Статті в журналах з теми "Визначені інтеграли"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Визначені інтеграли.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-26 статей у журналах для дослідження на тему "Визначені інтеграли".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Самойленко, В., В. Григор’єва, О. Гнєдкова та О. Котова. "ОСОБЛИВОСТІ ЗДІЙСНЕННЯ ЗАМІНИ ЗМІННИХ В ІНТЕГРАЛІ РІМАНА В КУРСІ МАТЕМАТИЧНОГО АНАЛІЗУ ПРИ ПІДГОТОВЦІ МАЙБУТНІХ ВЧИТЕЛІВ МАТЕМАТИКИ". Physical and Mathematical Education 27, № 1 (26 квітня 2021): 82–88. http://dx.doi.org/10.31110/2413-1571-2021-027-1-013.

Повний текст джерела
Анотація:
В статті розглядаються особливості введення заміни змінних в інтегралі Рімана у процесі викладання курсу математичного аналізу на педагогічних спеціальностях вищих навчальних закладів. Формулювання проблеми. У зв’язку з тим, що на даний час середня загальноосвітня та професійна освіта вступили у принципово новий етап свого розвитку, характерними рисами якого є розбудова освіти на основі нових прогресивних концепцій, запровадження у навчально-виховний процес сучасних педагогічних та інформаційних технологій, науково-методичних досягнень, особливо актуальною постає проблема вдосконалення професійної підготовки вчителів математики. Математичний аналіз має провідне значення у підготовці майбутніх вчителів математики. В статті на прикладі розгляду конкретного питання даного курсу визначені математичні аспекти, які стосуються особливостей викладання матеріалу з урахуванням тих вимог, що висуваються нині до процесу підготовки фахівців у галузі освіти. Розглянуто питання заміни змінних в інтегралі Рімана для функцій, заданих на метричних просторах з мірою, зокрема, і в кратних інтегралах. Матеріали і методи. Загальні методи математичного аналізу та аналіз математичної літератури щодо обчислення кратних інтегралів та інтегралу Рімана із застосуванням методу заміни змінних, аналіз та узагальнення власного педагогічного досвіду та педагогічного досвіду провідних вчителів та науковців. Результати. В роботі розглянуто авторський підхід щодо здійснення заміни змінних в інтегралі в загальному випадку, заміни змінних в інтегралі Рімана по відрізку, а також для кратних інтегралів від функцій, заданих на метричних просторах з мірою. Висновки. Підхід, розглянутий в статті, має певні переваги, які пояснюються тим, що кратні, поверхневі та криволінійні інтеграли вписуються в дану схему та одержуються в якості прикладів при відповідному виборі простору та міри. Саме тому такий підхід при підготовці майбутніх вчителів математики сприяє професійній орієнтації навчання математичного аналізу.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ольшанський, В., В. Бурлака та М. Сліпченко. "Вільні коливання осцилятора Дуффінгу з сухим тертям". Науковий журнал «Інженерія природокористування», № 1(15) (26 жовтня 2020): 82–88. http://dx.doi.org/10.37700/enm.2020.1(15).82-88.

Повний текст джерела
Анотація:
Описано вільні затухаючі коливання осцилятора з сухим тертям Кулона при наявності лінійного та кубічного доданків у виразі відновлюючої сили, яка залежить від переміщення системи. Використовуючи перший інтеграл нелінійного диференціального рівняння руху, визначення точних значень амплітуд розмахів зведено до обчислення відповідних дійсних коренів кубічного рівняння, що має аналітичну реалізацію. Для наближеного обчислення значень амплітуд запропонована також додаткова компактна ітераційна формула. Задовільна збіжність ітерацій по ній підтверджена чисельними розрахунками. Розв’язана також задача визначення тривалостей розмахів. Для цього переходом до нових змінних інтегрування невласний інтеграл другого роду зведено до суми двох власних інтегралів, що виражають тривалість розмаху в часі. Їх доводиться інтегрувати чисельними методами на комп’ютері. Тому додатково подано нерівності для двобічної оцінки тривалостей розмахів та запропонована компактна формула, що дає можливість наближено обчислити цю тривалість. Проведено порівняння числових результатів, одержаних різними способами. Показано, що затухання амплітуд коливань, тривалості розмахів у часі їх кількість до повної зупинки осцилятора залежать від характеристик нелінійності. Встановлено, що у зв’язку з нелінійною пружністю, тривалості розмахів осцилятора Дуффінга залежать від амплітуд коливань. Від характеристик нелінійності також залежить і ширина області застою осцилятора, визначення якої зведено до обчислення дійсного кореня кубічного рівняння за формулами Кардано. Виведені формули дають можливість без використання другого інтегралу нелінійного рівняння коливань осцилятора обчислити його основні кінематичні характеристики, які змінюються в ході руху.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

СЕМЕНЕЦЬ, Сергій, та Сергій ДАВИДЧУК. "КОМПЕТЕНТНІСНО ОРІЄНТОВАНЕ ВИВЧЕННЯ ВИЗНАЧЕНОГО ІНТЕГРАЛА В КУРСІ МАТЕМАТИЧНОГО АНАЛІЗУ ЗАКЛАДІВ ВИЩОЇ ОСВІТИ". Scientific papers of Berdiansk State Pedagogical University Series Pedagogical sciences 1 (29 квітня 2021): 326–35. http://dx.doi.org/10.31494/2412-9208-2021-1-1-326-335.

Повний текст джерела
Анотація:
У статті студіюється проблема реалізації компетентнісного підходу в підготовці майбутніх фахівців, акцентується увага на необхідності дидактично виваженого переходу від теорії до практики компетентнісної математичної освіти. Дослідження зумовлене гострим протиріччям між розвинутою теорією компетентнісної математичної освіти та браком дидактичного, а потому й методичного препарування, що враховувало б структуру та феноменологічні характеристики математичної компетентності. Мета статті – послуговуючись теорією й методологією компетентнісної математичної освіти, розкрити специфіку компетентнісно орієнтованого вивчення визначеного інтеграла в курсі математичного аналізу закладів вищої освіти. Для досягнення мети застосовано методи змістово-теоретичного аналізу, структурно-системного аналізу, сходження від абстрактного до конкретного, змістово-теоретичного узагальнення. Обґрунтовано, що компетентнісно орієнтоване вивчення визначеного інтеграла має забезпечувати розвиток як зовнішніх вимірів математичної компетентності здобувачів вищої освіти (змістово-теоретичного, процесуально-діяльного, референтно-комунікативного), так і внутрішніх (ціннісно-мотиваційного, рефлексивно-оцінного, особистісно-психологічного). Розроблено логіко-дидактичну модель компетентнісно орієнтованого вивчення визначеного інтеграла, що має дворівневу структуру. Вона, з одного боку, розкриває етапність процесу розв’язування прикладних задач за допомого визначеного інтеграла, а з іншого – встановлює шлях навчального пізнання, що забезпечує її розроблення й усвідомлене засвоєння. З’ясовано, що наріжним каменем компетентнісно орієнтованого вивчення визначеного інтеграла є формулювання та розв’язування навчально-теоретичної компетентнісної задачі, яку відносимо до категорії рефлексивних задач. У такий спосіб забезпечується формування узагальненого способу дій у процесі розв’язування типових задач, а також виконується рефлексія процесу учіння (самоаналіз, самоконтроль, самокорекція та самооцінка). Доведено, що компетентнісні задачі актуалізують зовнішні та внутрішні виміри математичної компетентності, а їх розв’язування передбачає виконання окресленого в статті способу дій. Ключові слова: математична компетентність, компетентнісні задачі, математичний аналіз, визначений інтеграл, компетентнісно орієнтоване вивчення.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ботузова, Юлія Володимирівна. "Методичні особливості вивчення теми «Визначений інтеграл» у старшій школі з використанням онлайн-сервісів і програмних продуктів". Освітній вимір 46 (10 грудня 2015): 100–107. http://dx.doi.org/10.31812/educdim.v46i0.2507.

Повний текст джерела
Анотація:
Ботузова Ю. В. Методичні особливості вивчення теми «Визначений інтеграл» у старшій школі з використанням онлайн-сервісів і програмних продуктів. У статті порушується питання вибору навчального матеріалу та педагогічних програмних засобів, які дозволяють ефективно використовувати ІКТ під час навчанняматематики у старшій школі. Розкриваються особливості методики викладання теми «Визначений інтеграл» із застосуванням комп’ютерних математичних програм.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Чеканович, М. Г. "НАПРУЖЕНО-ДЕФОРМОВАНИЙ СТАН КІЛЬЦЕВОГО ПЕРЕРІЗУ ЗАЛІЗОБЕТОННИХ ЕЛЕМЕНТІВ". Ресурсоекономні матеріали, конструкції, будівлі та споруди, № 37 (30 січня 2020): 248–54. http://dx.doi.org/10.31713/budres.v0i37.308.

Повний текст джерела
Анотація:
Стаття присвячена аналітичному визначенню параметрів напружень та деформацій залізобетонних елементів кільцевого перерізу, серед яких колони, стояки опор, труби, палі. Точне вирішення рівнянь напружено-деформованого стану поперечних перерізів конструкцій в межах передумов виконано на основі рекурентної формули для інтегралу від диференційного біному.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Чеканович, М. Г. "ТЕОРЕТИЧНЕ ВИРІШЕННЯ РІВНЯНЬ РІВНОВАГИ ДЛЯ ЗАЛІЗОБЕТОННИХ ЕЛЕМЕНТІВ КРУГЛОГО ПЕРЕРІЗУ". Ресурсоекономні матеріали, конструкції, будівлі та споруди, № 37 (30 січня 2020): 255–61. http://dx.doi.org/10.31713/budres.v0i37.307.

Повний текст джерела
Анотація:
Стаття присвячена теоретичному визначенню параметрів напружено-деформованого стану залізобетонних елементів круглого перерізу, до яких відносяться колони, стояки опор, палі. На основі рекурентної формули для інтегралу від диференційного біному одержане теоретичне вирішення рівнянь рівноваги нормального круглого поперечного перерізу залізобетонних конструкцій в межах загальноприйнятих передумов.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ponomarenko, P., та V. Tyapkina. "Теоретичні основи експериментального визначення динамічного спектра швидких нейтронів". Nuclear and Radiation Safety, № 2(46) (18 червня 2010): 50–52. http://dx.doi.org/10.32918/nrs.2010.2(46).09.

Повний текст джерела
Анотація:
Для оцінки роботи реактора та його експлуатації велике значення має отримання точних відомостей про потоки і спектри швидких нейтронів. Розглянуто основи методу отримання динамічного спектра швидких нейтронів, суть якого полягає у визначенні для порогових індикаторів активаційних інтегралів за наслідками вимірювань наведеної активності в цих детекторах.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Havrysh, V. I., O. S. Korol, O. M. Ukhanska, I. G. Kozak та O. V. Kuspysh. "Математична модель визначення температурних режимів у біпластині, зумовлених точковим джерелом тепла". Scientific Bulletin of UNFU 29, № 3 (25 квітня 2019): 104–7. http://dx.doi.org/10.15421/40290322.

Повний текст джерела
Анотація:
Розроблено математичну модель визначення температурних режимів у ізотропній двошаровій пластині, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є, внаслідок чого отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла і коефіцієнта теплопровідності конструкційних матеріалів пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу температурних режимів, що виникають через нагрівання точковим джерелом тепла, зосередженим на поверхнях спряження шарів пластини, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу температурних режимів у двошаровій пластині з точковим джерелом тепла, зосередженим на поверхнях спряження її шарів, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості. Як наслідок, можливо її підвищити і цим самим захистити від перегрівання, яке може спричинити руйнування як окремих елементів, так і всієї конструкції загалом.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kovbasa, V. P., A. A. Kadem та D. Yu Kalinichenko. "РОЗВ'ЯЗОК КОНТАКТНОЇ ЗАДАЧІ ПРО ВЗАЄМОДІЮ ДЕФОРМІВНОГО ПРИВІДНОГО КОЛЕСА З ДЕФОРМІВНОЮ ПОВЕРХНЕЮ". Scientific Bulletin of UNFU 25, № 10 (29 грудня 2015): 260–68. http://dx.doi.org/10.15421/40251040.

Повний текст джерела
Анотація:
Наведено аналітичні залежності для визначення розподілу тиску у зоні контакту деформівного колеса з деформівною поверхнею (ґрунтом), які отримано з використанням криволінійних інтегралів першого роду, та аналітичні залежності визначення границь контакту, отримані на основі врахування сумарних зміщень тіл, що контактують на границях контакту, які є вихідними для розв'язання контактної задачі взаємодії колеса з поверхнею (ґрунтом). Отримані функції границь контакту залежать як від прикладених до колеса зусиль, так і від механічних властивостей самого колеса та поверхні. Отримані залежності можуть бути використані у розв’язуванні задач, пов'язаних з експлуатацією, зокрема у проектуванні рушіїв мобільних енергозасобів.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Левченко, Сергій Андрійович, Віктор Леонідович Коваленко, Віктор Васильович Артемчук, Сергій Вікторович Башлій та Аліна Анатоліївна Єрофєєва. "ЕЛЕКТРОДИНАМІЧНІ ОСОБЛИВОСТІ ПЕРЕМІШУВАННЯ МЕТАЛУ". Scientific Journal "Metallurgy", № 2 (22 лютого 2022): 80–86. http://dx.doi.org/10.26661/2071-3789-2021-2-09.

Повний текст джерела
Анотація:
Запропоновано методику виконання теоретичних досліджень за допомогою конформних відображень щодо визначення дії сил на розплав металу в електросталеплавильних печах з урахуванням цілеспрямованої дії магнітного поля. Проаналізовано вид магнітного поля з двофазним статором. На підставі запропонованої методики використання конформного відображення є можливим визначити тягове зусилля у кожній точці розплаву. Запропоновані функції конформних відображень, використання яких дозволяє перейти від нерівномірного магнітного поля до сукупності взаємоперпендикулярних прямих. Запропоновано функції переходу від нерівномірного магнітного поля до рівномірного. Вказано на складнощі за підбирання функцій перетворення та застосування інтегралу Кристоффеля-Шварца. Заміна інтегральних рівнянь для визначення загальної сили, яка створює рух розплаву металу, на алгебраїчні функції конформних відображень дає можливість розробити відповідні комп’ютерні програми для автоматичного регулювання потужності індукційно-дугових сталеплавильних печей, що є підґрунтям для проектування сучасних електрометалургійних комплексів з покращеними техніко-економічними показниками, які спроможні забезпечити конкурентоздатність вітчизняного металургійного виробництва.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Гадецька, С. В., В. Ю. Дубницький, Ю. І. Кушнерук, О. І. Ходирєв та Ю. І. Шевяков. "Спеціалізований програмний калькулятор для обчислення значень функції Ламберта W0(X) і споріднених з нею функцій". Системи обробки інформації, № 3(162), (30 вересня 2020): 21–35. http://dx.doi.org/10.30748/soi.2020.162.03.

Повний текст джерела
Анотація:
Запропоновано спеціалізований програмний калькулятор, призначений для обчислення значень функції Ламберта W0(х) і споріднених з нею функцій. Описана його програмна реалізація і наведено приклади обчислень. Калькулятор надає обчислювати значення верхньої гілки функції Ламберта, величину обернену до величини функції Ламберта, логарифм функції Ламберта, експоненту, показник ступеня якої містить функції Ламберта, значення першої і другої похідних, значення узагальненого логарифма, узагальненого тангенса, узагальненого котангенса, узагальненого синуса, узагальненого косинуса, гіперболічний узагальнений тангенс, гіперболічний узагальнений котангенс, гіперболічний узагальнений синус, гіперболічний узагальнений косинус. Калькулятор дозволяє обчислювати значення двох найбільш поширених видів визначених інтегралів, підінтегральна функція яких містить функцію Ламберта. Проведено порівняння різних засобів обчислення значень функції Ламберта і рекомендовані області їх застосування.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Таран, Юрій Миколайович, та Павло Филимонович Буланий. "Узгодження програм з фізики і математики в вищій технічній школі". Theory and methods of learning fundamental disciplines in high school 1 (2 квітня 2014): 161–65. http://dx.doi.org/10.55056/fund.v1i1.425.

Повний текст джерела
Анотація:
Однією з умов успішної підготовки спеціалістів у вищому технічному навчальному закладі є взаємодія між кафедрами. Вона усуває дублювання курсів, забезпечує єдність позначень і понять різних величин, робить навчання послідовним і цілісним. Необхідність такого взаємозв’язку зумовлена також тим, що профільна навчальна дисципліна однієї кафедри є базовою дисципліною для іншої кафедри, а отже, курси дисциплін, що вивчаються, повинні бути скориговані відносно часу в обсягу предмета, що вивчається.У вищих технічних навчальних закладах гірничо-металургійного профілю найбільш тісна взаємодія між загальноосвітніми кафедрами повинна, очевидно, здійснюватися між кафедрами математики і фізики.Це зумовлене тим, що математична підготовка студентів значною мірою визначає ефективність навчання фізики. Так, зокрема, математичний апарат у фізиці застосовується для теоретичних узагальнень, обробки експериментальних даних, розв’язання наукових і прикладних задач [1]. Математика дає можливість встановити функціональний причинно-наслідковий зв’язок між фізичними величинами. Підвищення рівня математизації всіх галузей науки допомагає узагальнити накопичені експериментальні дані.В основі найважливіших розділів фізики, які вивчаються у вищих технічних навчальних закладах (розподіл Максвелла за швидкостями молекул, теореми про потік вектора напруженості електростатичного поля і його циркуляції в інтегральній і диференціальній формах, квантова механіка), лежать складні математичні теорії. Очевидно, що для успішного навчання студентів необхідний тісний зв’язок між цими кафедрами.Проаналізуємо діючі анотації чинних програм з математики і фізики і їх синхронізацію за часом на прикладі головного вищого навчального закладу металургійного профілю. Як правило, вивчення фізики починається з розділу “Механіка” в другому семестрі. В цьому розділі нема відносно складних математичних викладок. Однак у наступному розділі (“Молекулярна фізика”) студентів знайомлять з розподілом Максвелла за швидкостями молекул, який дозволяє розрахувати число молекул, абсолютні значення швидкостей яких лежать у заданому інтервалі. Із рівнянь Максвелла випливають визначення важливих фізичних величин: середньої арифметичної швидкості молекул, температури. Щоб опанувати цей розділ, студенти повинні бути вже ознайомлені з методами теорії імовірності, поняттям середнього значення, визначення невласного інтегралу з нескінченними межами. В цьому ж семестрі студентам читається розділ “Електростатика”, де їх знайомлять з теоремою про потік вектора напруженості електростатичного поля і поняттям циркуляції цього ж вектора. Аналогічні теореми і поняття застосовують при вивченні електромагнетизму. Для розуміння фізичного змісту таких важливих означень і теорем необхідні знання інтеграла по поверхні, криволінійного інтеграла, основних понять векторного числення: дивергенції, ротора, градієнта.Рівняння Максвелла, які є послідовним узагальненням основних законів електромагнетизму, базуються на цих поняттях і теоремах.У першому семестрі другого курсу при вивченні коливального руху і хвильових процесів студенти повинні мати відповідну підготовку для розв’язання лінійних диференціальних рівнянь другого порядку, диференціальних рівнянь в частинних похідних.При вивченні елементів квантової механіки, в основі якої лежить рівняння Шредингера, студенти мають бути ознайомлені з поняттям оператора Лапласа. густиною імовірності, теорією комплексної змінної та ін.Зіставимо в часі вивчення окремих розділів математики, на яких базуються вищевказані важливі розділи фізики. Так, елементи теорії імовірності читають студентам у першому або в другому семестрі другого курсу, коли стосовно фізики цей матеріал вивчався раніше. Для ряду спеціальностей вищого технічного навчального закладу в програмі з математики вивчення криволінійного інтеграла, інтеграла по поверхні, елементів теорії імовірності, функції комплексної змінної і ін. взагалі не планується. Хоча для більш глибокого розуміння фізики студентам необхідно мати відповідну математичну підготовку.Виникає, таким чином, проблема, коли студенти вивчають важливі розділи фізики без відповідної математичної підготовки. Це відбувається, можливо, з таких причин:– відповідні розділи математики ще не були їм прочитані до читання курсу фізики;– вивчення окремих розділів математики, необхідних для вивчення фізики, не заплановане взагалі.Крім того, для більш фундаментального вивчення фізики підготовка студентів з векторного числення повинна бути глибшою. Очевидно, треба погодитися з автором відомого посібника з курсу фізики Савельєвим І.Г., який вказує на те, що більш чіткий фізичний смисл рівняння Максвелла мають, наприклад, тоді, коли вони записані в диференціальній формі, тобто із застосуванням понять дивергенції і ротора. Однак у програму курсу математики у вищому технічному навчальному закладі розгляд понять дивергенції і ротора не входить.Помітна зараз тенденція до скорочення аудиторних годин з фізики утруднює вивчення необхідних питань з математики в процесі лекцій і призводить до поверхового знайомства з її найважливішими розділами. Недостатня фундаментальна підготовка студентів з фізики негативно впливає на їх теоретичну підготовку при вивченні курсів дисциплін на спеціальних кафедрах.Належний математичний рівень не завжди може бути досягнутий більшістю студентів при обмеженні аудиторного часу навчання. Отже, при недостатній математичній підготовці студентів вивчення фізики у вищому технічному навчальному закладі може звестися до повторення шкільного курсу. Це цілком очевидно, якщо порівняти кількість годин, відведених на вивчення фізики в школі і у вищому технічному навчальному закладі. Так, згідно з програмами для загальноосвітніх закладів [2] на вивчення фізики заплановано 750 навчальних годин, а у вищому технічному навчальному закладі – всього біля 150 навчальних годин, тобто в 5 разів менше.Проаналізувавши ситуацію, яка склалась, бачимо можливі шляхи розв’язання проблеми:1. Починати вивчення фізики на другому курсі. Очевидно, здійснити це в рамках традиційного навчання неможливо, оскільки у другому семестрі першого курсу вже починається вивчення дисципліни “Вступ до спеціальності”, для розуміння якої студенти вже повинні мати певну підготовку з фізики.2. Якщо формулювати важливі закони фізики без застосування складних математичних понять і теорем, які конче потрібні, то таке навчання взагалі позбавлене сенсу при підготовці спеціалістів і магістрів.3. Використовувати частину лекційного часу для пояснення необхідних математичних понять і теорем. Це скоротить час навчання фізики.4. Запропонувати студентам літературу для самостійного вивчення окремих математичних понять. Це може виявитись прийнятним тільки для окремих студентів, які добре встигають.5. Збільшити тривалість вивчення фізики до трьох семестрів. При існуючих навчальних планах це може призвести до збільшення навантаження на студентів.6. Перенести частину спеціальних розділів фізики на 8–9 семестри для навчання спеціалістів і магістрів. Для підготовки бакалаврів обмежитись курсом фізики, в який не входять питання, що потребують знань складних математичних понять. Це може бути попільним у зв’язку з тим, що зараз асоціацією вищих навчальних закладів гірничо-металургійного профілю обговорюється питання про скорочення терміну підготовки бакалаврів до трьох з половиною років.7. Подавати на лекціях з фізики необхідні складні математичні поняття, замінивши строгі доведення більш інтуїтивними відповідно до дидактичного принципу доступності і розуміння. Такий підхід буде сприяти формуванню у студентів сучасного світосприйняття і світорозуміння.Таким чином, підсилення кореляції міжпредметного зв’язку “математика–фізика” у вищому технічному навчальному закладі буде сприяти підвищенню рівня навчально-методичного процесу, дозволить підготувати спеціалістів більш високого рівня. Автори статті не претендують на абсолютну повноту висвітлення у статті проблеми міжпредметного зв’язку “математика–фізика” у вищому технічному закладі і вважають, що це, можливо, лише одні із варіантів її розв’язання.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Havrysh, V. I., O. S. Korol, I. G. Kozak, O. V. Kuspish та V. U. Maikher. "Математична модель аналізу теплообміну між двошаровою пластиною з локально зосередженим джерелом тепла та навколишнім середовищем". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 129–33. http://dx.doi.org/10.15421/40290526.

Повний текст джерела
Анотація:
Розроблено математичну модель аналізу теплообміну між ізотропною двошаровою пластиною, яка нагрівається точковим джерелом тепла, зосередженим на поверхнях спряження шарів, і навколишнім середовищем. Для цього з використанням теорії узагальнених функцій коефіцієнт теплопровідності матеріалів шарів пластини зображено як єдине ціле для всієї системи. З огляду на це, замість двох рівнянь теплопровідності для кожного із шарів пластини та умов ідеального теплового контакту, між ними отримано одне рівняння теплопровідності в узагальнених похідних із сингулярними коефіцієнтами. Для розв'язування крайової задачі теплопровідності, що містить це рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичний розв'язок задачі в зображеннях. До цього розв'язку застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточний аналітичний розв'язок вихідної задачі. Отриманий аналітичний розв'язок подано у вигляді невласного збіжного інтегралу. За методом Сімпсона отримано числові значення цього інтегралу з певною точністю для заданих значень товщини шарів, просторових координат, питомої потужності точкового джерела тепла, коефіцієнта теплопровідності конструкційних матеріалів пластини та коефіцієнта тепловіддачі з межових поверхонь пластини. Матеріалом першого шару пластини є мідь, а другого – алюміній. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообміну між пластиною та навколишнім середовищем, зумовленим різними температурними режимами завдяки нагріванню пластини точковим джерелом тепла, зосередженим на поверхнях спряження шарів, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розробленої математичної моделі аналізу теплообміну між двошаровою пластиною з точковим джерелом тепла, зосередженим на поверхнях спряження шарів і навколишнім середовищем, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду неоднорідні середовища щодо їх термостійкості під час нагрівання. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Стогова, О. "ВПЛИВ ДЕЦЕНТРАЛІЗАЦІЇ ПУБЛІЧНОЇ ВЛАДИ НА СТАВЛЕННЯ ГРОМАДЯН ДО ЄВРОПЕЙСЬКОГО СОЮЗУ". Юридичний вісник, № 4 (6 жовтня 2021): 156–62. http://dx.doi.org/10.32837/yuv.v0i4.2228.

Повний текст джерела
Анотація:
У статті проаналізовано впливдецентралізації публічної влади наставлення громадян до Європей-ського Союзу з метою оцінити, чиіснує потенційний компроміс між«локалізмом» та „європеїзмом”.Автором зазначено, що децентра-лізація традиційно розглядаласяяк ключовий фактор, який визна-чає просування справедливостіта ефективності на місцевому,регіональному, національному таєвропейському рівнях, але ступіньдецентралізації у країнах і регіо-нах Європи залишається нерівно-мірним. У результаті дослідженнявизначено, що відмінності в реалі-зації регіональної влади впливаютьна ступінь прихильності громадяндо європейського проекту. Децен-тралізацію у країнах ЄС розгля-дають як один із сприятливихнаслідків європейського проєкту,але збільшення субнаціональноїавтономії підживлює «локалізм»,часто на шкоду європейській єдно-сті. Визначено, що у кризові пері-оди громадяни більш скептичновідносяться до оцінки переваг євро-пейської інтеграції, а під час еко-номічного зростання – частішепідтримують європейську інтегра-цію. З іншого боку, децентраліза-ція і регіональна автономія здатніпідірвати можливості централь-ної влади держав ЄС у виконанніважливої функції – вирівнюваннясоціальних можливостей громадянрізних регіонів. У дослідженні наго-лошено, що відмінності в підтримцірізними державами європейськоїінтеграції зросли після розширенняЄС та економічної кризи, причомубільшість дослідників погоджу-ються з негативною роллю еконо-мічної кризи в посиленні опозиціїєвропейській інтеграції. Потенцій-ний вплив децентралізації владина сприйняття громадянами ЄСавтор пояснює теорією утилітар-них оцінок інтегративної політики,оскільки громадяни ЄС по-різномувідчувають плюси й мінуси децен-тралізації, отже, з цих відміннос-тей формується їхнє сприйняття іставлення до європейської інтегра-ції. Зроблено висновок про суттєвірозбіжності у ставленні громадяндо цієї спільноти у просторі й часів кожній країні-члені ЄС.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Havrysh, V. I., V. B. Loik, I. Ye Ovchar, O. S. Korol, I. G. Kozak, O. V. Kuspish та R. R. Shkrab. "Математичні моделі визначення температурних режимів у елементах літій-іонних акумуляторних батарей". Scientific Bulletin of UNFU 30, № 5 (3 листопада 2020): 128–34. http://dx.doi.org/10.36930/40300521.

Повний текст джерела
Анотація:
Удосконалено раніше розроблені та наведено нові математичні моделі визначення та аналізу температурних режимів в окремих елементах літій-іонних акумуляторних батарей, які геометрично описано ізотропними півпростором і простором із внутрішнім джерелом тепла циліндричної форми. Також розглянуто випадки для півпростору, коли тепловиділяючий циліндр є тонким, а для простору, коли він є термочутливим. Для цього з використанням теорії узагальнених функцій у зручній формі записано вихідні диференціальні рівняння теплопровідності з крайовими умовами. Для розв'язування отриманих крайових задач теплопровідності використано інтегральне перетворення Ганкеля і внаслідок отримано аналітичні розв'язки в зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Ганкеля, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. Для визначення числових значень температури в наведених конструкціях, а також аналізу теплообміну в елементах літій-іонних батарей, зумовленого різними температурними режимами завдяки нагріванню внутрішніми джерелами тепла, зосередженими в об'ємі циліндра, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, які відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових радіальної та аксіальної координат. Отримані числові значення температури свідчать про відповідність наведених математичних моделей визначення розподілу температури реальному фізичному процесу. Програмні засоби також дають змогу аналізувати середовища із внутрішнім нагріванням, зосередженим у просторових фігурах правильної геометричної форми, щодо їх термостійкості. Як наслідок, стає можливим її підвищити, визначити допустимі температури нормальної роботи літій-іонних батарей, захистити їх від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Гавриш, В. І., та В. Ю. Майхер. "Температурне поле у пластині з локальним нагріванням". Scientific Bulletin of UNFU 31, № 4 (9 вересня 2021): 120–25. http://dx.doi.org/10.36930/40310420.

Повний текст джерела
Анотація:
Розроблено математичні моделі аналізу температурних режимів у ізотропній пластині, яка нагрівається локально зосередженими джерелами тепла. Для цього теплоактивні зони пластини описано з використанням теорії узагальнених функцій. З огляду на це рівняння теплопровідності та крайові умови містять сингулярні праві частини. Для розв'язування крайових задач теплопровідності, що містять ці рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичні розв'язки задач у зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. За методом Ньютона (трьох восьмих) отримано числові значення цих інтегралів з певною точністю для заданих значень товщини пластини, просторових координат, питомої потужності джерел тепла, коефіцієнта теплопровідності конструкційного матеріалу пластини та ширини теплоактивної зони. Матеріалом пластини є кремній та германій. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообмінних процесів у середині пластини, зумовлених нагріванням локально зосередженими джерелами тепла, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат, коефіцієнта теплопровідності, питомої густини теплового потоку. Отримані числові значення температури свідчать про відповідність розроблених математичних моделей аналізу теплообмінних процесів у пластині з локально зосередженими джерелами тепла, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються локальному нагріванню, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й усієї конструкції.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

РОСЛАВЕЦЬ, Руслана, та Світлана ОРЛОВА. "ПРЕДМЕТНА ПРИРОДНИЧА КОМПЕТЕНТНІСТЬ – ОДНА З ГОЛОВНИХ РИС ПРОФЕСІЙНОСТІ ВЧИТЕЛЯ". Acta Paedagogica Volynienses, № 3 (27 жовтня 2021): 151–56. http://dx.doi.org/10.32782/apv/2021.3.22.

Повний текст джерела
Анотація:
У статті розглянуто та обґрунтовано актуальні проблеми навчання природничої освітньої галузі за умов динамічності реформування сучасної системи освіти, де чітко виокремлюється проблема професіоналізму діяль- ності вчителя початкової школи. Метою роботи є розкриття сутності готовності майбутніх учителів початкової ланки освіти до формуван- ня у молодших школярів предметної природознавчої компетентності; характеристика практичного стану цього феномена; дослідження відповідності підготовки майбутнього вчителя вимогам Державного стандарту почат- кової ланки загальної освіти, адже підготовка майбутнього фахівця наразі має бути спрямована на здатність керувати освітнім та виховним процесом, на впровадження нових інтерактивних технологій у процес навчання дітей молодшого шкільного віку природничої освітньої галузі інтегрованого курсу «Я досліджую світ». Охарактеризовано та розкрито проблему формування природознавчої компетентності студентів – майбутніх вчителів початкової школи. Досліджується відповідність підготовки майбутнього вчителя вимогам нового Дер- жавного стандарту початкової загальної освіти (від 24 липня 2019 р. № 688). Визначено зміст природознавчих компетенцій за результатами теоретичного аналізу досліджень учених-методистів як минулого, так і сучасності. Особливу увагу приділено результативно-цільовій спрямованості початкової освіти. Пріоритетним підхо- дом природничої освіти визначено компетентнісний та обґрунтовано його безперечну перевагу над традицій- ним та інноваційним підходами. Предметну природознавчу компетентність розглянуто нами з позиції інтегра- тивного підходу та обґрунтовано методичні умови формування предметної компетентності учнів молодшого шкільного віку через системне набуття ними окремих предметних компетенцій на уроках інтегрованого курсу «Я досліджую світ».
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ольшанский, Василий. "Про рух квадратично нелінійного осцилятора з сухим тертям". Науковий жарнал «Технічний сервіс агропромислового лісового та транспортного комплексів», № 21 (7 грудня 2020): 16–25. http://dx.doi.org/10.37700/ts.2020.21.16-25.

Повний текст джерела
Анотація:
Робота присвячена виведенню та апробації формул для обчислення переміщення осцилятора та визначення тривалостей напівциклів коливань в умовах сухого тертя. Вивести точне рекурентне співвідношення для обчислення розмахів затухаючих вільних коливань за умови дії сухого тертям можливо й без побудови розв’язку диференціального рівняння руху, якщо використати енергетичний метод. Але визначення переміщень осцилятора у часі потребує розв’язку диференціального рівняння руху. В роботі Описано вільні затухаючі коливання осцилятора з симетричною квадратично нелінійною силовою характеристикою, що має лінійну складову. Причиною коливань служить початкове відхилення системи від положення статичної рівноваги, а їх затухання є наслідком дії сили сухого тертя. Розглянуто варіанти жорсткої та м’якої пружних характеристик. Для обох із них побудовано точні розв’язки рівняння руху. У підсумку переміщення осцилятора в часі виражено через еліптичні функції Якобі. Тривалість чверть і напівциклів виражено через еліптичний інтеграл першого роду, що потребує використання таблиць цих спеціальних функцій. Наведено також наближені формули для обчислення значень еліптичних функцій, де їх зведено до обчислень елементарних функцій. Проведення порівняння числових результатів, одержаних за допомогою аналітичних розв’язків та чисельним інтегруванням вихідного диференціального рівняння руху на комп’ютері. Виявлено малі розбіжності в значеннях переміщень, зумовлених наближеним обчисленням еліптичних функцій. Похибки реалізації аналітичного розв’язку пов’язані з наближеним обчисленням функції Якобі. За підсумками порівняння числових результатів підтверджено вірогідність виведених розрахункових формул стосовно переміщень і тривалостей напівциклів, що залежить від розмахів коливань. Встановлено, що диференціальне рівняння вільних коливань осцилятора з квадратично нелінійною силовою характеристикою та сухим тертям має точні аналітичні розв’язки, що виражаються через еліптичні функції Якобі, а отримані наближені розв’язки мають досить гарну узгодженість з чисельним інтегруванням рівнянь руху на комп’ютері.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ozerchuk, І. "Принципи реалізації Bluetooth 5.2: апаратна реалізація." COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, № 46 (31 березня 2022): 36–42. http://dx.doi.org/10.36910/6775-2524-0560-2022-46-06.

Повний текст джерела
Анотація:
У статті розкрито принципи реалізації Bluetooth 5.2 з точки зору апаратної реалізації. Описано еволюцію технології Bluetooth, наведено інноваційні функції Bluetooth 5.2, визначено основні переваги. Розкрито механізм встановлення зв’язку та описано етапи реалізації останнього. Запропоновано алгоритм формування з’єднання точка-точка за технологією Bluetooth з детальним описом процесу. Охарактеризовано стек протоколів Bluetooth. Визначено функціональну приналежність кожного протоколу та описано принцип взаємодії поміж протоколами. Наголошується, що в умовах сьогодення, низка сучасних компаній інтегрували основні функції широкої смуги Bluetooth в апаратне забезпечення, інші компанії, надають інтерфейс керування хостом. Підкреслено, що система на основі ARM для реалізації Bluetooth передачі у своєму складі має низку додаткових компонентів з’єднаних поміж собою шиною даних. Схематично представлено взаємодію апаратного забезпечення Bluetooth з встановленням функціональних зв’язків. Обґрунтовано принцип реалізації шифрування даних (функція потокового шифру) в апаратному забезпеченні. Наголошується, що застосування функції потокового шифру в апаратному забезпеченні знімає безперервне навантаження з процесора по бездротовому каналу під час передачі даних, а реалізація механізму генерації ключів та аутентифікації в апаратному (а не програмному) забезпеченні призводить до швидшого часу підключення та мінімізації споживання енергії. Запропонована архітектура системи для реалізації апаратного забезпечення Bluetooth 5.2 з урахуванням функції крипто захисту, описано потоки зв’язків на базі системи та описано кожен наявний функціональний блок з відокремленням власної приналежності та виконуваних завдань. Описано широту спектру застосування Bluetooth 5.2 з виділенням таких сфер як: розумні пристрої; засоби масової інформації (телебачення, радіомовлення); подвійна трансляція (функція подвійної трансляції, допомагає у передачі ідентичної інформації через обладнання LE Audio та дубль через гарнітуру Bluetooth або відповідний мобільний додаток, це може значно заощадити час та енергію); багатомовний переклад у режимі реального часу (дана функція зручна при спілкуванні на різних мовах, чи прослуховуванні інформації різними мовами).
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Грицук, Юрій Валерійович, та Віктор Олексійович Моісеєнко. "Характеристика рівня сформованості знань студента при вивченні дисципліни «Інформатика»". New computer technology 5 (3 листопада 2013): 28–29. http://dx.doi.org/10.55056/nocote.v5i1.62.

Повний текст джерела
Анотація:
Входження України до світового співтовариства передбачає підготовку фахівців з вищою освітою з високою інформаційною культурою, готових до використання сучасної комп’ютерної техніки та програмного забезпечення у професійній та повсякденній діяльності.Впровадження сучасних комп’ютерних технологій в зміст професійної діяльності фахівців всіх галузей, динаміка змін їх функцій висувають більш високі вимоги до рівня знань сучасних інженерів-будівельників для розв’язання наступних задач: професійні задачі (задачі діяльності, що безпосередньо спрямовані на виконання завдань, які поставлені перед фахівцем як професіоналом); соціально-виробничі задачі (задачі діяльності, що пов’язані з діяльністю фахівця у сфері виробничих відносин у трудовому колективі (наприклад, інтерактивне та комунікативне спілкування тощо)); соціально-побутові задачі (задачі діяльності, що виникають у повсякденному житті і пов’язані з домашнім господарством, відпочинком, родинним спілкуванням, фізичним і культурним розвитком тощо і можуть впливати на якість виконання фахівцем професійних та соціально-виробничих задач).Для оцінки рівня сформованості знань щодо змісту навчальних елементів запропоновано наступні рівні [1; 2]:ОО – ознайомлювально-орієнтований (особа має орієнтоване уявлення щодо понять, які вивчаються, здатна відтворити формулювання визначень, законів тощо, уміє вирішувати типові завдання шляхом підставлення числових даних);ООз – підрівень знайомств (особа має загальне уявлення про навчальний об’єкт);ООр – підрівень репродукції (особа здатна відтворити та пояснити суттєві ознаки навчального об’єкту);ПА – понятійно-аналітичний (особа має чітке уявлення та поняття щодо навчального об’єкту, здатна здійснювати смислове виділення, пояснення, аналіз, перенесення раніш засвоєних знань на типові ситуації);ПС – продуктивно-синтетичний (особа має глибоке розуміння щодо навчального об’єкту, здатна здійснювати синтез, регенерувати нові уявлення, переносити раніш засвоєні знання на нетипові, нестандартні ситуації).Тематичний зміст навчальної дисципліни «Інформатика», що викладається кафедрою вищої і прикладної математики та інформатики Донбаської національної академії будівництва і архітектури, з характеристикою рівня сформованості знань (згідно положень [2]) наведено у таблиці. Змістові модуліРівень сформованості знаньКодНазваНавчальний об’єкт: «Основні принципи роботи с персональними комп’ютерами» І-ОП-1ВступООзНавчальний об’єкт: «Операційні системи» І-ОС-1Операційна система MS DOSООрІ-ОС-2Операційна система WindowsООрНавчальний об’єкт: «Додатки до операційного середовища Windows» І-Д-1Основні відомості про табличний процесор MS Excel.ООзІ-Д-2Арифметичні вирази в табличному процесорі MS Excel.ПАІ-Д-3Логічні вирази в табличному процесорі MS Excel.ПАІ-Д-4Побудова діаграм в табличному процесорі MS Excel. Ділова графіка. Презентації в MS PowerPoint.ООрІ-Д-5Текстовий процесор MS WordПАІ-Д-6Робота з базами даних в MS AccessПАІ-Д-7Методи розв’язання нелінійних рівнянь в табличному процесорі MS Excel.ПСІ-Д-8Методи розв’язання систем лінійних алгебраїчних рівнянь та методи обробки даних в табличному процесорі MS Excel.ПСІ-Д-9Методи обчислення визначених інтегралів в табличному процесорі MS Excel.ПСНавчальний об’єкт: «Програмування» І-П-1Основи програмування в MicrosoftExcel.ООз
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Turchyn, I. M., та O. Yu Turchyn. "НЕСТАЦІОНАРНА ЗАДАЧА ТЕПЛОПРОВІДНОСТІ ДЛЯ ШАРУВАТОЇ ПІВ БЕЗМЕЖНОЇ ПЛИТИ". Visnyk of Zaporizhzhya National University Physical and Mathematical Sciences, № 2 (12 березня 2021): 21–26. http://dx.doi.org/10.26661/2413-6549-2020-2-03.

Повний текст джерела
Анотація:
У багатьох задачах про поширення тепла в неоднорідних тілах слід ураховувати нестаціонарність процесу. Під час побудови точних аналітичних розв’язків просторових нестаціонарних задач теплопровідності неоднорідних тіл на дослідників чекають значні труднощі математичного характеру, пов’язані із застосуванням інтегрального перетворення Лапласа. Особливо це стосується випадків, коли одночасно з цим перетворенням застосовується інтегральне за просторовою змінною. У роботі до таких задач пропонується застосовувати новий метод – інтегральне перетворення Лагерра. Розглянуто нестаціонарну задачу теплопровідності про нагрів пів безмежної плити тепловим потоком, який діє на її боковій поверхні. На межах поділу матеріалів плити виконуються умови ідеального теплового контакту. На нижній і верхній основах неоднорідної плити відбувається теплообмін за законом Ньютона. До рівнянь нестаціонарної теплопровідності для кожного шару, крайових умов та умов спряження застосовано спочатку інтегральне перетворення Лагерра за часовою змінною, а потім інтегральне cos-перетворення Фур’є за просторовою змінною. Як наслідок, отримано трикутні послідовності звичайних диференціальних рівнянь, у які ввійшли задані інтенсивності теплових потоків на бічній поверхні. Загальний розв’язок цих послідовностей отримано у вигляді алгебричної згортки фундаментальних розв’язків та набору сталих. Фундаментальні розв’язки трикутних послідовностей побудовано методом невизначених коефіцієнтів, а набір сталих визначено з трансформованих за Лагерром і Фур’є крайових умов та умов ідеального теплового контакту складників півсмуги у вигляді рекурентних співвідношень. Остаточний розв’язок вихідної задачі записано у вигляді ряду за поліномами Лагерра з коефіцієнтами у вигляді інтегралів Фур’є. Числовий експеримент проведено для пів безмежної плити з двостороннім покриттям і з тепловими властивостями алюмінієвого стопу та кераміки. Виявлено фізично обґрунтовані закономірності нестаціонарного поширення тепла в таких шаруватих тілах.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Стрельченко, О. Г. "НОРМАТИВНО-ПРАВОВЕ РЕГУЛЮВАННЯМІЖНАРОДНОЇ ЕКОНОМІЧНОЇ ВЗАЄМОДІЇ УКРАЇНИ ТА ЧОРНОГОРІЇ". Прикарпатський юридичний вісник 2, № 4(29) (22 квітня 2020): 177–81. http://dx.doi.org/10.32837/pyuv.v2i4(29).459.

Повний текст джерела
Анотація:
У статті здійснено ґрунтовне дослідження міжна-родних нормативно-правових актів, якими врегульо-вано міжнародну економічну взаємодію України та Чорногорії. Встановлюючи та реалізовуючи власні пріо-ритети у відносинах із зарубіжними країнами, в тому числі й з Україною, Чорногорія впроваджує інтегра-цію до європейських та євроатлантичних структур та всіх регіональних ініціатив, контролює глобальні тенденції та прагне приєднати їх до своїх інтересів та можливостей, розвиває належні стосунки із сусідні-ми країнами, встановлює та підтримує доброзичливі стосунки із найрозвиненішими країнами світу, бере на себе міжнародні зобов’язання повністю втілювати у життя міжнародну економічну взаємодію України та Чорногорії тощо. Автором проаналізовано низку міжнародних та вітчизняних нормативних актів, які забезпечують та врегульовують міжнародну економіч-ну взаємодію України та Чорногорії. Основними з них є такі акти: Конституція Чорногорії, закони Чорногорії «Про іноземні інвестиції», «Про зовнішню торгівлю», Угода між Урядом України і Союзним Урядом Союз-ної Республіки Югославія про торгівлю та економічне співробітництво, Угода між Україною та Чорногорією про вільну торгівлю, Угода про асоціацію та стабілі-зацію між Чорногорією та ЄС, Договір між Кабінетом Міністрів України та Союзним Урядом Союзної Рес-публіки Югославія про уникнення подвійного оподат-кування стосовно податків на доходи і капітал, Угода між Кабінетом Міністрів України та Урядом Чорно-горії про взаємну допомогу у митних справах, Угода про співробітництво між Федерацією роботодавців України та Федерацією роботодавців Чорногорії. Визначено, що норми, які регулюють відносини у сфері міжнародної економічної взаємодії України та Чорногорії, містяться також у ряді інших законів та підзаконних нормативно-правових актів, які склада-ють систему зовнішньоекономічного та інвестиційного законодавства Чорногорії.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Босовський, Микола Васильович. "Історія теорії границь в шкільному курсі математики". Theory and methods of learning mathematics, physics, informatics 1, № 1 (16 листопада 2013): 31–36. http://dx.doi.org/10.55056/tmn.v1i1.155.

Повний текст джерела
Анотація:
Однією з тем, що вивчається в шкільному курсі математики є теорія границь. В даній статті робиться загальний огляд історії виникнення питань, пов’язаних з теорією границь, та висвітлення цього питання в шкільному курсі математики. Знання історичних відомостей, як відомо, піднімає пізнавальний інтерес учнів в процесі вивчення теми, активізує учнів і, врешті, сприяє покращенню результатів навчання.Історія цього питання поринає корінням в далеке минуле. Ще грецькі натурфілософи і математики починаючи з 7 ст. і аж до 3 ст. до н.е. підходять до ідеї нескінченності і потім до прийомів аналізу нескінченно малих, але це не одержує розвитку і інтерес до цих питань після спроб цілого ряду середньовічних учених відновляється лише в епоху Відродження в кінці 16 ст.Принципово новим кроком уперед з’явилося виникнення в натурфілософських школах 5ст. до н.е. ідеї нескінченності, яка у різних формах застосовується у математиці. На межі 5 і 4 ст. до н.е. Демокріт, виходячи з атомістичних уявлень, створює спосіб визначення об’ємів, що послужило першим варіантом методу неподільних, одного з вихідних пунктів числення нескінченно малих. Однак логічні труднощі, властиві поняттю нескінченності, що знайшли вираження в апоріях Зенона Елейского (5 ст. до н.е.), привели до висновку, що результати, отримані за допомогою методу неподільних, не можна вважати строго доведеними. Стандартним прийомом вимірювання різних площ, об’ємів, що не піддаються визначенню елементарними засобами, став метод вичерпування, що полягає в наближенні шуканої величини, знизу і зверху послідовностями відомих величин. Так, площа круга апроксимувалася послідовностями вписаних і описаних правильних многокутників з необмежено зростаючим числом необмежено зменшуваних сторін. Це дало поштовх у напрямку спроби розв’язувати задачу квадратури круга.З винаходом друкарства, підручники одержують більш широке поширення. Основними центрами теоретичної наукової думки стають університети. Прогрес алгебри як теоретичної дисципліни, а не тільки набору практичних правил для розв’язування задач, позначається в розумінні природи ірраціональних чисел, як відносин несумірних величин (Хома Брадвардін, 14 ст. і Н. Орем, 14 ст.) і особливо у введення дробових (Н. Орем), від’ємних і нульових (Н. Шюке, кін. 15 ст.) показників степенів. Тут же виникають перші, що випереджають наступну епоху ідеї про нескінченно великі і нескінченно малі величини. В Оксфордському і Паризькому університетах (Р. Суайнсхед, сер. 14 ст., Н. Орем і ін.) розвиваються перші елементи теорії зміни величин, як функцій часу і їх графічне уявлення, вперше об’єктом вивчення стає нерівномірний рух і вводяться поняття миттєвої швидкості і прискорення.Однак, щоб охопити кількісні відносини в процесі їхньої зміни, потрібно було самі залежності між величинами зробити самостійним предметом вивчення. Тому на перший план висувається поняття функції, що грає надалі таку ж роль основного і самостійного предмета вивчення, як раніше поняття чи величини числа. Вивчення змінних величин і функціональних залежностей приводить до основних понять математичного аналізу: ідею нескінченного у явному вигляді, до понять границі, похідної, диференціала й інтеграла. Створюється аналіз нескінченно малих, у першу чергу у виді диференціального числення й інтегрального числення. Основні закони механіки і фізики записуються у формі диференціальних рівнянь, і задача інтегрування цих рівнянь висувається, як одна з актуальних задач математики.Створення нової математики змінних величин у 17 ст. було справою учених передових країн Західної Європи, причому найбільше І. Ньютона і Г. Лейбніца. У 18 ст. одним з основних центрів наукових математичних досліджень стає також Петербурзька академія наук, де працює ряд найбільших математиків того часу іноземного походження (Л. Ейлер, Д. Бернуллі) і поступово складається російська математична школа, що блискуче розгорнула свої дослідження в 19 ст.Іншим джерелом аналізу нескінченно малих є розвинутий І. Кеплером (1615) і Б. Кавальєрі (1635) метод неподільних, застосований ними до визначення об’ємів тіл обертання і ряду інших задач. У цьому методі принципова новизна основних понять аналізу нескінченно малих подається у містичній формі протиріччя (між об’ємом тіла і сукупністю, що не мають об’єму плоских перерізів, за допомогою яких цей об’єм повинен бути визначений). В зв’язку з цим протиріччям прийоми І. Кеплера і Б. Кавальєрі зазнавали критики з боку П. Гульдена (1635–41). Однак вільне вживання нескінченне малих здобуває остаточну перемогу в роботах по визначенню площ (“квадратур”) П. Ферма, Б. Паскаля і Дж. Валліса. Так, у геометричній формі були створені початки диференціального і інтегрального числення.Слід зазначити, що автори 17 ст. мали досить ясні уявлення про поняття границі послідовності і збіжності ряду, вважали потрібним доводити збіжність уживаних ними рядів.До останньої третини 17 ст. відноситься відкриття диференціального і інтегрального числення у повному змісті слова. У відношенні публікації пріоритет цього відкриття належить Г. Лейбніцу, що дав розгорнутий виклад основних ідей нового числення в статтях, опублікованих у 1682–86 рр. У відношенні ж часу фактичного одержання основних результатів маються всі підстави вважати пріоритет належить І. Ньютонові, який до основних ідей диференціального та інтегрального числення прийшов протягом 1665–66 рр. “Аналіз за допомогою рівнянь з нескінченним числом членів” І. Ньютона в 1669 був переданий ним у рукописі І. Барроу і Дж. Кололінзу й одержав широку популярність серед англійських математиків. “Метод флюксій” – твір, у якому І. Ньютон дав систематичний виклад своєї теорії, – був написаний у 1670–71 рр. (виданий у 1736 р.). Г. Лейбніц ж почав свої дослідження з аналізу нескінченно малих лише в 1673 р. І. Ньютон і Г. Лейбніц вперше в загальному вигляді розглянули основні для нового числення операції диференціювання та інтегрування функцій, встановили зв’язок між цими операціями (формула Ньютона–Лейбніца) і розробили для них загальний однаковий алгоритм. Наукові підходи в І. Ньютона і Г. Лейбніца різні. Для І. Ньютона вихідними поняттями є поняття “флюєнти” (змінної величини) і “флюксій” (швидкості її зміни). Прямій задачі перебування флюксій і співвідношень між флюксіями по заданим флюєнтам (диференціювання і складання диференціальних рівнянь) І. Ньютон протиставляв обернену задачу перебування флюєнт по заданих співвідношеннях між флюксіями, тобто відразу загальну задачу інтегрування диференціальних рівнянь; задача відшукання первісної з’являється тут як окремий випадок інтегрування звичайного диференціального рівняння. Разом з тим ні метод границь і флюксій Ньютона, ні диференціальне числення Лейбніца не знаходили одностайного визнання. Тому математики знову звернулися до дослідження фундаментальних понять і принципів аналізу.У відповідності зі своїм трактуванням процесу прямування до границі, Ейлер вважає нескінченно малу величину рівною нулю. Він відкидає «особливу категорію нескінченно малих величин, що нібито не повністю зникають, але зберігають деяку кількість, що, однак, менше, ніж усяке що може бути заданим» [1], тому що відкидання доданків такого роду порушувало зроблену точність аналізу. Незабаром після виходу «Диференціального числення» Ейлера, Даламбер виступив із пропозицією заснувати аналіз на поняттях границі і похідної, не вживаючи цього останнього терміна. Свої погляди Даламбер розглядав як розвиток ідей числення флюксій Ньютона, але він вніс нове, звільнивши їх від механічних чи квазімеханічних уявлень. Це було пов’язано, як із загальними тенденціями розвитку аналізу на материку Європи, так і з класифікацією наук, прийнятої Даламбером: він виходив з того положення, що достовірним пізнанням ми володіємо лише в області абстрактних понять і чим більше дослідних елементів входить у яку-небудь науку, тим більш складні її поняття.В першому розділі книги «Елементарного викладу початків вищих числень» Сімон Люільє розвиває метод границь. До двох теорем про границі, наведених Даламбером, Люільє додає теорему про границю відношення двох змінних величин і уперше вводить знак границі у вигляді lim; уперше ж похідна якої-небудь функції у Люільє «диференціальне відношення» (rapport differentiel) – позначається lim і символ розглядається як єдине ціле, а не дріб. Терміном «нескінченно мала величина» Люільє не користується, зберігаючи його для позначення актуально нескінченно малих; немає в нього і поняття про диференціал.У Росії пропагандистом методу границь виступив С.Е. Гур’єв. Головна праця Гур’єва «Досвід про удосконалення елементів геометрії» (1798 р.) була присвячена питанням обґрунтування і викладання математики. Центральне місце в «Досвіді» займає систематичний додаток методу границь у шкільному курсі геометрії.Даламберу і його послідовникам належить заслуга подальшої розробки теорії про граничні переходи в рамках чистого аналізу. Але в тій конкретній формі, що метод границь набув у теперішній час, він ще не мав строгості так, як числення нескінченно малих. Визначення границі монотонних змінних, було недостатньо. Арсенал понять і загальних теорем методу границь залишався дуже невеликий, і його ледь вистачало тільки для пере доведення уже відомих тверджень. Нові широкі перспективи відкрилися, коли Больцано і Коші установили основний критерій збіжності послідовності і застосували його: перший – при дослідженні властивостей неперервних функцій, а другий – при побудові теорії рядів, що збігаються, і в доведенні теореми про існування інтеграла.Але самим уразливим пунктом теорії границь другої половини XVIII в. було відмовлення від вживання алгоритму нескінченно малих Лейбніца. Це відзначив ще Карно у творі, представленому на конкурс Берлінської академії 1786 р., і ту ж думку він підкреслював у своїх «Міркуваннях».З початку 60-х років реформа шкільної програми з математики стає предметом постійної уваги і обговорення.У теперішній час початки математичного аналізу є невід’ємним складовим курсу алгебри старшої школи. В умовах диференційного навчання виділені загальноосвітні та спеціальні обсяги елементів математичного аналізу, що вивчаються в загальноосвітніх та вищих школах і класах з поглибленим вивченням математики. Елементи теорії границь, вивчаються у спеціалізованих математичних школах, ліцеях і гімназіях.У загальноосвітній школі цей матеріал не передбачений для вивчення всіма учнями. У сучасних підручниках для старшої школи питання історії теорії границь висвітлено дуже стисло. На нашу думку, більш детальне ознайомлення учнів з цим питанням розкриє перед учнями складний, непрямий шлях розвитку наукової думки, ознайомлення учнів з історією наукових питань потрібно робити більш детально, ніж запропоновано у підручнику. Розкриття протиріч між різними науковими школами, вченими пожвавить навчальний процес, розкриє перед учнями непрямий і суперечливий шлях становлення сучасних наукових знань.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Браніцька, Тетяна, та Наталія Логутіна. "ОСНОВИ ДЕРЖАВНОГО УПРАВЛІННЯ СИСТЕМОЮ НАЦІОНАЛЬНОЇ ОСВІТИ УКРАЇНИ". Public management 24, № 4 (20 березня 2020): 32–48. http://dx.doi.org/10.32689/2617-2224-2020-4(24)-32-48.

Повний текст джерела
Анотація:
Проаналізовано та розкрито значення освіти як державної, сус- пільної, особистісної цінності для розвитку соціуму, як основи соціально-еко- номічного, духовно-культурного, політичного розвитку суспільства та інтегра- ції його в європейську та світову спільноту. Узагальнено поняття державного управління освітою як вид професійної діяльності, спрямованої на створення умов (організаційних, кадрових, матеріально-фінансових, правових) життє- діяльності, функціонування, розвитку, удосконалення навчального закладу, удосконалення системи національної освіти для досягнення поставленої мети. Встановлено, що система національної освіти незалежної України є цілісною єдністю державних, комунальних, приватних, корпоративних навчально-ви- ховних закладів різних спрямувань та рівнів акредитації. Проаналізовано іс- тотні відмінності в державному управлінні системою освіти в радянські часи та в незалежній Україні. Розкрито зміст і значення концептуальних прин- ципів державного управління системою національної освіти України: прин- цип державності, науковості, прогностичного планування діяльності органів державного управління і закладів освіти, демократизації, компетентності та професіоналізму управлінців освітянською сферою діяльності та оптиміза- ції. Окреслено стратегічні завдання нової структурної організації “Українська Академія державного управління при Президентові України (УАДУ )”. Визна- чено структурні компоненти та рівні державно-громадської моделі управлін- ня системою національної освіти: а) парламентсько-президентський рівень; б) урядово-центральний рівень; в) регіональний рівень (обласні, міські, ра- йонні відділи освіти); г) рівень безпосереднього управління закладами освіти та виокремлено: повноваження державних управлінців різних рівнів; основні принципи, провідні напрями розвитку системи національної освіти в Україні. Доведено, що оптимальним результатом діяльності державних управлінців парламентсько-президентського та урядово-центрального рівнів є створення Нової української школи. Обґрунтовано основні принципи стратегії і тактики реалізації освітніх і управлінських новацій; узагальнено суттєві зміни в систе- мі національної освіти, детерміновані створенням проекту Нової української школи (05-27.09.2017 р.), яка працюватиме на засадах педагогіки партнер- ства, в основі якої є спілкування, взаємодія та співпраця між учителем, учнем і батьками, та розробкою Державного стандарту (21.08.2018 р.) навчання за програмами дванадцятирічної повної загальної середньої освіти та ступене- вого статусу школи: початкова школа І ступеня — початок занять з 1 вересня 2018 року; гімназія — навчальний заклад ІІ ступеня, який забезпечує базову середню освіту — початок навчання з 1 вересня 2022 року; ліцей — навчальний заклад ІІІ ступеня, який забезпечує профільну середню освіту — початок нав- чання з 1 вересня 2027 року. Систематизовано спектр основних компетентностей освіченої особисто- сті, визначений в законодавчих документах освітньої галузі з метою розвит- ку особистості, суспільства на основі наукових знань, а саме: вільне воло- діння державною мовою; здатність спілкуватися рідною (у разі відмінності від державної) та іноземними мовами; математична компетентність; компе- тентності в галузі природничих наук, техніки та технології; інноваційність; екологічна компетентність; інформаційно-комунікативна компетентність; навчання впродовж життя; громадянські, соціальні компетентності, пов’яза- ні з ідеями демократії, справедливості, рівності прав людини, добробуту та здорового способу життя, з усвідомленням рівних прав і можливостей.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

A.V., Kichuk. "PSYCHO-EMOTIONAL HEALTH OF THE INDIVIDUAL IN THE CONTEXT OF SOME PSYCHOLOGICAL CHARACTERISTICS OF THE PERSONALITY OF THE MODERN STUDENT." Scientic Bulletin of Kherson State University. Series Psychological Sciences, no. 1 (April 15, 2021): 83–89. http://dx.doi.org/10.32999/ksu2312-3206/2021-1-11.

Повний текст джерела
Анотація:
Under the realities of today, the impact on the personality of the whole spectrum of emotional factors significantly increases. We are talking about the negative impact of the environmental crisis, the conflict of mediums, the consequences of the military conflict and the pandemic. The psycho-emotional sphere of a person's existence, which is at the age stage of early adulthood, turned out to be the most invulnerable. This requires the deepening of scientific ideas about the content of the concept of “psycho-emotional health”, its structural and component composition in relation to the individual in the age period of early adulthood. The purpose of the article is to highlight the nature of the links between psycho-emotional health and some specific personality traits of the student. Methods – analysis, synthesis, generalization of scientific sources; correlation analysis of the nature of the connections of the components of psycho-emotional health with the psychological characteristics of the personality of students.The results of the analytical work were based on the scientific fund on the problem, the correlation analysis made it possible to state a long list of personality traits that correlate with certain components of psycho-emotional health of the student's personality (axiological, cognitive-affective, conative-instrumental, social). Conclusions. Empirically, significant correlations have been established between the studied integrative personality trait and the emotional stability of the individual in the age period of early adulthood, vitality and meaningful life orientations. In particular, in terms of the axiological indicator of psycho-emotional health, a correlation was established at the 1% level of significance with sociability, strength of “I” and “Super-I”, carefreeness, dreaminess, extraversion, and at the 5% level with courage. Regarding the plane of conative-affective indicator of psycho-emotional health of the student's personality, various correlations have been established, namely, in addition to the described ones, there is also a correlation with high self-esteem and high intelligence, as well as dominance and ability to control one's desires. The established helps to determine the foundations of psycho-emotional health of student youth at the main stage of their personal and professional development.Key words: vitality, emotional orientation, meaningful life orientations of the personality, actual mental state, psychological well-being. За реалій сьогодення значно посилюється вплив на особистість усього спектру емоціогенних факторів. Йдеться про негативний вплив екологічної кризи, наслідків воєнного конфлікту і пандемії. Чи не найвразливішою виявилась саме психоемоційна сфера буття особистості, котра перебуває на віковому етапі раннього дорослішання. Означене вимагає поглиблення наукових уявлень про змістове напов-нення поняття «психоемоційне здоров’я» його структурно-компонентний склад дотичний особистості у віковий період раннього дорослішання. Мета статті – висвітлити характер зав’язків психоемоційного здоров’я з деякими специфічними рисами особистості студента. Методи – аналіз, синтез, узагальнення наукових джерел; кореляційний аналіз характеру зв’язків компонентів психоемоційного здоров’я з психологічними характеристиками особистості студента. Результати проведеної аналітичної роботи базувалась на науковому фонді з порушеної проблеми, здійсненому кореляційному аналізі; видалось за можливе констатувати про розлогий перелік особистісних рис, що корелюють з визначеними компонентами психоемоційного здоров’я особистості студента (аксіологічний, когнітивно-афективний, конативно-інструментальний, соціально-визначальний). Висновки. Емпіричним шляхом установлені значущі кореляційні зв’язки досліджуваної інтегратив-ної особистісної властивості із емоційною стійкістю особистості у віковий період раннього дорослішання, життєстійкістю та смисложиттєвими орієнтаціями. Зокрема, в аспекті аксіологічного показника психоемоційного здоров’я встановлено кореляційний зв’язок на 1% рівня значущості з товариськістю, силою «Я» та «Над-Я», безтурботністю, мрійливістю, екстраверсією, а на 5% рівні – зі сміливістю. Щодо площини конативно-афективного показника психоемоційного здоров’я особистості студента, то встановлено більш різноманітні кореляційні зв’язки, а саме, окрім описаних, йдеться ще й про кореляцію з високою самооцінкою і високим інтелектом, а також домінантністю і вмінням контролювати власні бажання. Встановлене сприяє визначенню основ психоемоційного здоров’я студентської молоді на основному етапі її особистісно-професійного становлення.Ключові слова: життєстійкість, емоційна спрямованість, смисложиттєві орієнтації особистості, актуальний психічний стан, психологічне благополуччя
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Євтєєв, Володимир Миколайович. "Нотатки про комп’ютерне тестування". Theory and methods of e-learning 3 (10 лютого 2014): 88–95. http://dx.doi.org/10.55056/e-learn.v3i1.322.

Повний текст джерела
Анотація:
Где лгут и себе и друг другу,и память не служит уму,история ходит по кругуиз крови – по грязи – во тьму.И. Губерман Людину з царини тварин виділила не праця, не розвиток мови і не інші дуже важливі, але все ж другорядні чинники. Головним чинником переможної еволюції людини є накопичення, зберігання і негенетичний спосіб передачі знань про себе і навколишнє середовище. Саме для цього необхідно було розвивати мову, об’єм черепу і прямоходіння, щоб використовувати накопичені знання, тобто працювати. Щоб зрозуміти, як інформаційні технології впливають на суспільний уклад, розглянемо три епохальні винаходи. Десь близько півтори тисяч років до нашої ери почали з’являтись фонетичні алфавіти, які значно спрощували складні писемні технології з використанням ієрогліфів. Все настільки спрощувалось, що засвоїти писемність отримала змогу навіть дитина. Наступний епохальний винахід відбувся приблизно п’ятисотого року вже нашої ери. Це був винахід позиційних систем числення. Наприклад, до цього часу в Європі панувала непозиційна римська система числення, для якої алгоритми арифметичних дій були дуже складні з великою кількістю виключень з правил, тому для того, щоб вміти виконувати арифметичні розрахунки, необхідно було закінчувати університет. І, нарешті, ще через півтори висячи років винайшли персональний комп’ютер. Звичайно обчислювальні пристрої існували і раніше, але з’явились кавоварки, які розмовляють, в’язальні машини і кухонні комбайни, які необхідно програмувати і таке інше. Тепер пересічний громадянин, хоче він того чи ні, повинен засвоювати новий для нього алгоритмічний спосіб мислення так само, як щойно описані винаходи не тільки надавали нові можливості, але й вимагали засвоєння нових вмінь читати, писати і рахувати. Вже давно неписьменна людина є не тільки не бажаною, але й несе в собі певну загрозу суспільству. На жаль, досі не всі зрозуміли, що персональні комп’ютери – це не чергова «друкарська машинка», що це значно серйозніше.Зовнішнє незалежне оцінювання (ЗНО) виникло під гаслами боротьби з корупцією. Корупція в черговий раз перемогла, але ЗНО все ж таки дало корисні результати. Вперше ми отримали більш-менш об’єктивну оцінку стану освіти. Не дивлячись на шалені спроби, не вдалося повністю приховати реальні результати. По-перше, зсув оцінки на 100 балів може справити враження лише на тих, хто геть не розуміє, що таке обчислення. Наприклад, якщо успішність 50%, то додавання 100 балів може перетворити ці бали на 150 і, враховуючи, що тепер максимальна сума балів дорівнює 200, ми отримаємо загальну оцінку 150/200=75%. Кому потрібні подібні числові кульбіти? По-друге, навіщо потрібно натягувати реально виміряний розподіл результатів на геть недоречний в цьому випадку нормальний розподіл. Зрозуміло, що нормальний розподіл виникає, коли середнє значення зумовлене однією причиною, а відхилення від нього випадкові й незалежні. Коли студент шукає відповідь на завдання, він використовує декілька механізмів: просто вгадування, банальну ерудицію (побутовий досвід), знання і навіть помилково сформовані поняття (на жаль, буває і таке). Можливі й композиції наведених механізмів пошуку відповідей. Наприклад, за допомогою власного досвіду відсікається частина запропонованих відповідей і тим самим збільшується ймовірність, а далі йде просте вгадування.Існують два типи тестів, які мають відношення до освіти. Це тести для визначення здібностей і тести на визначення досягнень у навчанні. Перші цікаві більше для наукової діяльності, а використання їх для практичної діяльності, м’яко кажучи, дискусійне. Але тести на досягнення в навчанні мають суто практичне значення. Однак ці типи тестів сильно відрізняються один від одного. По-перше, діапазоном вимірювання. Наприклад, як вказати межі геніальності? А діапазон вимірювання тестів на досягнення завжди обмежений об’ємом навчальної програми. По-друге, на форму закону розподілу результатів вимірювання здібностей повинен впливати лише об’єктивний стан речей, а на форму закону розподілу тестів на досягнення може впливати і завжди впливає технологія (методика) навчання, яка не є об’єктивною причиною. До речі, форма закону розподілу результатів тестування на здібності не зобов’язана бути симетричною, як то прийнято в багатьох досить поширених теоріях тестування. Так, наприклад, якщо можна допустити, що кількість народжуваних із задатками геніїв приблизно однаково з кількістю народжуваних з задатками суперйолопів, то при вимірюванні у зрілому віці цей баланс, напевно, не зберігається. Дійсно, не всі діти з задатками геніальності зможуть розвинути їх в повній мірі. На те є дуже багато причин, при цьому відсоток тих, кому вдалося досягти максимального результату, буде складати значно менше, ніж 50. Те ж саме можна сказати про тих, хто зумів вибратись із дуже неприємних задатків і стати нормальною людиною. Таким чином, врешті решт суперйолопів буде значно більше, ніж геніїв.Оцінка в навчанні грає роль оберненого зв’язку і тому ні в якому разі не можна її спотворювати різними заохочувальними й іншими виховними змістами. Необхідно повернутися до попередньої практики, коли використовувались дві окремі оцінки: оцінка за навчання і оцінка за старанність. На жаль, п’ятибальна система оцінки була спочатку спотворена, а потім взагалі відкинута. Оцінка «задовільно» означала, що учень відтворив 100% навчального матеріалу. Оцінка «добре» відповідала осмисленому використанню знань для практичних завдань. І, нарешті, оцінка «відмінно» виставлялась у разі використання знань у нестандартних (в тих, які не згадувались у процесі навчання) випадках. Оцінка «незадовільно» виставлялась у всіх інших випадках, окрім тих, коли учень не міг або був не здатним, або не хотів навчатись. Для такої ситуації використовували оцінку «дуже погано» з обов’язковим повторним навчанням. Сучасна дванадцятибальна шкільна і, певною мірою, семибальна система вищих навчальних закладів відповідають лише градації сірого, тобто інтервалу від «незадовільно» до «задовільно» п’ятибальної системи. Слід згадати ще одну ваду сучасної системи оцінювання. Це плутанина коду оцінки з кількісною характеристикою. Мова йде про так звану середню оцінку або показник якості навчання. Якщо ми закодуємо числом «1» яблуню, числом «2» – вишню і числом «3» сливу і якщо далі з’ясується, що половина дерев у саду це яблуні, а половина – сливи, ми ж не будемо стверджувати, що у нас гарний вишневий садок? І ще гірше, якщо ми станемо оцінювати якість художнього твору за середнім кодом літер, які використані для його написання.Однією з головних вад комп’ютерного тестування є практична неможливість використати в тесті завдання, що вимагають неформальної перевірки експертом-людиною. Щодо неможливості корегувати завдання під час опитування, то це скоріше є перевагою комп’ютерного тестування, ніж його недоліком. До переваг комп’ютерного тестування слід віднести формальність, тобто незалежність від людського фактору проведення і оцінювання.Зупинимося на труднощах складання завдань для тестування. Перша перепона при розробці завдання – це визначення складності завдання. Добре відомо, що використання часу, необхідного для виконання завдання, не може бути критерієм його складності. Однак і популярний спосіб визначення складності за допомогою пробного тестування теж не витримує критики. Дійсно, якщо студента ретельно тренували бачити повний диференціал, то для нього знаходження деяких інтегралів буде дуже легким завданням, у випадку ж якщо студенту лише повідомляли про повний диференціал, але не тренували його розпізнавати, подібне завдання буде значно складнішим. Можна продовжувати подібні приклади, але і так зрозуміло, що технологія навчання радикальним способом впливає на складність виконання тестових завдань. Оскільки результати тестування мають бути незалежними від методики навчання, то зрозуміло, що використання пробного тестування для оцінки складності завдань не слід використовувати. Комп’ютерний тест – це інструмент для вимірювання. Як і будь-який прилад, він має певний діапазон, у якому він працює достеменно. Це означає, що частину балів студент може набрати, не володіючи знаннями, а просто вгадуючи відповідь. Щоб корегувати оцінку тестування, слід визначити кількість балів, яку студент може набрати, просто вгадуючи, відняти її від отриманої оцінки завдання і при визначенні підсумкової оцінки за тест провести нормування того, що залишилось, на максимальний бал тесту. При складанні завдань належить всіляко зменшувати ймовірність вгадувань. Наприклад, якщо відповідь подається у вигляді числа, то не бажано формулювати завдання у вигляді запитання з переліком можливих варіантів відповіді, а пропонувати студенту ввести число з клавіатури. Бажано відходити від практики використання завдань тільки з однією вірною відповіддю. Студент повинен сам вирішувати, скільки запропонованих відповідей він повинен вибрати: одну, дві, декілька, всі або навіть жодної. При такому підході перевіряються не тільки знання, а й впевненість у них.Рівень освіти знижується. В цьому легко переконатися, запропонувавши студентам завдання, наприклад, з посібників 30-літьої давнини для підготовки абітурієнтів. З багатьох причин необхідно створювати загальний для країни банк тестових завдань. Щоб завдання не старіли, їх треба робити багатоваріантними, тобто варіантів завдання повинно бути так багато, що запам’ятовувати без розуміння кожний з них окремо було б недоцільно. До того ж кожний варіант повинен вирішувати одну й ту саму дидактичну задачу, тобто повинен перевіряти знання конкретного теоретичного положення навчальної програми. Такий банк можна було б використовувати як для підготовки, так і для безпосередньо тестування. При наявності такого банку тестових завдань стане можливим реальне порівняння результатів тестування за різні роки, тоді як зміна завдань кожного року несе велику загрозу зменшення рівня складності. Звісно, таку базу необхідно доповнювати і розширювати на предмет все більшого і якісного охоплення навчального матеріалу. Однак слід дуже ретельно пильнувати і не дозволяти спрощення вимог до складності завдань. Необхідно уніфікувати підсумковий контроль у процесі навчання, і комп’ютерне тестування для цього на часі.Треба щиро сказати, що занепад освіти зумовлений суб’єктивним фактором, а саме недолугим і недалекоглядним керівництвом. Підтвердимо цей висновок наступними тезисами.Перша системна помилка полягає в тому, що замовник, виконавець і приймальник ‑ це одна й та ж установа, а саме МОНмолодьспорту. Якщо виконавця відокремити від замовника, то можна було б конкретніше з’ясувати, яку якість навчання можна вимагати вид виконавця і за яке фінансування. Це дуже непросте з’ясування, бо з одного боку ‑ грошей завжди не вистачає, а з другого ‑ розвиток суспільства напряму залежить від якості освіти.Друга системна вада управління освітою зумовлена недосконалістю теоретичної педагогіки. Наприклад, розглянемо теорію tabula rasa щодо освіти. Офіціальна педагогіка дуже ретельно критикує першу тезу цієї теорії, стверджуючи що «чистих дошок» не існує, але геть не розглядає другу тезу, яка стверджує, що якщо на «дошці» є вільне місце, то там можна написати що завгодно. А чи це так? Ні в кого не виникає заперечень, що процес навчання ‑ це інформаційний процес. Якщо це так, то для інформаційного процесу необхідно мати три структурні одиниці: передавач, канал і приймач. При цьому передавачів і каналів може бути декілька, а приймач один – учень. Саме на ньому відображається результат навчання і саме він є ключовою структурною одиницею в навчанні. Запитайте студента: «Що важливіше: знання чи диплом?». Ви отримаєте цілком обґрунтовану відповідь: «Звичайно ‑ знання, маючи їх завжди можна скласти іспити і отримати диплом». Але ж чому, деякі студенти попри всяку гідність вимолюють неадекватно завищені оцінки? Справа в тому, що крім недосконалостей теорії, існує варварське невігластво керівної ланки. Наприклад, варварський вираз: «Ви не учню ставите негативну оцінку, ви її собі ставите!», або більш хитромудрий: «Якщо студента відраховано з третього курсу, то гроші, які витрачені на його навчання ‑ це нецільове використання коштів». Чому саме платять хабар за вступ до навчального закладу, якщо майбутній студент справжній телепень? Тоді ж треба буде платити за кожний залік, за кожний іспит і кожну контрольну або курсову роботу. А якщо зустрінеться викладач, який не бере хабарів? Дуже довгий і ризикований ланцюжок. Чи не простіше піти і одразу купити диплом? Відповідь на ці запитання проста. Управління освітою відбувається з використанням недолугих і до того ж суперечливих показників. Наприклад, показник успішності, так званий показник якості, геть технологічно необґрунтований показник відношення кількості викладачів до кількості студентів, штучне обмеження кількості стипендіатів, і таке інше. За кожним з цих показників стоїть певна проблема керівної установи. Наприклад, популістський закон підвищення розміру стипендії без підвищення стипендіального фонду. До чого призводить цей суперечливий клубок вимог до керівництва навчального закладу і врешті-решт до викладачів? Негативні оцінки стають винятковим явищем. Тоді, якщо студент веде себе тихо, ходить на заняття, але нічого не вчить, він має свою чергову задовільну оцінку і, «відмотавши» певний строк, отримує диплом. Якби ж можна було перенести хоча б трохи відповідальності за результат навчання на студента, як того вимагає інформаційний характер процесу навчання, і при цьому використати незалежне від людського фактора комп’ютерне тестування, то можливо було б подолати описане ганебне явище.Нарешті, третя системна біда – невтримна вакханалія оптимізації і новаторства. Справа в тому, що оптимізація може бути дуже шкідливою, коли система знаходиться у збудженому нестійкому стані [1] тим, що оптимізаційні дії посилюють нестійкий стан і приводять до катастрофи. Як це не дивно, але діяльність вчителів-«новаторів» може наносити більше шкоди, ніж користі. Інновації можуть бути дуже локально корисними і шкідливими у загальносистемному сенсі. Так, багато століть учнів не спонукали зазубрювати таблицю додавання на кшталт таблиці множення, а замість цього дуже старанно привчали до виконання алгоритму переходу через розряд. Така методика сприяла глибшому розумінню того, як працює позиційна система числення. В наш час все більше вчителів змушують школярів заучувати таблицю додавання, що дійсно прискорює навчання швидкому рахуванню, але повністю знищує розуміння будови позиційної системи числення. Наступний приклад стосується викладання мови. Тенденція полягає в тому, що збільшується навчальний час на написання творів за рахунок навчання робити перекази. В результаті такого підходу учні не вміють писати доповідні, вести лабораторні журнали і взагалі пояснювати щось письмово. Замість цього вони списують з книжок незрозумілий у їхньому віці опис глибинних страждань Лариси Косач.Розглянемо деякі проблеми оптимізації з використання діаграми потенціального рельєфу рівня навчання. На рис. 1 локально стійкі стани мають номери: 1, 3, 5 і 6. Зрозуміло, що освіта може бути ефективною лише в стійких станах. Для того, щоб поліпшити ситуацію, систему треба перевести зі стійкого стану 1 до стійкого стану 3. Будемо збуджувати систему у стані 1 доти, поки система стане здатна сама переходити від збудженого стану 1 до збудженого стану 3 і навпаки. Потім, коли система буде знаходитись у збудженому стані 3, різко увімкнемо гальма, тобто використаємо відповідні стандарти, щоб система «охолола» до стійкого стану 3.Гальма ‑ це незмінний на певний час рівень тестування набутих знань. Якщо потроху знижувати рівень тестів, скажімо для покращення деяких показників, то система сама собою опиниться знов у стані 1. Описаний революційний спосіб оптимізації системи самий простий, однак він не завжди доступний. Наприклад, для переходу від стану 3 достану 5 такий спосіб не підходить. Дійсно, якщо поступово збільшувати збудженість стану 3, ми не досягнемо потрібного рівня і ймовірніше за все опинимося в стані 1. Для того, щоб перевести систему зі стійкого стану 3 до стійкого стану 5, необхідно швидко, протягом однієї чверті періоду коливань системи, збудити систему до необхідного рівня і зробити реформу, тобто змінити «правила гри», і знову увімкнути гальма, але вже на іншому вищому рівні. На рисунку такий перехід позначений штриховою лінією. Тепер зрозуміло, чому так важливо мати дієвий інструмент стабілізації системи. Комп’ютерне тестування, взагалі кажучи, відповідає вимогам для такого інструмента.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії