводить до формування мінливої, гнучкої, динамічної і нестабільної ідентичності. Підкреслюється, що процес самоідентифікації молодих громадян країни поєднується з кризою дитячої ідентичності, яка сформувалася в рамках наявної системи соціальних відносин під впливом батьків, і входженням у віртуальний світ Інтернету, де пропонується нові системи цінностей, норм і правил поведінки. Наведено результати дослідження особливостей самоідентифікування студентської молоді у віртуальному інтернет-середовищі. Встановлено, що переважна частина молоді (62%) презентує в інтернет-середовищі свою реальну національну та громадянську ідентичність, третина – демонструє елементи гібридної моделі ідентичності. Зауважено, що частка молоді, яка створює тільки віртуальний образ “Я” в Інтернеті, не перевищує 1,5%. З’ясовано, що майже 93% респондентів для презентації національної та громадянської ідентичності обирають візуальні форми: використовують символи, кольори, атрибути, фрагменти національного орнаменту тощо. Виявлено, що найбільш прийнятними формами інтернет-комунікації, де виявляється національна та громадянська ідентичність, молоді громадяни країни вважають інтерактивні полілоги, зокрема чати, форуми, коментарі на сторінках соціальних інтернет-мереж, обговорення в блогах та мікроблогах.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Шокалюк, Світлана Вікторівна, та Ірина Станіславівна Закарлюка. "Хмарні технології у загальноосвітніх навчальних закладах". New computer technology 13 (25 грудня 2015): 24–28. http://dx.doi.org/10.55056/nocote.v13i0.879.

Повний текст джерела
Анотація:
Метою даного дослідження є визначення ролі та місця хмарних технологій у сучасній школі, основним завданням – визначення складових системи засобів хмарних технологій підтримки навчання окремих шкільних предметів, об’єкт дослідження – засоби організації та підтримки електронного навчання у загальноосвітніх навчальних закладах, предмет – засоби хмарних технологій підтримки електронного навчання учнів, основний метод дослідження – теоретичне дослідження. Система засобів хмарних технологій навчання певного шкільного предмета складається із загальнонавчальних засобів хмарних технологій (засоби онлайн-розробки електронних навчальних матеріалів та їх онлайн-сховища, засоби хмарних технологій управління навчанням) та спеціалізованих засобів хмарних технологій – браузерних систем програмування та моделювання (на підтримку вивчення інформатики), мобільних математичних середовищ (на підтримку вивчення математики), віртуальних онлайн-лабораторії та системи моделювання (на підтримку вивчення фізики, хімії або біології) тощо. Використання хмарних технологій у навчальному процесі загальноосвітніх навчальних закладів перш за все дозволить вирішити проблему забезпечення рівного доступу учнів та вчителів до якісних освітніх ресурсів як на уроках, так і у позаурочний час.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Бугай, О. "ОПОДАТКУВАННЯ ВІРТУАЛЬНИХ АКТИВІВ В УКРАЇНІ ТА СВІТІ". Юридичний вісник, № 6 (16 лютого 2022): 138–44. http://dx.doi.org/10.32837/yuv.v0i6.2276.

Повний текст джерела
Анотація:
Стаття присвячена висвітленню питання особливостей оподаткування віртуальних активів в Україні та світі. Було досліджено ряд чинних нормативно-правових актів та законопроєктів, пов’язаних зі встановлення правового режиму віртуальних активів в Україні. Автор наголошує, що найбільш актуальним з точки зору доктринального дослідження є Проєкт Закону України «Про віртуальні активи» № 3637, прийнятий у другому читання, однак ветований Президентом України. Автором було ґрунтовно проаналізовано не лише нормативно-правові акти у сфері оподаткування віртуальних активів, а й правозастосовні акти податкових органів, зокрема індивідуальні податкові консультації. Розглянуто позицію контролюючих органів щодо оподаткування операцій з віртуальними валютами на підставі індивідуальних податкових консультацій. Автор окремо звернув увагу на понятійно-категоріальний апарат, запропонований рядом законопроєктів та присутній у чинних нормативно-правових актах. З огляду на важливий характер та практичну значимість оподаткування віртуальних активів для податкової системи України було розглянуто зарубіжні підходи до врегулювання аналогічних операцій. Автор зазначає, що Швеція не має заборон на використання або торгівлю віртуальними валютами, однак, якщо криптокомпанія пропонує послуги, де віртуальні валюти виступають засобами платежу, то така юридична особа зобов’язана зареєструватися як фінансова установа в управлінні фінансового та страхового нагляду Швеції. Було наголошено на тому, що естонське законодавство щодо криптобізнесу найсуворіше з незабороненого, однак прозорість та чіткість законодавчих приписів перетворила Естонію в одне з найпривабливіших місць для реєстрації криптостартапів. Азіатсько-Тихоокеанський регіон залишається одним із найсуперечливіших у сфері регулювання віртуальних валют як «революційного» явища, за винятком Японії. Автором було проаналізовано ставки податків на оподаткування операцій з віртуальними активами в Японії, Ізраїлі, США та інших країнах. Як висновок, автор зазначає, що зареєстровані проєкти законів України у першу чергу, повинні подолати проблематику, що пов’язана із термінологічною визначеністю.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Obikhod, Y., V. Lysechko, I. Kovtun, Y. Shuvalova та S. Skolota. "МЕТОДИ ВІРТУАЛІЗАЦІЇ І МАСШТАБУВАННЯ В МЕРЕЖАХ БЕЗПРОВОДОВОГО ДОСТУПУ". Системи управління, навігації та зв’язку. Збірник наукових праць 3, № 55 (21 червня 2019): 171–75. http://dx.doi.org/10.26906/sunz.2019.3.171.

Повний текст джерела
Анотація:
Віртуалізація і масштабування різних процесів вже давно вбирає в себе все нові і нові галузі. Крім поширеної віртуалізації мереж, продовжують розвиватися віртуальні компанії. В якості прикладу можна привести віртуальних операторів мобільного зв'язку (MVNO), які використовують для обслуговування абонентів фактично «чужі» мережі, проте мають ряд переваг в порівнянні з традиційними операторами зв'язку. У перспективі даний підхід дасть можливість забезпечити найкраще підключення абонента в його точці присутності та використовувати віртуальні сервіси. В недалекому майбутньому мережева інфраструктура мобільного зв'язку повністю або частково перестане бути власністю операторів, а функції операторів будуть мати більшою мірою логічний характер. Перехід до подібної схеми обслуговування буде відбуватися не тільки на абонентському рівні, а й на рівні розробки відкритого програмного забезпечення, операційних систем, мережевих технологій. Подібна реорганізація потребуватиме певних часових ресурсів, адже знадобиться узгодження стандартів, модернізація обладнання, створення нового програмного забезпечення захисту інформації.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Пєлєвін, Євген. "IІНТЕРАКТИВНІСТЬ АРХЕТИПНИХ ОБРАЗІВ ЯК ІНСТРУМЕНТ ПОЛІТИЗАЦІЇ СУЧАСНОГО ДИГІТАЛЬНОГО МИСТЕЦТВА". Public management 21, № 1 (29 травня 2020): 234–49. http://dx.doi.org/10.32689/2617-2224-2020-1(21)-234-249.

Повний текст джерела
Анотація:
Проаналізовано феномен дигітального медіамистецтва як за- собу масової комунікації. Визначено взаємозалежність засобів художнього вираження дигітального мистецтва і сучасних технологій передачі і збері- гання інформації. Це дає змогу розглядати феномен дигітального медіамис- тецтва як інтегровану частину системи засобів масової комунікації, що знач- но посилює потенціал наративного впливу. Розглядаються форми взаємодії мистецтва і політики на прикладі переосмислення архетипів за допомогою засобів художнього вираження. Підкреслюється ключова роль організації процесу самоідентифікації для встановлення політичного контролю і місце засобів масової комунікації в цьому процесі. На прикладі комп’ютерних ігор вивчається процес трансформації засобів масової комунікації в самодостат- ній об’єкт мистецтва. Проведено класифікацію комп’ютерних ігор залежно від інструментів наративного впливу. За допомогою принципів теорії коду- вання визначається, що віртуальний простір комп’ютерної гри за допомогою інтерактивності ігрового процесу перетворює будь-які повідомлення корис- тувача, створені в рамках зворотного зв’язку, в симулякри, тобто робить їх беззмістовними. Це дає змогу розглядати комп’ютерну гру як ізольований канал комунікації. Наявність ізольованого інформаційного каналу з одно- стороннім віртуальним моделюванням соціальної реальності, прообразом якого є сучасні комп’ютерні ігри, дають змогу відродити давні практики маніпуляції архетипами, але з можливостями техніки ХХI ст. Зазначаєть- ся, що спроби використання потенціалу феномену медіамистецтва як засобу масової комунікації в політичних цілях носять ситуативний характер і пояс- нюються швидше рекурсивним характером взаємозумовленості мистецтва і політики. Політичні інститути наразі не розглядають віртуальну реаль- ність комп’ютерної гри як ефективний засіб політичного контролю, а саму комп’ютерну гру як окремий засіб масової комунікації.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Шаров, С. В., Д. В. Лубко та О. Г. Зинов’єва. "ВИКОРИСТАННЯ ІНТЕЛЕКТУАЛЬНИХ СИСТЕМ У ТУРИСТИЧНОМУ БІЗНЕСІ". Таврійський науковий вісник. Серія: Технічні науки, № 1 (8 квітня 2022): 69–75. http://dx.doi.org/10.32851/tnv-tech.2022.1.8.

Повний текст джерела
Анотація:
Статтю присвячено аналізу основних напрямів використання інтелектуальних систем у туристичному бізнесі. Зазначається, що в умовах пандемії пошук шляхів підвищення конкурентоспроможності серед туристичних операторів є дуже актуальною проблемою. Виявлено, що підвищення ефективності туристичного бізнесу досягається через введення в дію нових форм і видів туристичної діяльності (це, зокрема, віртуальні представництва, спеціалізовані маршрути, контекстний маркетинг тощо), упровадження сучасних програмних комплексів, вебсервісів, мобільних додатків. Їх використання дає можливість забезпечити цифровізацію туристичної галузі, сформувати єдиний туристичний інформаційний простір, розвинути e-туризм тощо. Здійснено огляд можливостей окремих типів інтелектуальних систем, що працюють на різних апаратних платформах. Їх використовують для формування екскурсійних маршрутів з урахуванням побажань різних категорій туристів, надання клієнтам релевантної інформації про туристичні об’єкти, місця проживання та харчування залежно від їх місцезнаходження, обчислення фінансових затрат на туристичний маршрут тощо. У такий спосіб забезпечується інформаційна підтримка кожного туриста, підвищується якість його обслуговування. Виявлено, що інтелектуальні системи використовують бази даних та бази знань для збереження інформації про вік, стать, сімейний стан туриста, його маршрут, відвідані ним туристичні об’єкти і їх кількість, обсяг витрачених ним грошей тощо. Проаналізовані дані використовуються для формування якісних рішень та відображення персоніфікованої туристичної інформації. Крім того, для підвищення функціональності в інтелектуальних системах використовуються сторонні вебсервіси (Google Maps, GPS-навігація). У перспективі передбачається сформувати вимоги до розроблення інформаційної системи оператора туристичного агентства та здійснити практичну реалізацію цього завдання.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Бугайова, Наталія Михайлівна, та В’ячеслав Йосипович Цап. "Профілактика Інтернет-залежності в перебігу електронного навчання". Theory and methods of e-learning 1 (10 листопада 2013): 24–28. http://dx.doi.org/10.55056/e-learn.v1i1.116.

Повний текст джерела
Анотація:
Дистанційне навчання як одна з новітніх форм отримання знань має свою специфіку, оскільки неподільно пов’язане з використанням сучасних комп’ютерних Інтернет-технологій.Проблема Інтернет-залежності, як одна з найбільш поширених у теперішній час, форм адиктивної поведінки, виникла з появою Інтернету.Не дивлячись на інтерес, який існує у вивченні негативного впливу нових інформаційних технологій і комп’ютерних технологій на дистанційне навчання, на наш погляд, він вивчений недостатньо.Надмірне захоплення комп’ютерними іграми або Інтернетом може збільшити існуючі психологічні проблеми адаптації особистості.Родоначальниками психологічного вивчення феномена Інтернет-адикції є представники США: клінічний психолог К. Янг і психіатр І. Голдберг.К. Янг в 2000 році був розроблений і розміщений на Web-сайті опитувальник, який дозволив визначати наявність Інтернет-залежності. У результаті проведеного нею дослідження було відібрано й проаналізовано 400 анкет, заповнених Інтернет-залежними користувачами.У 1996 році для позначення феномена залежності від Інтернету, I. Голдбергом був запропонований термін «Інтернет-адикция». Сьогодні у використанні знаходяться різні терміни для позначення даного явища: поведінкова Інтернет-залежність, надлишкове або патологічне використання Інтернету, віртуальна адикція, нетаголізм й ін.У США в 1995 році К. Янг був організований перший центр on-line-залежності в м. Бредфорд, а в 1997 році створена дослідницька, консультативно-психотерапевтична Web-служба для допомоги страждаючої Інтернет-адикцією. У 1996 році М. Орзак у Гарварді була відкрита клініка лікування від комп’ютерної залежності. У 1998 р. Д. Гринфілд організував службу «Virtual-addiction». У 2005 році в Китаї була відкрита перша клініка для лікування віртуальної залежності. У 2006 році центр для лікування Інтернет-адиктів був відкритий у Белграді (Сербія) і клініка в Амстердамі (Голландія).За даними К. Янг і М. Грифітс (Young K., Griffiths M., 1998), наприкінці 20-го століття в західних країнах віртуально залежні користувачі становили 1–5% від загального числа користувачів Інтернет. У цей час їхня кількість наближається до 10%.У результаті моніторингу, проведеного у Китаї, 14% підлітків страждають Інтернет-залежністю.За кількістю віртуальних адиктів лідирують США – близько 200 млн. чоловік, у Китаї кількість залежних Інтернет-користувачів досягла 111 млн., а в Японії 85,29 млн. людей.Інтернет-середовище дозволяє індивідові реалізувати три основні види діяльності: комунікативну, пізнавальну та ігрову. Такі особливості психіки дитини, як недостатня розвиненість саморегуляторних механізмів, емоційного й вольового контролю, імпульсивність та несформованість адекватних схем поведінки створюють підвищену небезпеку для формування та розвитку комп’ютерної та Інтернет-залежностей.Особи, що страждають на комп’ютерну та Інтернет-залежність, мають, як правило, порушення у емоційно-вольовій, соціальній, міжособистісній, комунікативній сферах, та проблеми соціальної адаптації.Доступність Інтернет-ресурсів для дорослих користувачів, зокрема, для осіб неповнолітнього віку, висуває підвищені вимоги до якості, вірогідності й безпеці інформації, що міститься в Мережі. В Інтернеті можуть розміщуватись матеріали дезінформаційної, агресивної або протизаконної спрямованості.Користувачі не завжди здатні реально оцінити рівень вірогідності й безпеки інформаційних матеріалів, які знаходяться в Інтернет. Так, інформаційні Web-ресурси агресивної й аутоагресивної спрямованості створюють підвищену небезпеку для осіб з нестійкою психікою і є теоретичною базою для агресивно та аутоагресивно настроєних користувачів.Відсутність Інтернет-культури й елементарних навичок правильної роботи в Мережі створює ряд проблем психологічного й соціального характеру.Неконтрольоване й нераціональне використання Інтернет-ресурсів учнями й студентами спричиняє неуспішність у навчанні й виникнення академічних заборгованостей.Ігри, що містять агресивні сюжети можуть викликати перенесення агресії з віртуального світу в реальний.Також існує ряд небезпек Віртуального простору:залучення неповнолітніх у сексуальні відносини;відвідування порнографічних сайтів; залучення через Інтернет до діяльності, яка носить протизаконний і протиправний характер;on-line гемблінг (гіперзахопленість індивідуальними й/або мережними on-line-іграми);хакерство;адиктивний фанатизм (релігійний, спортивний, музичний і ін.);відвідування сайтів агресивної (що пропагують ксенофобію, тероризм) і/або аутоагресивної спрямованості (інформаційні ресурси про застосування засобів для суїциду з описом дозування й ступеня їхньої летальності).Комп’ютерна та Інтернет-залежності чинять негативний вплив на особистість, сприяє виникненню комунікативних проблем та викликають:емоційну й нервову перенапругу;астеноневротичні порушення;психо-емоційні порушення;порушення соціальної адаптації.Багато країн, що зіштовхнулися із проблемою Інтернет-адикції, постали перед необхідністю створення й впровадження заходів, що дозволяють боротися з даним явищем. Так, парламент Китаю ухвалив рішення щодо заохочення досліджень Інтернет-адикції й розробки превентивних програм, спрямованих на попередження розвитку Інтернет-залежності у дітей. У цей час влади Китаю фінансують роботу восьми реабілітаційних центрів для Інтернет-залежних пацієнтів. З кінця 2006 року в Китаї обмежується допуск дітей в Інтернет-клуби й застосовується система контролю, що автоматично припиняє ігровий сеанс через кожні п’ять годин.У Південній Кореї, Таїланді, В’єтнамі й Малайзії також приймаються серйозні міри боротьби з Інтернет-адикцією серед молоді.Розвиток комп’ютерних технологій сприяє видозміні й ускладненню інформаційного середовища. Глобальна мережа Інтернет поєднує все більше число користувачів, діяльність яких у кіберреальності має свої специфічні особливості. Тому Україні, як і будь-який іншій розвинутій країні, необхідно мати превентивні й реабілітаційні програми, спрямовані на боротьбу з віртуальною залежністю.На наш погляд, необхідно проведення більш широких психологічних досліджень залежної поведінки, яка має нехімічне походження з метою визначення наявності та ступеню адитивної реалізації серед користувачів Інтернету.Кінцевим результатом таких досліджень може бути діагностично-експертна система, яка, по-перше, допоможе визначити стани залежності користувачів від комп’ютера, а, по-друге, надати конкретну пораду або застосувати низку профілактичних заходів, мета яких профілактика та психокорекція залежності.Щоб розробити таку систему, спочатку потрібно провести ряд цілеспрямованих експериментів для накопичення статистичного матеріалу та окреслення простору психологічних чинників, по значенню яких можна зробити діагностування.Нами розробляється спеціалізована комп’ютерна програма, яка являє собою єдиний пакет тестів, що допоможуть вирішити цю проблему. До складу пакета входять наступні тести:метод дослідження рівня суб’єктивного контролю;шкала депресії Бека;методика самооцінки особистості (Будассі);методика дослідження структури особистісних якостей;методика оцінки рівня спілкування (тест Ряховського);тест-опитувальник самовідношення (Столін, Пантелєєв);впевненість в собі (тест Райдаса).З метою проведення of-line та on-line психологічних досліджень серед користувачів комп’ютерів та виявленню осіб, які страждають однією чи більше видами нехімічної залежності, для подальшої профілактики адиктивної поведінки, нами було розроблено тест, який дозволяє виявити наявність та ступінь найбільш поширених видів адикцій, що мають нехімічне походження.Також створено окремий тестовий блок, в який увійшли модифіковані тести, що дозволяють виявляти наявність та ступінь таких видів адиктивної поведінки.В плані запобіжних дій можуть також бути в нагоді й інші комп’ютерні програми, наприклад така як «емоційний запобіжник». Якщо комп’ютер доповнити фотокамерою, яка б постійно спостерігала за користувачем, оцінюючи його психологічний стан по міміці, то такий пристрій зміг би контролювати його поведінку.У випадках, коли цей стан буде оцінюватись як критичний, комп’ютер буде відключатись, відмовляючись виконувати команди такого користувача. Особливо застосування цих програм може бути корисним в Інтернет-клубах, Інтернет-кафе тощо.Необхідність впровадження таких заходів насамперед пов’язане з поширенням в останній час проявів агресії та аутоагресії серед користувачів у громадських закладах.На нашу думку, глибоке та всебічне вивчення впливу інформатизації на психіку користувачів Інтернету та проведення досліджень адиктивної поведінки серед осіб, що отримують дистанційну освіту, дозволять уникнути негативних наслідків використання комп’ютерних засобів як у електронному навчанні, так і у повсякденному житті людей.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Makoveychuk, O. "НАУКОВО-ПРИКЛАДНІ ОСНОВИ ПОБУДОВИ СТІЙКИХ МАРКЕРІВ ДОПОВНЕНОЇ РЕАЛЬНОСТІ". Системи управління, навігації та зв’язку. Збірник наукових праць 5, № 57 (30 жовтня 2019): 59–66. http://dx.doi.org/10.26906/sunz.2019.5.059.

Повний текст джерела
Анотація:
Предметом вивчення в статті є маркери доповненої реальності. Метою є розробка науково-прикладних основ побудови стійких маркерів доповненої реальності на основі системи моделей та методів стійкого формування, виявлення та декодування даних, що забезпечує відновлення зображення в умовах зовнішніх впливів. Завдання: аналіз переваг та недоліків існуючих маркерів доповненої реальності, формулювання основних вимог до маркера доповненої реальності, дослідження системи моделей та методів стійкого формування, виявлення та декодування даних, що забезпечує відновлення зображення в умовах зовнішніх впливів. Використовуваними методами є: методи цифрової обробки зображень, теорії ймовірності, математичної статистики, криптографії та захисту інформації, математичний апарат теорії матриць. Отримані такі результати. Визначені переваги та недоліки основних існуючих типів маркерів доповненої реальності. Сформульовано вимоги, яким повинні задовольняти маркери доповненої реальності. Запропоновано система моделей та методів стійкого формування, виявлення та декодування даних, що забезпечує відновлення зображення в умовах зовнішніх впливів. Висновки. Напрямками подальших досліджень є розробка методу формування стійкого маркеру доповненої реальності; розробка методу виявлення стійкого мозаїчного стохастичного маркеру доповненої реальності; розробка методу декодування мозаїчного стохастичного маркеру доповненої реальності; розробка методу проектування віртуальних об’єктів на площину маркеру доповненої реальності; розробка інформаційної технології використання мозаїчних стохастичних маркерів у системах доповненої реальності.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Рудь, Н. Т. "МАРКЕТИНГОВА КОНЦЕПЦІЯ ФОРМУВАННЯ ІННОВАЦІЙНОЇ ІНФРАСТРУКТУРИ РЕГІОНУ". Економічні науки. Серія "Регіональна економіка" 1, № 17(67) (29 грудня 2020): 201–13. http://dx.doi.org/10.36910/2707-6296-2020-17(67)-22.

Повний текст джерела
Анотація:
В статті розглядаються маркетингові підходи до формування інноваційної інфраструктури регіону. Особлива увага приділяється розвитку Інтернет-маркетингу, мережевим віртуальним організаціям, системі регіональної інноваційної інфраструктури з точки зору різних підходів до дослідження регіональних проблем, особливостей створення міжрегіональної інноваційної системи.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Мінцер, О. П., та Л. Ю. Бабінцева. "ПІДГОТОВКА НАУКОВО-ПЕДАГОГІЧНИХ ПРАЦІВНИКІВ У СИСТЕМІ ПІСЛЯДИПЛОМНОЇ МЕДИЧНОЇ ОСВІТИ ЛІКАРІВ І ПРОВІЗОРІВ НА ОСНОВІ СТРАТЕГІЇ ГІБРИДНОЇ РЕАЛЬНОСТІ". Medical Informatics and Engineering, № 2 (13 липня 2020): 12–16. http://dx.doi.org/10.11603/mie.1996-1960.2020.2.11187.

Повний текст джерела
Анотація:
Представлено новий погляд на питання докорінної зміни викладання в медичних закладах вищої освіти в умовах масового впровадження інформаційних технологій. Підкреслюється, що останнім часом створено принципово нові навчальні середовища, що базуються на включенні як реальних, так і віртуальних об'єктів. Подібні зміни потребують створення нової системи підготовки науково-педагогічних працівників. Тому необхідно обґрунтувати спеціальну класифікацію знань, що відповідає новим технологічним реаліям навчання в медичних закладах вищої освіти. Зроблено висновки, що питома вага використання розширеної та гібридної реальності поки залишається низькою. Але значна потенційна цінність зазначених технологій для медичної освіти вже найближчим часом може повністю трансформувати медичну освіту, запровадивши навчання на вимогу, віддалений доступ до навчальних матеріалів та об'єктивне оцінювання. Відповідно, вкрай актуальним є першочергова підготовка викладачів у медичних закладах вищої освіти та в системі післядипломної медичної освіти. Важливо також забезпечити відповідний континуум навчання. Запропоновано класифікацію знань, що має викладатися у закладах вищої освіти, особливо в закладах післядипломної освіти. Класифікація представляє собою піраміду знань в основу якої закладаються відносно стабільні стрижневі знання, а на вершині — операційні знання, що постійно змінюються. Комплементарною (перевернутою) пірамідою є питома вага застосування методів віртуальної та гібридної реальності.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Зозуля, В. А., та С. І. Осадчий. "ОГЛЯД МЕТОДІВ ПОБУДОВИ СИСТЕМ КЕРУВАННЯ МЕХАНІЗМОМ ПАРАЛЕЛЬНОЇ КІНЕМАТИЧНОЇ СТРУКТУРИ НА ОСНОВІ ПЛАТФОРМИ СТЮАРТА (ГЕКСАПОД)". Automation of technological and business processes 11, № 3 (11 листопада 2019): 23–31. http://dx.doi.org/10.15673/atbp.v11i3.1504.

Повний текст джерела
Анотація:
Метою даної статті є вивченні сформованих методів, прийомів і принципів розробки систем керування рухом робочого органу платформи Стюарта (гексапод) для визначення шляхів вдосконалення їх характеристик. Як показано в аналізі, проектування систем керування рухом робочого органу гексаподу поділяються на два основних напрямка: метод керування рухом в робочому просторі при вирішенні прямої задачі кінематики та керуванням рухом в просторі узагальненої координати при вирішенні зворотної задачі кінематики. Аналіз методів розробки систем керування рухом робочого органу платформи Стюарта, який показав, що з метою спрощення моделі об'єкта керування і процедур проектування системи керування, часто пропонується поділ механізму на окремі автономні канали за кількістю штанг платформи Стюарта, нехтуючи похибками вимірювання і динамікою датчиків, використання ідеалізованих віртуальних моделей механізму паралельної кінематики для формування сигналів корекції. При цьому замінюються реальні характеристики платформи Стюарта лінеаризованими, а збурюючі дії - взаємовпливом висей їх оцінками. Для деяких режимів роботи гексаподу спрощена модель динаміки не буде відображати реальних фізичних процесів, що відбуваються в гексаподі, що негативно позначається на керованості механізму в цілому. Проведений аналіз дозволив запропонувати структурні схеми керування рухом робочого органу гексаподу побудовані за принципом одно, двоконтурних слідкуючих систем. Виходячи з недоліків слідкуючих систем, запропоновано будувати систему керування гексаподом на основі схем що мають потенційно більшу точність відтворення програмного керування за рахунок збільшення ступеня вільності у виборі регулятора.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Семеріков, Сергій Олексійович, Андрій Миколайович Стрюк, Катерина Іванівна Словак, Наталя Василівна Рашевська та Юлія Володимирівна Єчкало. "Людина з комп’ютерним обличчям (до 80-річчя Айвена Едварда Сазерленда)". New computer technology 16 (14 травня 2018): 9–24. http://dx.doi.org/10.55056/nocote.v16i0.810.

Повний текст джерела
Анотація:
У статті наведено основні віхи науково-технологічної біографії Айвена Едварда Сазерленда. Показано вплив сім’ї та школи на розвиток його дослідницьких компетентностей, наведено маловідомі біографічні факти, що пояснюють еволюцію його наукових інтересів: від динамічних об’єктно-орієнтованих графічних систем через системи віртуальної реальності до асинхронної логіки.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Куцан, Юлій Григорович, Віктор Олександрович Гурєєв, Андрій Васильович Яцишин та Анна Володимирівна Яцишин. "ВІРТУАЛЬНИЙ НАУКОВО-НАВЧАЛЬНИЙ ЦЕНТР ДЛЯ ПІДГОТОВКИ ОПЕРАТИВНО-ДИСПЕТЧЕРСЬКОГО ПЕРСОНАЛУ В ЕНЕРГЕТИЦІ УКРАЇНИ". Information Technologies and Learning Tools 79, № 5 (28 жовтня 2020): 90–108. http://dx.doi.org/10.33407/itlt.v79i5.3637.

Повний текст джерела
Анотація:
Нині навчання та тренажерна підготовка персоналу в енергетичній галузі України має значні недоліки, що не дозволяє виконувати повною мірою зобов’язання перед міжнародними організаціями. У статті обґрунтовано важливість використання сучасних веб орієнтованих технологій для підвищення кваліфікації оперативно-диспетчерського персоналу в енергетичній галузі України. Описано особливості створення навчально-методичної бази для системи підготовки та підвищення кваліфікації оперативно-диспетчерського персоналу в енергетиці з метою формування й підтримки ключових компетентностей оперативного персоналу. Розглядаються переваги застосування розподіленого середовища для організації навчання і тренажерної підготовки оперативного персоналу за допомогою засобів моделювання режимів роботи електроенергетичних систем (ЕЕС) у віртуальному центрі. У результаті проведеного дослідження обґрунтовано навчально-методичну базу, структуру та функції віртуального науково-навчального центру для підвищення кваліфікації персоналу в енергетичній галузі України, який виконує такі функції: контроль знань, тренажерна підготовка, формування ключових компетентностей. Подано основні компоненти дистанційних курсів (ДК) з використанням спеціалізованих програмно-моделюючих систем для тренажерної підготовки персоналу в енергетиці. Тематика пропонованих ДК складається з лекцій, практичних занять та семінарів, передбачає проведення консультацій з викладачами і самостійну позааудиторну роботу персоналу у вільний або в робочій час. Важливим практичним аспектом в авторських ДК є використання інформаційно-програмного забезпечення для стійкого формування в персоналу енергетичної галузі ключових компетентностей зі швидкого розпізнавання умов виникнення аварій та, за необхідності, швидкої ліквідації їх наслідків. Це дозволить оволодіти знаннями та практичними навичками для розв’язання задач аналізу, моделювання, прогнозування та візуалізації даних моніторингу режимів роботи великих ЕЕС. Отже, для підвищення кваліфікації персоналу в енергетичній галузі України було розроблено і впроваджено: віртуальний науково-навчальний центр (ВННЦ) та забезпечено його наукову підтримку; розроблено та впроваджено ДК для організації змішаного навчання персоналу; розроблено та впроваджено повнофункціональний режимний вебтренажер (ПОРТ). Використання персоналом у галузі енергетики ВННЦ дозволить створити систему підготовки персоналу найвищої якості.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

ОСТРОВСЬКА, Людмила. "ОНЛАЙН-КОНСУЛЬТАЦІЇ ЯК СКЛАДОВА ДИСТАНЦІЙНОЇ ОСВІТИ У ВИЩІЙ ШКОЛІ". Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 3 (грудень 2020): 76–87. http://dx.doi.org/10.31494/2412-9208-2020-1-3-76-87.

Повний текст джерела
Анотація:
АНОТАЦІЯ Охарактеризовано дистанційну форму навчання у ЗВО як таку, що в сучасних умовах глобалізації та у зв’язку поширенням карантинних заходів в Україні є найбільш оптимальною. Визначено, що дистанційна форма у вишах характеризується низкою численних переваг, однак у ній закладено й значні ризики зниження рівня якості освіти порівняно з традиційною формою навчання. Обґрунтовано доцільність упровадження синхронних онлайн-консультацій у систему дистанційної освіти як обов’язкової її складової. Проаналізовано досвід проведення синхронних онлайн-консультацій в умовах дистанційної форми навчання в Чорноморському національному університеті імені Петра Могили в процесі викладання нормативних дисциплін циклу професійної підготовки магістрів з української мови та літератури. Запропонована система синхронних онлайн-консультацій покликана виконувати такі освітні функції: мотивації навчальної діяльності студентів, фундаменталізації здобутих знань, коригувальну, формування відповідних фахових компетенцій, узагальнення та систематизації знань. Закцентовано увагу на тому, синхронні онлайн-консультації є ефективними лише за умови їх систематичності й дотримання певних психолого-дидактичних вимог до їх проведення, зокрема йдеться про врахування певних психологічних особливостей сучасного покоління студентів як «цифрового», а саме потреби візуалізації навчального матеріалу, його систематизації та узагальнення. Віртуальним середовищем для проведення синхронних онлайн-консультацій може стати платформа онлайн-конференцій Zoom, технічні особливості якої цілком забезпечують повноцінне їх проведення. Для з’ясування ефективності проведення синхронних онлайн-консультацій під час дистанційного навчання було проведено анонімне анкетування студентів, за результатами якого більшість студентів визнає важливість та обов’язковість синхронних онлайн-консультацій для дистанційної форми навчання. Пропонована система синхронних онлайн-консультацій сприяє ефективному вивченню відповідної навчальної дисципліни та підвищує якість освіти загалом. Перспективним видається розробка онлайн-курсів з навчальних дисциплін, передбачених відповідними освітніми програмами. Ключові слова: дистанційна освіта, синхронні онлайн-консультації, організація синхронних онлайн-консультацій, цифрове покоління студентів, віртуальне середовище дистанційної освіти, якість освіти.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

ВОЛКОВ, Володимир, Ігор ГРИЦУК, Тетьяна ВОЛКОВА та Василь ОНИЩУК. "Втілення інформаційних технологій в технічну експлуатацію автомобілів". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 14 (31 серпня 2020): 58–69. http://dx.doi.org/10.36910/automash.v1i14.347.

Повний текст джерела
Анотація:
Метою роботи є експериментальна перевірка розроблених авторами інформаційних технологій організаційно-функціональної підтримки технічної експлуатації автомобілів.. У роботі представлено деякі результати експериментального дослідження функціональних можливостей інформаційних програмних комплексів «Віртуальний механік «НАDI-12» і «Service Fuel Eco «NTU-HADI-12» при вирішенні завдань технічної експлуатації автомобілів. Виконано перевірку математичних моделей, що дозволяють в автоматичному режимі визначати основні параметри технологічного розрахунку і екологічної безпеці при експлуатації автомобілів в малому підприємстві автомобільного транспорту. Визначаючим параметром, що дозволяє відкоригувати періодичність ТО і Р автомобілів, прийнято його середньотехнічну швидкість, яка отримується за допомогою інтелектуальної транспортної системи «ХНАДУ ТЕСА». Ключові слова: автомобіль, рухомий склад, технічна експлуатація автомобілів, віртуальне підприємство автомобільного транспорту, інформаційний програмний комплекс,. середньотехнічна швидкість, технологічний розрахунок, екологічні показники.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

ІСЛАМОВА, Олександра. "ВИКОРИСТАННЯ ТРЕНАЖЕРНИХ КОМПЛЕКСІВ НА ОСНОВІ ТЕХНОЛОГІЇ ВІРТУАЛЬНОЇ РЕАЛЬНОСТІ У ПІДГОТОВЦІ ПЕРСОНАЛУ ПРИКОРДОННИХ ВІДОМСТВ КРАЇН ЄВРОПЕЙСЬКОГО СОЮЗУ". Збірник наукових праць Національної академії Державної прикордонної служби України. Серія: педагогічні науки 28, № 1 (20 квітня 2022): 58–73. http://dx.doi.org/10.32453/pedzbirnyk.v28i1.956.

Повний текст джерела
Анотація:
У статті розглянуто особливості використання тренажерних комплексів на основі технології віртуальної реальності, які є ефективним засобом підвищення якості професійної підготовки майбутніх прикордонників. Виявлено, що у підрозділах силових відомств країн Європейського Союзу використання симуляційного навчання на основі технології віртуальної реальності підвищує мотивацію та сприяє трансформації результатів навчання в особистий досвід, активує мозок і викликає інтерес та підтримує позитивне ставлення до навчання. Правильно сплановані вправи на навчальних тренажерах на основі віртуальної реальності розвивають критичне мислення, здатність приймати рішення, впевненість у своїх силах та навички взаємодії. Встановлено, що інтеграція інформаційно-комунікаційних технологій і тренажерних комплексів в освітній процес відомчих закладів освіти вимагає високого рівня дидактичних та педагогічних компетентностей інструкторів і викладачів. Прикордонні відомства країн Європейського Союзу наразі активно впроваджують у підготовку свого персоналу тренажерні комплекси на основі віртуальної реальності, такі як: SymSG Border Tactics польського прикордонного відомства для вдосконалення тактики охорони кордону та контролю руху у пунктах пропуску; тренажер для підготовки прикордонників до перевірки документів на першій лінії контролю розроблений агенцією Frontex, який дозволяє проводити підготовку фахівців прикордонного контрою на основі розроблених кейсів; симулятор віртуальної реальності для відпрацювання службово-оперативних завдань у реальному часі силових відомств Фінляндії, спроєктований на основі віртуальної системи бойової підготовки “Virtual Battle Space”. З’ясовано, що професійна підготовка українських прикордонників для їх ефективних дій в рамках інтегрованого управління кордонами потребує впровадження інноваційного європейського досвіду силових відомств щодо впровадження віртуальних тренажерних комплексів у підготовку персоналу прикордонного відомства, що вимагає подальшого ґрунтовного дослідження окресленого напряму.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Товстокорий, Олег Миколайович, та Галина Вікторівна Попова. "ВИКОРИСТАННЯ СИМУЛЯЦІЙНИХ ТРЕНАЖЕРІВ ВІРТУАЛЬНОЇ РЕАЛЬНОСТІ ДЛЯ ФОРМУВАННЯ ПРОФЕСІЙНИХ КОМПЕТЕНТНОСТЕЙ МАЙБУТНІХ СУДНОВОДІЇВ". Information Technologies and Learning Tools 82, № 2 (25 квітня 2021): 46–62. http://dx.doi.org/10.33407/itlt.v82i2.3605.

Повний текст джерела
Анотація:
У статті висвітлені аспекти впровадження компетентнісного підходу до професійної підготовки майбутніх осіб командного складу морських суден. На прикладі викладання дисципліни «Управління судном» у Херсонській державній морській академії (ХДМА) представлені нові напрямки впровадження компетентнісного підходу при вивченні професійних дисциплін, що забезпечують відповідність освітнього процесу підготовки морських фахівців вимогам Міжнародної конвенції про підготовку та дипломування моряків та несення вахти з Манільськими поправками 2010 р. Запропонована система фахової підготовки майбутніх судноводіїв в академії та Морському коледжі ХДМА, визначені основні професійні компетентності та система їх оцінювання. Підвищення стандартів якості підготовки майбутніх судноводіїв обумовлено стрімким оновленням та ускладненням технічних, комп’ютерних систем в судноплавстві і водночас підсиленням ролі людського фактора в забезпеченні збереження людського життя. Міжнародна морська організація (IMO) висуває певні вимоги до невідкладних змін у викладання професійних дисциплін при підготовці майбутніх морських фахівців щодо забезпечення відповідним сучасним тренажерним устаткуванням з навчально-методичним забезпеченням. У статті розкриті основні питання впровадження симуляційних технологій віртуальної реальності в поєднанні з електронним навчанням у професійну підготовку майбутніх судноводіїв. Симуляційні тренажери віртуальної реальності, що представлені сучасними лабораторіями в ХДМА, надають можливість курсантам отримати навички маневрування судном, дозволяють підвищити реалістичність навчання та надають нові можливості для формування та оцінювання професійних компетентностей майбутніх морських фахівців. У статті аналізуються порівняльні аспекти традиційного навчання та навчання з використанням симуляційних технологій віртуальної реальності і робиться висновок про ефективність упровадження симуляційних технологій в освітній процес. Представлена система електронного навчання на базі LMS Moodle, що допомагає забезпечити інформаційно-технологічну підтримку та супровід професійного навчання майбутніх судноводіїв.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Литвинова, Світлана Григорівна. "Віртуальні предметні спільноти як засіб управління нормативно-методичним забезпеченням діяльності вчителя ЗНЗ". Theory and methods of e-learning 3 (10 лютого 2014): 162–66. http://dx.doi.org/10.55056/e-learn.v3i1.334.

Повний текст джерела
Анотація:
З розвитком інформаційно-комунікаційних технологій (ІКТ) з’являються нові форми і програмні сервіси для зберігання та управління даними. В останні роки багато робиться для того, щоб використати досвід обміну знаннями і залучити учнів, студентів, вчителів та викладачів до участі в житті реальних предметних спільнот, де у рамках окремої спільноти усі учасники можуть обмінюватися повідомленнями, текстовими документами, відео та аудіо файлами, а також знаннями, які вони можуть використати у своїй діяльності.Актуальність дослідження обумовлена тим, що «Концепція Державної цільової соціальної програми підвищення якості шкільної природничо-математичної освіти на період до 2015 року» визначає фундаментальну природничо-математичну освіту однією з основних факторів розвитку особистості, і потребує оновлення її змісту з урахуванням суспільних запитів, потреб інноваційного розвитку науки та виробництва, запровадження сучасних методів навчання, поліпшення якості підготовки та видання навчально-методичної літератури, удосконалення механізмів оцінювання результатів навчальної діяльності [5].Систематичне використання ІКТ під час навчання предметів природничо-математичного циклу у загальноосвітніх навчальних закладах спонукає вчителів до постійного і систематичного створення власних презентацій до окремих тем уроків, тестів, пошуку відео і аудіо фрагментів дослідів тощо. Виникає проблема збереження навчальних матеріалів їх оцінювання, обміну з колегами, використання під час атестації, конкурсів. Виникає потреба у створенні і розвитку динамічних віртуальних предметних спільнот.Наукові пошуки питання обумовлені широким використанням мережі Інтернет, як комунікаційного середовища з широким комунікаційним потенціалом. У зарубіжній науковій літературі дослідження віртуальних спільнот мають, в основному, описовий характер і орієнтовані на вирішення наступних завдань: формування визначення поняття «віртуальна спільнота» (А. Денніс, К. Рідінгз, Б. Уеллман, К. Фігалло, С. Хільц та ін.), розробку класифікації віртуальних спільнот (К. Портер, У. Долакіа, М. Вірнош, К. Джонс, С. Рафаелі, С. Кришнамерти, Л. Коміто, У. Маркус, Р. Багоззі, Б. Батлер, Дж. Прііс, А. Армстронг та ін.), визначення структурних властивостей віртуальних спільнот (К. Фігалло, К. Портер, К. Джонс, С. Кришнамерти, А. Бленкард, С. Харрісон та ін.), педагогічний підхід до вивчення віртуальних спільнот (Є. Д. Патаракін). Розвиток віртуальних спільнот розкрито у працях таких науковців, як: В. Ю. Биков, Р. О. Голощук, М. І. Жалдак, Н. Т. Задорожна, В. М. Кухаренко, І. Д. Малицька, Н. В. Морзе, В. В. Осадчий, С. А. Раков, О. М. Самойленко (Україна), О. О. Андрєєв, Є. Д. Патаракін, Є. С. Полат, А. В. Хуторський, Н. С. Чураєва (Росія), С. Віркус (Великобританія), Д. Боуден (США) та інших.Нові можливості, які відкриваються перед навчанням, пов’язані з розвитком «цифрової пам’яті». Це не тільки збереження даних, але і наявність сервісів, які полегшують можливість індивідуального та колективного їх використання.З розвитком мережі ми переходимо від індивідуального програмного забезпечення до мережних програм та управлінню колективною пам’яттю. Прикладом колективної пам’яті може слугувати Всесвітня глобальна павутина (World Wide Web), в якій усі ресурси зберігаються по універсальних адресах URL. «Цифрова пам’ять» не тільки вбудовується в усі об’єкти мережної культури але поступово вбирає в себе матеріали архіві, музеїв, бібліотек та дослідних інститутів, зазначає Є. Д. Патаракін [4, с. 18]Усі ці новітні підходи щодо «цифрової» і колективної пам’яті останнім часом реалізуються у різних віртуальних спільнотах, особливо у тих, які формуються і підтримуються освітянами.Втіленням інформаційної епохи сьогодні стала глобальна мережа Інтернет як ключова інформаційна технологія і універсальний засіб вільної комунікації в освіті. Досягнення у сфері ІКТ є підґрунтям для створення нової форми педагогічної комунікації, яка отримала назву віртуальних предметних спільнот.Важливим фактором у дослідженні віртуальних предметних спільнот є формування основних понять. Переклад англійських аналогів virtual community, online community, online group узагальнено у понятті «віртуальна спільнота».Спільнота – мала група або велика соціальна група людей, які активно спілкуються між собою як на професійні, так і на непрофесійні теми [4, с. 22-23].Спільнота – це група людей, які мають спільні інтереси, прагнення та цілі [8].Спільнота – це група людей які взаємодіють між собою, живуть у деякій близькості (просторі, часі, відносинах) [1].Віртуальна спільнота – соціальне об’єднання, яке виростає з мережі, коли група людей підтримує відкрите обговорення досить довго і по-людськи, для того, щоб сформувати мережу особистих відношень у кіберпросторі. [4, с. 8]. У середині спільноти обмін знаннями і досвідом здійснюється на основі електронної розсилки повідомлень, списку новин, дошки оголошень або віртуальних сайтів тощо. Всі заохочення взаємодії, іноді фокусуються навколо особливого інтересу, а іноді і просто спілкуванні.Віртуальна спільнота – це сукупність індивідів, об’єднаних спільними інтересами, цілями та звичаями, тривала взаємодія яких повністю, або у крайньому випадку, частково здійснюється засобами Інтернету і регулюється специфічними для нього засобами комунікації протоколами і нормами [6] .Всередині спільноти обмін знаннями і досвідом здійснюється у вигляді обміну професійними даними і відомостями.Віртуальна предметна спільнота  це об’єднання вчителів-предметників, яке виростає з мережі, має спільні інтереси, прагнення та цілі, активно спілкується між собою як на професійні, так і на непрофесійні теми.У співробітництві з НАПН України компанією «Майкрософт Україна» було започатковано мережу «Партнерство в навчанні» [3], яка надає більше можливостей освітянам дізнатися про новітні ІКТ з метою покращання якості навчання. Призначення мережі – створювати професійні віртуальні спільноти, спільно працювати над розробкою уроків, навчальних і методичних матеріалів, обмін досвідом та ідеями, про що зазначає І. Д. Малицька [7].Розвиток та інтегрування ІКТ у системах освіти зарубіжних країн та України є одним з пріоритетних напрямів, тому у мережі «Партнерство в навчанні» було започатковано шість віртуальних предметних спільнот природничо-математичного циклу природничо-математичного циклу: математика (ua.partnersinlearningnetwork.com/communities/mathematics), фізика (ua.partnersinlearningnetwork.com/communities/physics), хімія (ua.partnersinlearningnetwork.com/communities/chemistry), біологія (ua.partnersinlearningnetwork.com/communities/biology_b), географія (ua.partnersinlearningnetwork.com/communities/geography), інформатика (ua.partnersinlearningnetwork.com/communities/informatic).Мета створення предметних спільнот: стійкий інноваційний розвиток та навчально-методичне забезпечення природничо-математичної освіти.Характерні особливості віртуальної предметної спільноти: 1) відсутність бар’єрів комунікації як психологічних, так і географічних; 2) інтерактивний характер взаємодії членів, які можуть ефективно обмінюватися корисною і цікавою інформацією; 3) можливість самопрезентації і самореалізації вчителів-предметників; 4) неформальна структура он-лайн спілкування; 5) структурований банк навчально-методичних матеріалів.Повідомлення, які розміщуються у спільноті можна розділити на п’ять основних груп:статичні з постійною адресою. До цієї групи відносяться різноманітні мережні публікації. Наприклад, статті, книги, фото тощо;динамічні без постійної адреси. Ця група формується на засадах дискусії, діалогу, обміну думками. Наприклад, електронна пошта, списки розсилки, форуми, чати;динамічні з постійною адресою. Прикладами можуть слугувати блоги, wiki-wiki;інтерактивні з постійною адресою. До цієї групи відносяться різноманітні мережні публікації (статті, книги, нормативні документи, розробки уроків, презентації, фото тощо) які формуються на засадах інтенсивного колективного використання, обговорення та поліпшення;он-лайн без постійної адреси. Ця група формується на засадах дискусії, діалогу, презентації, обміну думками в режимі реального часу. Наприклад, Adobe Acrobat Connect; COMDI; Dimdim; BigBlueButton, WiZiQ, V-class.ru, Glance Networks (англ.); IBM Lotus Sametime; InterCall (англ.); Microsoft Office Live Meeting; WebEx (англ.); WebTrain (англ.) тощо [2].Структура предметної спільноти включає наступні компоненти: оголошення, дискусії, події, посилання, спільні документи, відео матеріали, презентації, розробки уроків, фото матеріали, методичне забезпечення.Залучення вчителів до предметних спільнот здійснено за такими напрямками: електронна розсилка посилань з адресою предметних спільнот на електронні скриньки загальноосвітніх навчальних закладів; проведення он-лайн навчальних семінарів для вчителів-предметників; презентація предметних спільнот на науково-практичних семінарах та конференціях.Наповнення нормативно-методичних сховищ спільнот здійснено вчителями-предметниками, координаторами спільнот та методистами. Нормативно-методичні документи регламентують діяльність вчителя та включають інструкції (з техніки безпеки, протипожежної безпеки, безпека під час проведення екскурсій, лабораторних робіт тощо), навчальні плани, методичні рекомендації (щодо викладання предметів, проведення Всеукраїнських олімпіад), листи МОНмолодьспорт України, листи місцевих органів управління (ГУОН м. Києва, обласні управління освіти тощо), листи інститутів підвищення кваліфікації (графіки проходження курсів підвищення кваліфікації) тощо.Таким чином, створення та наповнення інформаційних сховищ віртуальних предметних спільнот слугує засобом управління нормативно-меточним забезпеченням діяльності вчителя-предметника загальноосвітнього навчального закладу.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Шамшин, Олександр Петрович. "Дистанційні лабораторні роботи у фізичному практикумі". New computer technology 15 (2 травня 2017): 185–88. http://dx.doi.org/10.55056/nocote.v15i0.606.

Повний текст джерела
Анотація:
Метою дослідження є вивчення сучасного стану програмного забезпечення й розробки дистанційних лабораторних робіт з фізики. Задачами дослідження є розробка новітніх віртуальних лабораторних робіт (ВЛР) з фізики із використанням Інтернет-технологій. Об’єктом дослідження є лабораторний практикум, спрямований на: а) експериментальне підтвердження теоретичного лекційного матеріалу, поглиблене вивчення й розуміння фізичних явищ; б) прищеплювання навичок самостійної роботи з вимірювальними приладами, лабораторним устаткуванням; в) набуття елементарних дослідницьких компетентностей – проведення вимірювань, обробка результатів вимірювань, оформлення результатів досліджень. У зв’язку з тим, що в останні роки спостерігається істотна модернізація лабораторного устаткування у ВНЗ, повсюдний перехід на комп’ютерні системи вимірювань та упровадження Інтернет-технологій проведення теоретичних і лабораторних занять, нами був розроблений ряд ВЛР, що використовують сучасні програмні ресурси. Метою створення розглянутих робіт було прищеплювання навичок роботи з вимірювальними приладами, самостійне проведення вимірювань і розрахунків кожним студентом, можливість виконати дослідження з теми роботи шляхом зміни початкових умов системи й аналізу їх впливу на поведінку системи. Предметом дослідження є вивчення впливу варіювання «зовнішніх» параметрів на поведінку системи. Як правило, наявні лабораторні роботи дозволяють проводити вимірювання для одного певного випадку, не дозволяючи змінювати параметри системи. ВЛР саме й здатна позбавити від обмежень реальних установок і проводити дослідження, варіюючи параметри системи в розумних межах, виявляти «зовнішні» впливи на систему, які в реальній установці призвели б до її істотної модернізації. У даній роботі йдеться про ВЛР, розроблені з використанням LabVIEW, що використовуються у навчальному процесі. Результати дослідження: створення дистанційного практикуму ВЛР з фізики на базі програмного продукту LabVIEW для систем збору даних, їх аналізу, опрацювання та візуалізації суттєво підвищує ефективність навчального процесу.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Статівка, О. О. "МЕТОДИ ДИСТАНЦІЙНОГО НАВЧАННЯ ІНОЗЕМНИХ МОВ СТУДЕНТІВ ЗВО МІНІСТЕРСТВА ВНУТРІШНІХ СПРАВ УКРАЇНИ". Visnik Zaporiz kogo naciohai nogo universitetu Pedagogicni nauki, № 2 (12 листопада 2021): 46–51. http://dx.doi.org/10.26661/2522-4360-2021-2-07.

Повний текст джерела
Анотація:
Глобальна пандемія СОVID-19 і стрімкий розвиток мережі Інтернет та інформаційно-комунікаційних технологій (ІКТ) сприяли масовому впровадженню в навчальний процес ЗВО Міністерства внутрішніх справ України дистанційної форми навчання. У статті розглянуто особливості організації навчання в дистанційному форматі та методи дистанційного навчання, які використовуються під час вивчення іноземних мов студентами. Наведено перелік популярних освітніх платформ для дистанційного вивчення англійської мови (Сoursera, edX, Futurelearn, Udemy, Khan Academy, Openlearning, Alison, Stanford Online, Canvas, Yale). З’ясовано, що використання освітніх платформ дозволяє реалізувати значний спектр завдань, які виникають у момент переформатування навчального процесу, допомагає вирішити питання створення комунікаційного простору, що забезпечує взаємодію викладача і студента з метою оволодіння комунікативними навичками, які забезпечують вільне спілкування як на професійному, так і на особистому рівні. Зазначено, що використання викладачем освітньої платформи Coursera дозволяє сконструювати індивідуальний план вивчення англійської мови для кожного студента. Доведено, що найбільш ефективним і перевіреним рішенням у контексті електронного навчання і дистанційних освітніх технологій є система «Moodle», яка поєднує різні класи інформаційних систем: систему управління сайтом, систему управління процесом навчання, віртуальне середовище навчання і може використовуватись як інструментальне середовище для розробки як окремих електронних навчальних курсів, так і освітніх сайтів. З’ясовано, що «Moodle» фактично є універсальним порталом і може слугувати платформою для створення комплексу електронних курсів із вбудованою системою тестування і забезпечення комунікації між викладачами та студентами. З’ясовано, що професійна спрямованість вивчення студентами закладів вищої освіти Міністерства внутрішніх справ України іноземної мови зберігається, але вузька професійна орієнтованість дисципліни «Іноземна мова» змінюється загальнопрофесійною спрямованістю.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Makoveychuk, O. "МЕТОД ДЕКОДУВАННЯ МОЗАЇЧНОГО СТОХАСТИЧНОГО МАРКЕРА ДОПОВНЕНОЇ РЕАЛЬНОСТІ". Системи управління, навігації та зв’язку. Збірник наукових праць 6, № 58 (28 грудня 2019): 54–57. http://dx.doi.org/10.26906/sunz.2019.6.054.

Повний текст джерела
Анотація:
Предметом вивчення в статті є маркери доповненої реальності. Метою є розробка методу декодування мозаїчного стохастичного маркера доповненої реальності. Завдання: аналіз основних операцій у маркерних системах доповненої реальності, аналіз основних існуючих типів AR-маркерів, розробка методу декодування мозаїчного стохастичного маркера доповненої реальності. Використовуваними методами є: методи цифрової обробки зображень, теорії ймовірності, математичної статистики, криптографії та захисту інформації, математичний апарат теорії матриць. Отримані такі результати. Визначено, що однією з основних операцій у маркерних системах доповненої реальності є декодування маркерів у відео-потоці з метою вирізнення віртуальних об'єктів з реального світу. Розроблений метод декодування мозаїчного стохастичного маркера доповненої реальності. Висновки. Вперше отримано метод декодування мозаїчного стохастичного маркера доповненої реальності, який на підставі запропонованої системи показників визначає розміри матриці бітів маркера, із трансформованого зображення бітконтейнера будує матрицю бітів маркера, визначає зсув у повній матриці бітів, на основі застосування зворотньої перестановки до повної матриці бітів реалізує фільтрацію пермутованого зображення. Напрямками подальших досліджень є розробка методу проектування віртуальних об’єктів на площину маркеру доповненої реальності; розробка інформаційної технології використання мозаїчних стохастичних маркерів у системах доповненої реальності
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Григор’єва Н.С., Шабайкович В.А. д.т.н., проф. та Марчук І. В. "ПОПЕРЕДНЄ ВИЗНАЧЕННЯ КОНКУРЕНТОСПРОМОЖНОСТІ ПРИЛАДІВ ПЕРЕД ЇХ РОЗРОБКОЮ". Перспективні технології та прилади, № 17 (17 грудня 2020): 21–26. http://dx.doi.org/10.36910/6775-2313-5352-2020-17-3.

Повний текст джерела
Анотація:
Розроблена методика випереджувальної оцінки конкурентоспроможності проектуємих приладів, що забезпечує появу на ринку високоякісної продукції. Більшість робіт при визначенні конкурентоспроможності зосереджено на визначенні виробничих і експлуатаційних витрат вже готових приладів. Однак ці дані повинні бути одержані заздалегідь, ще до їх проектування. Методика випереджувальної оцінки конкурентоспроможності полягає в управлінні основними технологічними і конструкційними чинниками, до яких відноситься вплив окремих властивостей на конкурентоспроможність через коефіцієнти кореляції, більшість з яких визначається з рівнянь регресії. Збільшити конкурентоспроможність можна за рахунок застосування технічних інновацій як конструкцій, так і технологій, інтелектуальних систем підтримки прийняття технологічно-конструкційних рішень, а також віртуалізації, котрі враховують як результати перебігу віртуальних складальних процесів, так і наслідки віртуальної експлуатації приладів. При цьому розраховується інтегральний показник якості та конкурентоспроможності.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Гарапко, Віталія. "СУЧАСНА СИСТЕМА ЕЛЕКТРОНОГО ОЦІНЮВАННЯ ЗДОБУВАЧІВ ВИЩОЇ ОСВІТИ – TeSLA". ОСВІТА ДОРОСЛИХ: ТЕОРІЯ, ДОСВІД, ПЕРСПЕКТИВИ 20, № 2 (23 листопада 2021): 197–203. http://dx.doi.org/10.35387/od.2(20).2021.197-203.

Повний текст джерела
Анотація:
Автором оглядової статті наголошено на тому, що, незважаючи на важливість онлайн-освіти як елемента формального, неформального та інформального навчання, навчальні заклади все ще неохоче працюють над створенням системної онлайн-моделі навчання. Обґрунтовано, що існує певна залежність від особистої оцінки індивідуума, оскільки альтернативи онлайн оцінювання не мають очікуваного суспільного визнання та надійності. Наголошено, що створення системи електронного оцінювання, яка зможе забезпечити ефективне підтвердження особистості здобувача освіти, його авторство через інтеграцію сучасної технології у поточну навчальну діяльність у масштабованому та економічно ефективному порядку, є актуальним питанням. Зазначено, що система ідентифікації особи під час електронного оцінювання навчання (TeSLA – An Adaptive Trust-based e-assessment system for learning) дає можливість навчальним закладам забезпечити прозорий та зрозумілий користувачам процес електронного оцінювання у процесі онлайн-навчання та під час змішаного навчання на базі різних навчальних середовищ та платформ. Зазначена система забезпечує підтримку як поточного, так і семестрового оцінювання та покликана підвищити рівень довіри до такого типу оцінювання серед здобувачів освіти, викладачів і закладів освіти у цілому. Окрім того, використання інноваційних технологій у навчальному процесі дозволяє підвищити впевненість у собі, мотивацію до вивчення дисциплін та більш ефективної організації самостійної пізнавальної діяльності студентів, створити сприятливе освітнє середовище для дослідницької діяльності, спонукати до проведення дослідницької роботи. Автором наголошено, що якщо брати до уваги сучасну систему онлайн-освіти, яка забезпечується, переважно, віртуальним навчальним середовищем, то доступ до матеріалів в мережі може бути досить простим і здаватися надійним, але рівень захисту результатів оцінювання від шахрайства – ні. Підкреслено, що запобігаючи плагіату та шахрайству, система TeSLA сприяє впровадженню академічної доброчесності, розвиткові індивідуально орієнованого навчання, розширенню полікультурного європейського сектору вищої освіти, створюючи нові можливості для гнучкого навчання упродовж усього життя.Ключові слова: електронне/онлайн оцінювання; здобувач освіти; проєкти ЄС; ідентифікація авторства; плагіат; самоплагіат.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bakhmat, Nataliia. "ПСИХОЛОГО-ПЕДАГОГІЧНІ КРИТЕРІЇ ФОРМУВАННЯ ВІРТУАЛЬНОГО ОСВІТНЬОГО ПРОСТОРУ МАЙБУТНІХ МЕНЕДЖЕРІВ СОЦІОКУЛЬТУРНОЇ ДІЯЛЬНОСТІ". Professional Pedagogics 1, № 20 (11 серпня 2020): 25–34. http://dx.doi.org/10.32835/2707-3092.2020.20.25-34.

Повний текст джерела
Анотація:
Актуальність проблеми визначається необхідністю модернізації системи освіти на засадах компетентнісного підходу, інноваційності, орієнтації на формування конкурентоздатного, активного й мобільного фахівця, здатного до саморозвитку і самовдосконалення. Мета: уточнити зміст категорій «простір», «освітній простір», «віртуальний освітній простір» та охарактеризувати психолого-педагогічні критерії формування віртуального освітнього простору майбутніх менеджерів соціокультурної діяльності. Методи: аналіз і синтез – з метою з’ясування стану та рівня розробленості досліджуваної проблеми; узагальнення – для формулювання висновків щодо формування віртуального освітнього простору майбутніх менеджерів соціокультурної діяльності в закладах вищої освіти. Результати. Здійснено аналіз та уточнено зміст категорій «простір», «освітній простір», «віртуальний освітній простір». Поняття «простір» представлено як освоєне середовище, в якому відбуваються події, характерною особливістю якого є нерозривний зв'язок із часом. Поняття «освітній простір закладу вищої освіти» визначено як багаторівневу систему, що програмується по горизонталі, відображаючи всю складність взаємовідносин її суб’єктів, і по вертикалі, визначаючи динаміку її стратегічного розвитку. Під віртуальним освітнім простором розуміється весь комплекс контенту розміщених в Інтернеті (тобто створених за допомогою програмного забезпечення або комп’ютерних мереж) різноманітних матеріалів навчального характеру. На основі аналізу наукових праць з’ясовано три основні напрями побудови віртуального освітнього простору: дистанційної освіти, онлайн навчання і змішаного (blended) навчання. Висновки: Визначено шість основних психолого-педагогічних критеріїв формування віртуального освітнього простору майбутніх менеджерів соціокультурної діяльності: мотиваційний (вмотивованість здобувачів вищої освіти до використання у навчанні сучасних технологій, а саме Інтернет, розширення знань про Інтернет та можливості його застосування в подальшій професійній діяльності; здатність до самореалізації власних можливостей; потреба у формуванні власного пізнавального інтересу); інтеграційний (знання іноземної мови на професійному рівні; вміння підібрати програмні засоби для застосування Інтернет-технологій у подальшій професійній діяльності); діяльнісний (формування здібностей ділитися набутими знаннями з іншими учасниками освітнього процесу; використання Інтернет-технологій в освітньому процесі на конференціях, семінарах тощо, публікації власних напрацювань у наукових та методичних виданнях, розроблення власних проектів та їх реалізація за допомогою сучасних комп’ютерних програм та просування їх у віртуальному просторі);
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Катуніна, О. С. "ЗАСТОСУВАННЯ ДИНАМІЧНОГО ФАКТОРНОГО АНАЛІЗУ ДЛЯ МОДЕЛЮВАННЯ РИНКУ ВІРТУАЛЬНИХ АКТИВІВ УКРАЇНИ". Науковий вісник Ужгородського університету. Серія «Економіка», № 1(57) (2 липня 2021): 18–29. http://dx.doi.org/10.24144/2409-6857.2021.1(57).18-29.

Повний текст джерела
Анотація:
У статті розглянуто методологічні положення та інструментарій прогнозного моделювання динаміки ринку віртуальних активів, проаналізовано динаміку курсу головних криптовалют в Україні, для обраного портфелю валют побудовано динамічні факторні моделі, що поєднують підходи класичного факторного аналізу та авторегресійного аналізу. З метою визначення прогнозних значень окремих часових рядів показників з мінімально можливою похибкою застосовано оригінальну версію динамічного факторного аналізу, яка дозволяє в ex post прогнозі мінімізувати похибку довільно обраного показника. Динаміку обраної системи проаналізовано з позицій двох систем часових рядів показників із різним кроком за часом при використанні щоденних та усереднених за місяць даних статистики. Прогнози цін попиту і споживання криптовалют знайдені при застосуванні методів інтервального і рекурсивного покрокового прогнозування.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Гриб’юк, Олена Олександрівна. "Перспективи впровадження хмарних технологій в освіті". Theory and methods of e-learning 4 (17 лютого 2014): 45–58. http://dx.doi.org/10.55056/e-learn.v4i1.368.

Повний текст джерела
Анотація:
Будь-яка, навіть найефективніша, логічно обґрунтована і корисна інновація (чи то теорія геліоцентризму Коперника або «походження видів» Дарвіна), якщо вона суперечить існуючій на даний момент догмі, приречена на ірраціональний скепсис, тривале і навмисне замовчування, обумовлене специфікою суспільних процесів і включеність людської психіки в ці процеси.Томас Семюел Кун Існуюча система освіти перестала влаштовувати практично всі держави світу і піддається активному реформуванню в наші дні. Перспективним напрямом використання в навчальному процесі є нова інформаційна технологія, яка дістала назву хмарні обчислення (Cloud computing). Концепція хмарних обчислень стала результатом еволюційного розвитку інформаційних технологій за останні десятиліття.Без сумніву, результати досліджень російських вчених: А. П. Єршова, В. П. Зінченка, М. М. Моісєєва, В. М. Монахова, В. С. Лєдньова, М. П. Лапчика та ін.; українських вчених В. Ю. Бикова, В. М. Глушкова, М. І. Жалдака, В. С. Михалевича, Ю. І. Машбиця та ін.; учених Білорусії Ю. О. Бикадорова, А. Т. Кузнєцова, І. О. Новик, А. І. Павловського та ін.; учених інших країн суттєво вплинули на становлення та розвиток сучасних інформаційних технологій навчання [1], [2], але в організації освітнього процесу виникають нові парадигми, наприклад, хмарні обчислення. За оцінками аналітиків Гартнер груп (Gartner Group) хмарні обчислення вважаються найбільш перспективною стратегічною технологією майбутнього, прогнозується міграція більшої частини інформаційних технологій в хмари на протязі найближчих 5–7 років [17].Згідно з офіційним визначенням Національного інституту стандартів і технологій США (NIST), хмарні обчислення – це система надання користувачеві повсюдного і зручного мережевого доступу до загального пулу інформаційних ресурсів (мереж, серверів, систем зберігання даних, додатків і сервісів), які можуть бути швидко надані та гнучко налаштовані на його потреби з мінімальними управлінськими зусиллями і необхідністю взаємодії з провайдером послуг (сервіс-провайдером) [18].У США в університетах функціонують віртуальні обчислювальні лабораторії (VCL, virtual computing lab), які створюються в хмарах для обслуговування навчального та дослідницьких процесів. В Південній Кореї запущена програма заміни паперових підручників для середньої школи на електронні, які зберігаються в хмарі і доступні з будь-якого пристрою, який може бути під’єднаний до Інтернету. В Росії з 2008 року при Російській академії наук функціонує програма «Університетський кластер», в якій задіяно 70 університетів та дослідних інститутів [3], в якій передбачається використання хмарних технологій та створення web-орієнтованих лабораторій (хабів) в конкретних предметних галузях для надання принципово нових можливостей передавання різноманітних інформаційних матеріалів: лекцій, семінарів, лабораторних робіт і т. п. Є досвід певних російських вузів з використання цих технологій, зокрема в Московському економіко-статистичному інституті вся інфраструктура переводиться на хмарні технології, а в навчальних програмах включені дисципліни з навчання технологій.На сьогодні в Україні теж почалося створення національної освітньої інформаційної мережі на основі концепції хмарних обчислень в рамках національного проекту «Відкритий світ», який планується здійснити протягом 2010-2014 рр. Відповідно до наказу Міністерства освіти та науки України від 23.02.2010 р. №139 «Про дистанційне моніторингове дослідження рівня сформованості у випускників загальноосвітніх навчальних закладів навичок використання інформаційно-комунікаційних технологій у практичній діяльності» у 2010 році було вперше проведено дистанційне моніторингове дослідження з метою отримання об’єктивних відомостей про стан інформатичної освіти та розроблення стратегії її подальшого розвитку. Для цих цілей було обрано портал (приклад гібридної хмари), створений на основі платформи Microsoft Azure [4].Як показує зарубіжний досвід [8], [11], [12], [14], [15], вирішити названі проблеми можна шляхом впровадження в навчальний процес хмарних обчислень. У вищих навчальних закладах України розроблена «Програма інформатизації і комп’ютеризації навчального процесу» [1, 166]. Але, проаналізувавши стан впровадження у ВНЗ хмарних технологій, можна зробити однозначний висновок про недостатню висвітленість цього питання в літературних та Інтернет-джерелах [1], [7].Переважна більшість навчальних закладів лише починає впроваджувати хмарні технології в навчальний процес та включати відповідні дисципліни для їх вивчення. Аналіз педагогічних праць виявив недостатнє дослідження питання використання хмарних обчислень у навчальному процесі. Цілком очевидно, що інтеграція хмарних сервісів в освіту сьогодні є актуальним предметом для досліджень.Для навчальних закладів все більшого значення набуває інформаційне наповнення та функціональність систем управління віртуальним навчальним середовищем (VLE, virtual learning environment). Не існує чіткого визначення VLE-систем, та й в самих системах в міру їх заглиблення в Інтернет постійно удосконалюються наявні і з’являються нові інструменти (блоги, wiki-ресурси). VLE-системи критикують в основному за слабкі можливості генерації та зберігання створюваного користувачами контенту і низький рівень інтеграції з соціальними мережами.Існує кілька полярних підходів до способів надання освіти за допомогою сучасних інформаційно-комунікаційних технологій та інформаційних ресурсів. З одного боку – навчальні заклади з віртуальним навчальним середовищем VLE, а з іншого – персональне навчальне середовище, створене з Web 2.0 сайтів та кероване учнями. Але варто звернути увагу на нову модель, що може зруйнувати обидва наявні підходи. Сервіси «Google Apps для навчальних закладів» та «Microsoft Live@edu» включають в себе широкий набір інструментів, які можна налаштувати згідно потреб користувача. Описувані системи розміщуються в так званій «обчислювальній хмарі» або просто «хмарі».Хмара – це не просто новий модний термін, що застосовується для опису Інтернет-технологій віддаленого зберігання даних. Обчислювальна хмара – це мережа, що складається з численної кількості серверів, розподілених в дата-центрах усього світу, де зберігаються безліч копій. За допомогою такої масштабної розподіленої системи здійснюється швидке опрацювання пошукових запитів, а система є надзвичайно відмовостійка. Система побудована так, що після закінчення тривалого періоду при потребі можна провести заміну окремих серверів без зниження загальної продуктивності системи. Google, Microsoft, Amazon, IBM, HP і NEC та інші, мають високошвидкісні розподілені комп’ютерні мережі та забезпечують загальнодоступність інформаційних ресурсів.Хмара може означати як програмне забезпечення, так і інфраструктуру. Незалежно від того, є сервіс програмним чи апаратним, необхідно мати критерій, для допомоги визначення, чи є даний сервіс хмарним. Його можна сформулювати так: «Якщо для доступу до інформаційних матеріалів за допомогою даного сервісу можна зайти в будь-яку бібліотеку чи Інтернет-клуб, скористатися будь-яким комп’ютером, при цьому не ставлячи ніяких особливих вимог до операційної системи та браузера, тоді даний сервіс є хмарним».Виділимо три умови, за якими визначатимемо, чи є сервіс хмарним.Сервіс доступний через Web-браузер або за допомогою спеціального інтерфейсу прикладної програми для доступу до Web-сервісів;Для користування сервісом не потрібно жодних матеріальних затрат;В разі використання додаткового програмного забезпечення оплачується тільки той час, протягом якого використовувалось програмне забезпечення.Отже, хмара – це великий пул легко використовуваних і доступних віртуалізованих інформаційних ресурсів (обладнання, платформи розробки та/або сервіси). Ці ресурси можуть бути динамічно реконфігуровані для обслуговування мінливого навантаження (масштабованості), що дозволяє також оптимізувати використання ресурсів. Такий пул експлуатується на основі принципу «плати лише за те, чим користуєшся». При цьому гарантії надаються постачальником послуг і визначаються в кожному конкретному випадку угодами про рівень обслуговування.Існує три основних категорії сервісів хмарних обчислень [10]:1. Комп’ютерні ресурси на зразок Amazon Elastic Compute Cloud, використання яких надає організаціям можливість запускати власні Linux-сервери на віртуальних комп’ютерах і масштабувати навантаження гранично швидко.2. Створені розробниками програми для пропрієтарних архітектур. Прикладом таких засобів розробки є мова програмування Python для Google Apps Engine. Він безкоштовний для використання, однак існують обмеження за обсягом даних, що зберігаються.3. Сервіси хмарних обчислень – це різноманітні прикладні програмні засоби, розміщені в хмарі і доступні через Web-браузер. Зберігання в хмарі не тільки даних, але і програм, змінює обчислювальну парадигму в бік традиційної клієнт-серверної моделі, адже на стороні користувача зберігається мінімальна функціональність. Таким чином, оновлення програмного забезпечення, перевірка на віруси та інше обслуговування покладається на провайдера хмарного сервісу. А загальний доступ, управління версіями, спільне редагування стають набагато простішими, ніж у разі розміщення програм і даних на комп’ютерах користувачів. Це дозволяє розробникам постачати програмні засоби на зручних для них платформах, хоча необхідно переконатися, що програмні засоби придатні до використання при роботі з різними браузерами.З точки зору досконалості технології, програмне забезпечення в хмарах розвинуте значно краще, ніж апаратна складова.Особливу увагу звернемо на програмне забезпечення як послугу (SaaS, Software as a Servise), що позначає програмну складову у хмарі. Більшість систем SaaS є хмарними системами. Для користувачів системи SaaS не важливо, де встановлене програмне забезпечення, яка операційна система при цьому використовується та якою мовою воно описане. Головне – відсутня необхідність встановлювати додаткове програмне забезпечення.Наприклад, Gmail представляє собою програму електронної пошти, яка доступна через браузер. Її використання забезпечує ті ж функціональні можливості, що Outlook, Apple Mail, але для користування нею необхідно «thick client» («товстий клієнт»), або «rich client» («багатий клієнт»). В архітектурі «клієнт – сервер» це програми з розширеними функціональними характеристиками, незалежно від центрального сервера. При такому підході сервер використовується як сховище даних, а вся робота з опрацювання і подання даних переноситься на клієнтський комп’ютер.Системи SaaS наділені деякими визначальними характеристиками:– Доступність через Web-браузер. Програмне забезпечення типу SaaS не потребує встановлення жодних додаткових програм на комп’ютер користувача. Доступ до систем SaaS здійснюється через Web-браузер з використанням відкритих стандартів або універсальний плагін браузера. Хмарні обчислення та програмне забезпечення, яке є власністю певної компанії, не поєднуються між собою.– Доступність за вимогою. За наявності облікового запису можна отримувати доступ до програмного забезпечення в будь-який момент та з будь-якої географічної точки земної кулі.– Мінімальні вимоги до інфраструктури ІТ. Для конфігурування систем SaaS потрібен мінімальний рівень технічних знань (наприклад, для управління DNS в Google Apps), що не виходить за рамки, характерні для звичайного користувача. Висококваліфікований IT-адміністратор для цього не потрібний.Переваги хмарної інфраструктури. Наявність апаратних засобів у власності потребує їх обслуговування. Планування необхідної потужності та забезпечення ресурсами завжди актуальні. Хмарні обчислення спрощують вирішення двох проблем: необхідність оцінювання характеристик обладнання та відсутність коштів для придбання нового потужного обладнання. При використанні хмарної інфраструктури необхідні потужності додаються за лічені хвилини.Зазвичай на кожному сервері передбачено резерв, що забезпечує вирішення типових апаратних проблем. Наприклад, резервний жорсткий диск, призначений для заміни диска, що вийшов з ладу, в складі масиву RAID. Необхідно скористатися послугами для встановлення нового диску на сервер. Для цього потрібен час та висока кваліфікація спеціаліста, щоб роботу виконати швидко з метою уникнення повного виходу сервера з ладу. Якщо сервер остаточно вийшов з ладу, використовується якісна, актуальна резервна копія та досконалий план аварійного відновлення. Тільки тоді є можливість провести відновлення системи в короткий термін, причому завжди в ручному режимі.При використанні хмар немає потреби перейматись проблемами стосовно апаратних засобів, що використовуються. Користувач може і не дізнатися про те, що фізичний сервер вийшов з ладу. Якщо правильно дібрано інструментарій, можливе автоматично відновлення даних після надскладної аварійної ситуації. При використанні хмарної інфраструктури у такому випадку можна відмовитись від віртуального сервера і отримати інший. Немає потреби думати про утилізацію та перейматися про нанесену шкоду навколишньому середовищу.Хмарне сховище. Абстрагування від апаратних засобів в хмарі здійснюється не тільки завдяки заміні фізичних серверів віртуальними. Віртуалізації підлягають і системи фізичного зберігання даних.При використанні хмарного сховища можна переносити дані в хмару, не переймаючись, яким чином вони зберігаються та не турбуючись про їх резервне копіювання. Як тільки дані, переміщені в хмару, будуть потрібні, достатньо буде просто звернутись в хмару і отримати їх. Існує кілька підходів до хмарного сховища. Йдеться про поділ даних на невеликі порції та зберігання їх на багатьох серверах. Порції даних наділяються індивідуально обчисленими контрольними сумами, щоб дані можна було швидко відновити в критичних ситуаціях.Часто користувачі працюють з хмарним сховищем так, ніби мають справу з мережевим накопичувачем. Щодо принципу функціонування хмарне сховище принципово відрізняється від традиційних накопичувачів, оскільки у нього принципово інше призначення. Обмін даними при використанні хмарного сховища повільніший, воно більш структуроване, внаслідок чого його використання як оперативного сховища даних непрактичне. Зазначимо, що використання хмарного сховища недоцільне для транзакцій в хмарних прикладних програмах. Хмарне сховище сприймається, як аналог резервної копії на стрічковому носієві, хоча на відміну від системи резервного копіювання зі стрічковим приводом в хмарі не потрібні ні привід, ні стрічки.Grid Computing (англ. grid – решітка, грати) – узгоджене, відкрите та стандартизоване комп’ютерне середовище, що забезпечує гнучкий, безпечний, скоординований розподіл обчислювальних ресурсів і ресурсів збереження інформації, які є частиною даного середовища, в рамках однієї віртуальної організації [http://gridclub.ru/news/news_item.2010-08-31.0036731305]. Концепція Grid Computing представляє собою архітектуру множини прикладних програмних засобів – найпростіший метод переходу до хмарної архітектури. Програмні засоби, де використовуються grid-технології, є програмним забезпеченням, при функціонуванні якого інтенсивно використовуються ресурси процесора. В grid-програмах розподіляються операції опрацювання даних на невеликі набори елементарних операцій, що виконуються ізольовано.Використання хмарної інфраструктури суттєво спрощує та здешевлює створення grid-програм. Якщо потрібно опрацювати якісь дані, використовують сервер для опрацювання даних. Після завершення опрацювання даних сервер можна призупинити, або задати для опрацювання новий набір даних.На рисунку 1 подано схему функціонування grid-програми. На сервер, або кластер серверів, поступає набір даних, які потрібно опрацювати. На першому етапі дані передаються в чергу повідомлень (1). На інших вузлах аналізується чергою повідомлень (2) про нові набори даних. Коли набір даних з’являється в черзі повідомлень, він аналізується на першому комп’ютері, де його виявлено, а результати надсилаються назад в чергу повідомлень (3), звідки вони зчитуються сервером або кластером серверів (4). Обидва компоненти можуть функціонувати незалежно один від одного, а кожен з них може функціонувати навіть в тому випадку, якщо другий компонент не задіяний на жодному комп’ютері. Рис. 1. Архітектура grid-програм У такій ситуації використовуються хмарні обчислення, оскільки при цьому не потрібні власні сервери, а за відсутності даних для опрацювання не потрібні сервери взагалі. Таким чином можна масштабувати потужності, що використовуються. Інакше кажучи, щоб комп’ютер не використовувався «вхолосту», важливо опрацьовувати дані за мірою їх надходження. Сервери включаються, коли потік даних інтенсивний, а виключаються в міру ослаблення інтенсивності потоку. Grid-програми мають дещо обмежену область застосування (опрацювання великих об’ємів наукових і фінансових даних). В переважній частині таких програм використовуються транзакційні обчислення.Транзакційна система – це система, де один і більше вхідних наборів даних опрацьовуються одночасно в рамках однієї транзакції та в
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії