Добірка наукової літератури з теми "Акумуляторна система"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Акумуляторна система".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Акумуляторна система"

1

Morozov, Yu, D. Chalaev, V. Olijnichenko та V. Velychko. "ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ДОБОВОГО АКУМУЛЮВАННЯ ХОЛОДУ ШЛЯХОМ ВИКОРИСТАННЯ ВОДИ ПІДЗЕМНИХ ГОРИЗОНТІВ М. КИЄВА". Vidnovluvana energetika, № 3(58) (25 вересня 2019): 67–77. http://dx.doi.org/10.36296/1819-8058.2019.3(58).67-77.

Повний текст джерела
Анотація:
Викладено результати експериментального дослідження ефективності використання добового акумулятора холодної води для забезпечення роботи серійного фанкойлу з метою забезпечення кондиціювання повітря в окремому приміщенні. Натурна експериментальна установка містить видобувну свердловину, поглинальну свердловину, баки-акумулятори, витратомір, термометр холодної води, термометр повітря в приміщенні, мережевий насос, термометр відпрацьованої води, приміщення для охолодження, фанкойл. Вода з температурою 12ºС з видобувної свердловини подається свердловинним насосом в групу накопичувальних баків, які є акумулятором холоду. Після накопичення води в баках вмикається мережевий насос, який подає воду з накопичувальних баків на фанкойли. Вода, яка пройшла через фанкойли та віддала холод в приміщення, надходить до поглинальної свердловини. Метою експерименту є дослідження системи акумулювання холодної води в якості добового акумулювання холоду та її подальшого використання для забезпечення комфортних умов в приміщенні за допомогою серійного фанкойлу. Основні характеристики проведення експерименту: дебіт води на виході з підйомної свердловини становить 0,9 кг/с, дебіт води, яка надходить на фанкойл – 0,1 кг/с, витрата повітря через фанкойл – 340 м3/год, температура води, яка надходить до баку-акумулятору – 12ºС, температура води, що надходить до фанкойлу – 12,5ºС, площа охолодження приміщення – 20 м2, початкова температура в приміщенні – 28ºС, кількість баків-акумуляторів – 7 шт., загальний об’єм баків-акумуляторів – 7 м3. В результаті проведених експериментів досягнуто зниження температури в приміщенні до 23ºС за 3 години роботи фанкойла. Встановлено, в процесі охолодження приміщення холодопродуктивність фанкойла змінювалася від 3640 Вт в початковий період до 1820 Вт - в кінці. Температури холодоносія на виході з фанкойла при цьому становили, відповідно, 21,5ºС і 17,1 ºС. Дослідження показали, що система акумулювання води підземних горизонтів з початковою температурою води 12ºС ефективно працює в режимі охолодження приміщення з застосуванням серійних фанкойлів. Акумулятори теплоти у вигляді баків-акумуляторів ефективно використовуються також в якості буферних ємностей для регулювання подачі води в фанкойли. В баках-акумуляторах при вистойці води більше 2-х діб спостерігається накопичення твердих осадів. Розбіжність розрахункових значень температури з експериментальними значеннями не перевищує 5-7%. Система потребує подальшої модернізації для автоматичного заміру параметрів води і температури та вологості приміщення. Бібл. 13, рис. 7.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Denisov, Yurii, Oleksiy Gorodny та Oleg Sereda. "СИНТЕЗ РЕГУЛЯТОРА КОНТУРУ КУТА КРЕНУ СИСТЕМИ УПРАВЛІННЯ КВАДРОКОПТЕРА З КОМПЕНСУЮЧИМ РЕГУЛЯТОРОМ КОНТУРУ СТРУМУ". TECHNICAL SCIENCES AND TECHNOLOGIES, № 4(18) (2019): 169–74. http://dx.doi.org/10.25140/2411-5363-2019-4(18)-169-174.

Повний текст джерела
Анотація:
Актуальність теми дослідження. Постановка теми дослідження викликана необхідністю підвищення якості енергетики та динаміки в системах управління польотом безпілотних літальних апаратів (БПЛА), враховуючи їх зростаючу роль у промисловій, побутовій та військовій сферах. Постановка проблеми. У системах керування польотом БПЛА з чотирма несучими гвинтами (квадрокоптер) процеси керування впливають на процеси споживання електроенергії від бортового акумулятора. Втрати потужності в силових компонентах систем керування квадрокоптером можна знизити, якщо усунути вплив пульсацій проти-е.р.с. електродвигуна на форму струму, що споживається від акумулятора. Досягнення цієї мети можливе за рахунок реалізації необхідних законів керування в контурах системи. Аналіз останніх досліджень і публікацій. Аналіз відомих публікацій за темою дослідження показав, що в них не приділено уваги питанням економного використання енергетичного ресурсу акумулятора. Основна увага приділяється удосконаленню процесів управління та навігації без урахування їх зв’язків з енергетичними процесами. Виділення недосліджених частин загальної проблеми. Існування поставленої проблеми є наслідком неврахування впливу процесів управління на якість процесів енергоспоживання. Це проявляється в тому, що в наявних одноконтурних системах керування квадрокоптером регулятор настроюється на необхідну швидкодію та перерегулювання без урахування впливу закону керування на якість енергетичних процесів, тобто без контролю форми струму, що споживається. Постановка завдання. Відомі системи керування квадрокоптером мають один контур регулювання. Для контролю струму, що споживається від акумулятора, необхідно мати контур струму та контур швидкості, що підкорюється головному контуру кута крену. Система керування польотом БПЛА повинна мати три контури регулювання. Виклад основного матеріалу. Для триконтурної системи керування польотом квадрокоптера виконано синтез цифрового регулятора головного контуру, котрий регулює кут крену. Процедура синтезу включає в себе врахування впливу пропорційно-інтегрального регулятора з астатизмом другого порядку, який включений у контур струму для компенсації пульсацій проти-е.р.с. безколекторного двигуна постійного струму (БДПС). У результаті синтезу отримана структура і параметри ланок регулятора контуру кута крену у вигляді цифрового рекурсивного фільтра. Висновки відносно статті. Синтезовано цифровий регулятор контуру кута крену для триконтурної системи управління квадрокоптером. Регулятор дозволяє стабілізувати процес польоту з економією енергетичного ресурсу бортового акумулятора.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kuzyk, M. P., та M. F. Zayats. "Пасивна система сонячного теплопостачання". Scientific Bulletin of UNFU 29, № 5 (30 травня 2019): 111–14. http://dx.doi.org/10.15421/40290522.

Повний текст джерела
Анотація:
Досліджено розрахунковим способом пасивне сонячне теплопостачання енергоощадного будинку в Чернівцях з розташованою в ньому стіною Тромбе-Мішеля, південна поверхня якої площею 8×2,7 м2 нахилена до площини горизонту під кутом 67 о і відділена від навколишнього середовища подвійним склінням. Будівля є одноповерховим двокімнатним приміщенням з опалювальною площею 50 м2 і опалювальним об'ємом 150 м3. У підвалі будинку розташовано тепловий щебеневий акумулятор, який здатний зберігати до 2 ГДж теплоти за температури 75 оС. Влітку для зарядки акумулятора прогріте в проміжку між стіною Тромбе-Мішеля та склінням повітря відбирається вентилятором, продувається через акумулятор тепла, нагріваючи цим самим його теплоакумулятивну насадку. У жовтні-листопаді забране вентилятором з кімнати повітря проходить через акумулятор і нагріте повертається у приміщення. Встановлено сезонну залежність сумарного добового приходу тепла з урахуванням радіаційних втрат і використанням закумульованого тепла. Наведено розрахунок ефективності пасивної системи сонячного опалення розглянутої будівлі у Чернівцях за вказаних її об'єму, розміру стіни Тромбе-Мішеля і ємності теплового акумулятора, визначено коефіцієнти заміщення, з яких видно, що ступінь підтримки теплопостачання в осінні та весняні місяці може становити, залежно від значень теплового навантаження γ (Вт/(м3∙град)), від 25 до 100 %.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Бажинов, О., Р. Заверуха та Т. Бажинов. "Інформаційна комплексна система діагностики гібридних і електромобілів". Науковий журнал «Інженерія природокористування», № 2(16) (1 грудня 2020): 12–18. http://dx.doi.org/10.37700/enm.2020.2(16).12-18.

Повний текст джерела
Анотація:
Розглянуто штучні нейроні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. Отримано метод діагностики технічного стану силової установки, який використовує штучні нейронні мережі та системи нечіткого висновку для визначення технічного стану ДВЗ та тягової акумуляторної батареї.Метою роботи є підвищення ефективності діагностики функціональних систем гібридного та електромобіля шляхом оперативного синтезу управляючих впливів за енергетичними і якісними критеріями з урахуванням зовнішніх умов експлуатації. Обґрунтування методу діагностики технічного стану силової установки гібридного та електромобіля з використанням штучної нейронної мережі та системи нечіткого висновку. Дати наукове обґрунтування діагностичних параметрів силової установки гібридного автомобіля. В роботі використано штучні нейронні мережі в системі управління силовою установкою транспортного засобу з метою зменшення витрати енергії та діагностики off-line технічного стану тягової акумуляторної батареї. За допомогою симулятора навчається нейромережева модель автомобіля, яка використовує off-line навчання нейроконтролера. Якість навчання нейроконтролера визначається симулятором. При подальшому функціонуванні системи управління параметри нейронних мереж не змінюються. Відсутність адаптації вагових коефіцієнтів при функціюванні системи управління обґрунтовано тим, що це веде до втрати довго часовоїпам’яті системи управління при виникненні кратко часової несправності, а також можливості виникнення біфуркації при адаптації в нелінійних системах наведено на рисунку 1.Цільова функція оптимізації управління має на увазі мінімізацію витрати енергії при збереженні ступеню заряду тягової акумуляторної батареї при обмеженому діапазоні руху транспортного засобу в заданих умовах експлуатації.За результатами випробувань метода нейроуправління отримано, що нейроконтролер забезпечує зменшення витрати палива на 17 % і скорочує діапазон зміни ступеня зарядженості тягової акумуляторної батареї на 35 %, а також забезпечує мінімізацію викидів токсичних речовин.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

ГЛАДЧЕНКО, Володимир, та Юрій ОВЕРЧЕНКО. "МЕТОДИКА СКЛАДАННЯ МАТЕМАТИЧНОЇ МОДЕЛІ ТА РЕЗУЛЬТАТИ РОЗРАХУНКУ ПОКАЗНИКІВ РУХУ ПЕРЕОБЛАДНАНОГО ЕЛЕКТРИЧНОГО КТЗ КАТЕГОРІЇ М1 В ЇЗДОВОМУ ЦИКЛІ". СУЧАСНІ ТЕХНОЛОГІЇ В МАШИНОБУДУВАННІ ТА ТРАНСПОРТІ 1, № 16 (19 травня 2021): 46–53. http://dx.doi.org/10.36910/automash.v1i16.507.

Повний текст джерела
Анотація:
У роботі запропонована методика складання та результати розрахунку за математичною моделлю. Проблема математичного опису функціональних елементів електричних колісних транспортних засобів (ЕКТЗ) ускладнюється необхідністю опису електричних процесів що відбуваються та впливом системи керування на силову установку. Розроблена методика є оригінальною, розглядається система «Силова акумуляторна батарея – Тяговий електродвигун – Трансмісія» в умовах руху за їздовим циклом. Для складання математичної моделі був обраний математичний пакет OpenModelica, це відкрите середовище моделювання та моделювання на основі Modelica. Модель має блок «Водій», який представляє собою замкнений контур контролера керування. Він відслідковує фактичну швидкість електромобіля і порівнює її з необхідною, заданою їздовим циклом. Визначені тягово-швидкісні та енергетичні показники переобладнаного автомобіля категорії М1 в батарейний електромобіль. За допомогою розробленої методики, можливо прогнозувати експлуатаційні показники електричного колісного транспортного засобу до виконання переобладнання. В якості вихідних числових значень параметрів переобладнаного автомобіля для проведення числового експерименту з використанням ПК, було обрано серійний автомобіль категорії М1 ЗАЗ–965 «Запорожець». Методика проведення числового експерименту передбачає проведення великої кількості обчислень в різних поєднаннях вихідних параметрів. В подальшому на ньому передбачено проведення дорожніх та стендових випробовувань. Технічний рівень переобладнання визначається питомою масою та питомою вартістю як окремих агрегатів так і всього електронного обладнання в цілому. Однак, показник вартості обладнання має сильну волатильність, тож його важко оцінити об’єктивно. В роботі пропонується критерій можливості збереження величини повної маси переобладнаного ЕКТЗ, умова обмеження за габаритними розмірами, максимальної кутової швидкості ротора тягового електродвигуна, максимального струму та напруги в силових елементах системи керування. Ключові слова: електромобіль, переобладнання, ефективність, математична модель, контролер, числовий експеримент, енергетична ефективність.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Denisov, Yuri, Oleg Shapovalov, Oleg Sereda та Yevhenii Kuts. "ОПТИМІЗАЦІЯ ЕНЕРГОДИНАМІЧНИХ ПРОЦЕСІВ У СИСТЕМІ КЕРУВАННЯ ПРИВОДОМ СТАБІЛІЗАЦІЇ ПОЛЬОТУ БЕЗПІЛОТНОГО ЛІТАЛЬНОГО АПАРАТА". TECHNICAL SCIENCES AND TECHNOLOG IES, № 3(13) (2018): 187–95. http://dx.doi.org/10.25140/2411-5363-2018-3(13)-187-195.

Повний текст джерела
Анотація:
Актуальність теми дослідження. З огляду на зростання ролі безпілотних літальних апаратів у народному господарстві й у військовій сфері проблема підвищення їхньої енергоефективності та якості управління є актуальною. Постановка проблеми. Через обмежений енергетичний ресурс безпілотного літального апарата (БПЛА) є необхідність збільшення тривалості його польоту за рахунок якісного управління процесом енергоспоживання від акумулятора обмеженої ємності. Аналіз останніх досліджень і публікацій. Аналіз останніх публікацій за рішенням поставленої проблеми свідчить про те, що питання підвищення енергоефективності БПЛА практично не обговорюються. Наявні публікації переважно присвячені побудові їх систем управління. Виділення недосліджених частин загальної проблеми. У роботах, присвячених зазначеній проблемі, питання підвищення енергоефективності систем управління БПЛА за рахунок забезпечення високої якості їхніх динамічних процесів не досліджуються. Постановка завдання. При обмеженій ємності акумулятора необхідно підвищити тривалість польоту БПЛА за рахунок зниження перерегулювання і тривалості перехідних процесів у системах його електроприводів. Виклад основного матеріалу. Для вирішення поставленої проблеми запропоновано систему електроприводів БПЛА виконувати на основі трьох контурів. Внутрішнім контуром є контур струму з оптимальним за швидкодією і без перерегулювання перехідним процесом. Він підпорядкований контуру швидкості, де структура й параметри регулятора синтезовані їх критерієм швидкодії. Головним контуром є контур кута крила БПЛА з оптимальною швидкодією. Висновки відповідно до статті. Запропоноване рішення структури системи електроприводу БПЛА дає змогу значно підвищити автономність його польоту.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Демченко, Володимир Георгійович, та Аліна Василівна Коник. "Основні аспекти процесів теплоакумулювання". Scientific Works 84, № 1 (14 грудня 2020): 48–53. http://dx.doi.org/10.15673/swonaft.v84i1.1868.

Повний текст джерела
Анотація:
Системи та обладнання для зберігання теплової енергії є ключовими елементами при розгортанні відновлюваної теплової енергетики, актуальність якої на даному етапі розвитку набуває масштабного значення. Представлена стаття охоплює короткий аналіз сучасного стану основних технологій інтенсифікації процесів збереження теплоти, аналіз основних технологічних, технічних аспектів, що виникають при розробці теплових акумуляторів та за реальних умов їх експлуатації. Зокрема, обґрунтовано доцільність застосування теплового акумулювання, проаналізовано шляхи підвищення ефективності економії енергії, визначено основні аспекти процесів акумуляції теплоти. При обґрунтуванні доцільності застосування теплового акумулювання проаналізовано співвідношення поверхні та об’єму теплового акумулятора, що тісно пов'язані з розмірами складових елементів та продуктивністю системи зберігання теплоти. Це співвідношення теоретично вказує, як можливо підвищити коефіцієнт корисної дії та продуктивність систем зберігання теплової енергії. Доведено підвищення ефективності та економії енергії при врахуванні сезонних факторів та пікових навантажень. Розглянуто основні аспекти технологічної інтенсифікації процесів акумуляції теплоти, які полягають у подоланні теплової стратифікації рідинних теплових акумуляторів, обґрунтуванні модульного дизайну конструкції, посиленні передачі теплоти та маси, а також в зміні властивостей матеріалу при фазовому переході. Розглянуті аспекти при їх реалізації дозволяють оптимізувати роботу генеруючого обладнання з максимально можливим ККД системи теплопостачання, шляхом вирівнювання графіку навантаження у співвідношенні «генерація - споживання», а також розвантажити технологічне обладнання, знизити споживання паливно-енергетичних ресурсів. Як наслідок, знижується собівартість отриманої енергії та зменшуються шкідливі викиди в оточуюче середовище.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Лисак, О. В. "АНАЛІЗ СИСТЕМИ ЦЕНТРАЛЬНОГО ТЕПЛОПОСТАЧАННЯ ЗА ВИКОРИСТАННЯ СЕЗОННОГО ГЕОТЕРМАЛЬНОГО АКУМУЛЮВАННЯ В КОМБІНАЦІЇ З СИСТЕМОЮ ВИРОБНИЦТВА ТА СПОЖИВАННЯ ВОДНЮ". Vidnovluvana energetika, № 3(62) (28 вересня 2020): 70–88. http://dx.doi.org/10.36296/1819-8058.2020.3(62).70-88.

Повний текст джерела
Анотація:
Метою статті є аналіз застосування системи центрального теплопостачання за використання сезонного геотермального акумулювання в комбінації з системою виробництва та споживання водню в загальному комплексі забезпечення енергетичних потреб будівель та супутньої інфраструктури переважно завдяки відновлюваним джерелам енергії (ВДЕ). Щодо частки в теплозабезпеченні, то система з використанням сезонного геотермального акумулювання слугує основним джерелом теплопостачання, а система з застосуванням водню є допоміжним джерелом енергії, призначеним для забезпечення теплоспоживання в період «пікового» навантаження. В даній роботі увагу до використання водню привернуто через необхідність відмови від традиційних джерел енергії, зокрема природного газу, як пікового та резервного джерела енергії в системі комбінованого центрального теплопостачання. Хоча основна частина статті присвячена проблематиці систем центрального теплопостачання, робота також розглядає інші елементи енергозабезпечення житлових будівель та супутньої інфраструктури. Зокрема, увагу приділено ВДЕ, які характеризуються змінним характером генерації електроенергії та теплоти у часі, та їх зв’язку з загальною енергомережею. Також показано, як надлишок електроенергії від ВДЕ слугує джерелом для генерації водню. Отриманий водень й використовуватиметься як для системи водневого теплопостачання, так і для потенційного забезпечення паливом водневого транспорту. Оскільки в процесі генерації теплоти від утилізації водню застосовуються паливні елементи, то окрім теплоти, такі системи здатні виробляти й електроенергію. В роботі надана класифікація систем сезонного геотермального акумулювання, проаналізовано схеми та принцип їх роботи, а також наведено їх порівняння. Було проведено попередній аналіз економічної доцільності систем центрального теплопостачання за використання сезонного геотермального акумулювання в Україні. Для цього було виконано порівняння дійсної вартості центрального теплопостачання в Україні (яке здійснюється переважно за рахунок природного газу) з номінальною вартістю центрального теплопостачання за використання сезонного геотермального акумулювання. Економічний аналіз показав, що у випадку України нормована вартість системи центрального теплопостачання до складу якої входить сезонний геотермальний акумулятор, в якому застосовано технологію свердловин, є вищою на 80…200 % за вартість центрального теплопостачання від традиційних джерел енергії. Водночас, системи з застосуванням штучних озер можуть бути дешевшими на 20 %, але їх встановлення потребуватиме значних початкових інвестицій. Бібл. 50, табл. 3, рис. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Niemyj, S. V., та V. M. Brytkowskyi. "Проблеми оптимізації напруги у бортовій мережі електрообладнання автотранспортних засобів". Scientific Bulletin of UNFU 29, № 8 (31 жовтня 2019): 106–9. http://dx.doi.org/10.36930/40290819.

Повний текст джерела
Анотація:
Проаналізовано вплив рівня напруги у бортовій мережі автотранспортних засобів на ефективність системи електрообладнання, зокрема на енергетичні витрати і безпеку експлуатації та технічного обслуговування. Доведено, що підвищення напруги у бортовій мережі автотранспортних засобів є вигідним в аспекті покращення енергетичних характеристик електричних машин, однак у класичних системах електрообладнання цього досягнути практично неможливо через необхідність збільшення ваги акумуляторних батарей. Однією із важливих проблем, яка пов'язана із підвищенням напруги у системах електрообладнання автотранспортних засобів, є безпека через ймовірність ураження водіїв і обслуговуючого персоналу електричним струмом високої напруги. Встановлено, що допустиме, за умовою безпеки, значення номінальної напруги у бортовій мережі системи електрообладнання автотранспортних засобів практично не повинна перевищувати 60 В. Підвищення рівня напруги у бортовій мережі сучасних автотранспортних засобів із традиційними системами електростартерного пуску двигунів зі свинцево-кислотними акумуляторними батареями практично вичерпується значенням 24 В, оскільки надалі вага акумуляторних батарей стає неприпустимо великою. Проблема збільшення величини бортової напруги автотранспортних засобів можна радикально вирішити лише під час переходу на електричні джерела стартерного пуску двигунів інших типів, наприклад ємнісні нагромаджувачі.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Дем'яненко, Ю. І., та Т. В. Дуднік. "Сезонні акумулятори тепла в схемах теплопостачання приватних житлових будинків". Refrigeration Engineering and Technology 57, № 2 (30 червня 2021): 81–88. http://dx.doi.org/10.15673/ret.v57i2.2026.

Повний текст джерела
Анотація:
Стаття присвячена вибору сезонного акумулятора тепла (САТ) для первинного контуру теплового насосу в системі опалення та гарячого водопостачання приватного житлового будинку. В Україні в індивідуальному житловому будівництві впровадження найсучасніших ефективних систем акумуляції енергії стримується значною вартістю обладнання та відсутністю державної підтримки. Проте неухильне зростання тарифів на енергоносії спонукає домогосподарів до пошуку прийнятних варіантів САТ серед того, що пропонується споживачеві на вітчизняному ринку технологій та обладнання відновлюваної енергетики. Перехід на відновлювані джерела енергії (ВДЕ) супроводжує додаткове енергетичне завдання – узгодження нестабільних ВДЕ з навантаженням, яке також змінюється і впродовж доби, і впродовж року. Це особливо притаманне краї­нам, що потребують опалення в холодну пору року. Потужність, що генерується більшістю ВДЕ, істотно залежить від мінливих природних явищ. В статті запропонована німецька технологія крижаного теплоакумулятора – Wärmepumpe Eisspeicher-System. Вона розроблена спеціалістами фірми Viessmann як реакція на заборону німецьким природоохоронним відомством ґрунтових теплових насосів – як колекторних, так і з ґрунтовими зондами. В умовах густонаселеної Німеччини і високої вартості землі, відчуження значних її площ для улаштування первинних контурів ТН є неприйнятним – земля виводиться з сільськогосподарського обігу – і суперечить державним інтересам. Тому використання крижаних акумуляторів як первинних контурів ТН знімає проблему як прямої, так і опосередкованої екологічної шкоди. Наведені в статті розрахунки теплового балансу первинного контуру теплового насосу Eisspeicher-System для найхолоднішого місяця опалювального періоду підтверджують можливість функціонування системи опалення та ГВП у моновалентному режимі
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Акумуляторна система"

1

Матвієнко, В. О., Анатолій Іванович Новгородцев, Анатолий Иванович Новгородцев та Anatolii Ivanovych Novhorodtsev. "Система заряду електромобіля". Thesis, Сумський державний університет, 2017. http://essuir.sumdu.edu.ua/handle/123456789/65539.

Повний текст джерела
Анотація:
Для вирішення задачі заряду літій-іонної акумуляторної батареї (АКБ), котра установлена у більшості сучасних електромобілів, виникає необхідність побудови конвертора для зміни напруги до необхідного рівня. При низькому заряді АКБ, коли напруга батареї може бути менше, ніж на вході конвертора, схема буде працювати у понижуючому режимі, одночасно з регулятором скважності для підтримки постійної напруги живлення. Як тільки заряд АКБ збільшується, напруга стає вище рівня напруги на вході, застосовується перетворювач у режимі підвищення напруги.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Турицький, Сергій Васильович. "Дослідження впливу фізичних властивостей палива на ефективність системи живлення дизеля". Магістерська робота, Хмельницький національний університет, 2021. http://elar.khnu.km.ua/jspui/handle/123456789/11620.

Повний текст джерела
Анотація:
Потреба підвищення точності управління подачею палива акумуляторної паливною системою обумовлена необхідністю виконання сучасних строгих норм токсичності.Дипломна робота спрямована на аналіз впливу конструкції і режиму роботи ПНВТ з електрогідравлічними форсунками на процес подачі палива автотракторного дизеля і є актуальною. Завдання роботи вирішені застосуванням розрахункових і експериментальних методів. Експериментальне дослідження робочого процесу електрогідравлічної форсунки проведено з використанням і пристрій для визначення малих подач. Розрахункова дослідження з оцінки впливу багаторазового впорскування на показники дизеля проведені за допомогою прикладних програм. Проведено аналіз впливу конструкції електрогідравлічною форсунки і фізичних властивостей, що впорскується нею палива на цикловую подачу і витрата палива на управління в залежності від керуючого імпульсу τ і тиску в паливному акумуляторі. Розглянуто вплив зміни параметрів ЕГФ в межах технологічних допусків на форму характеристики впорскування.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Мартинюк, Валерій Володимирович, та Valeriy Martynyuk. "Автоматизована система електроживлення мобільної установки переробки пластикових відходів". Master's thesis, Тернопільський національний технічний університет ім. І. Пулюя, Факультет прикладних інформаційних технологій та електроінженерії, Кафедра автоматизації технологічних процесів і виробництв, 2021. http://elartu.tntu.edu.ua/handle/lib/36752.

Повний текст джерела
Анотація:
Робота виконана на кафедрі автоматизації технологічних процесів і виробництв факультету прикладних інформаційних технологій та електроінженерії Тернопільського національного технічного університету імені Івана Пулюя Міністерства освіти і науки України. Захист відбудеться «24» грудня 2021р. о 9.00год. на засіданні екзаменаційної комісії №22 у Тернопільському національному технічному університеті імені Івана Пулюя.
У кваліфікаційній роботі розроблена та досліджена автоматизована система електроживлення мобільної установки переробки пластикових відходів, що складається з фотоелектричних модулів, дизельгенератора, акумуляторних батарей, суперконденсаторних батарей, перетворювача постійного струму у постійний струм та інвертора. На відміну від описаних вище відомих підходів, в кваліфікаційній роботі визначальними ідеями для збільшення ефективності автоматизованої системи електроживлення мобільної установки переробки пластикових відходів є автоматизований контроль відбору енергії від фотоелектричних модулів завдяки забезпечення їх генерації в точці максимальної потужності та позиціонування фотоелектричних модулів під кутом 90° до падаючого сонячного випромінювання. У випадку, коли одержуваної від фотоелектричних модулів електричної енергії занадто багато для живлення навантажень, її надлишок буде перенаправлено на заряд акумуляторнмх батарей та суперконденсаторних батарей акумуляторнмх батарей та суперконденсаторних батарей, в основному, буде використовуватися для надійного забезпечення необхідної потужності у випадку недостатнього рівня інсоляції сонячного випромінювання. Також передбачено можливість заряд акумуляторних батарей і живлення навантаження від дизельгенератора у випадку нестачі або відсутності сонячної та акумульованої енергії.
In the qualification work the automated power supply system of the mobile plastic waste processing unit consisting of photovoltaic modules, diesel generator, rechargeable batteries, supercapacitor batteries, direct current to direct current converter and inverter is developed and investigated. In contrast to the above-described approaches, in the qualifying work the key ideas for increasing the efficiency of the automated power supply system of a mobile plastic waste recycling plant are automated control of energy recovery from photovoltaic modules by ensuring their generation at maximum power and positioning photovoltaic modules at an angle of 90 ° solar radiation. In case that the electricity received from photovoltaic modules is too much to supply loads, its excess will be redirected to charge batteries and supercapacitor batteries. It is also possible to charge batteries and power the load from the diesel generator in the absence or absence of solar and stored energy.
ВСТУП 1 АНАЛІТИЧНА ЧАСТИНА 1.1 Аналіз стану питання за літературними та іншими джерелами 1.2 Актуальність виконання роботи 1.3 Методи вирішення поставленої задачі 1.4 Висновки та постановка задач на кваліфікаційну роботу магістра 2 ТЕХНОЛОГІЧНА ЧАСТИНА 2.1 Характеристика виробу та його призначення 2.2 Розробка технологічного процесу виготовлення виробу 3 КОНСТРУКТОРСЬКА ЧАСТИНА 3.1 Аналіз вихідних даних на проектування базового варіанту автоматизованої системи електроживлення мобільної установки переробки пластикових відходів.. 3.2 Підбір серійного обладнання, уточнення компоновки автоматизованої система електроживлення мобільної установки переробки пластикових відходів на основі паспортних даних серійного обладнання 3.3 Обґрунтування необхідності проектування, вимог і технічних показників нестандартного обладнання, що входить в автоматизовану систему електроживлення мобільної установки переробки пластикових відходів 4 НАУКОВО-ДОСЛІДНА ЧАСТИНА 4.1 Характеристика об’єкту та предмету дослідження 4.2 Імітаційна модель автоматизованої системи електроживлення мобільної установки переробки пластикових відходів 5 СПЕЦІАЛЬНА ЧАСТИНА 5.1 Алгоритм керуючої програми відслідковування точки максимальної потужності 5.2 Симуляція керуючої програми відслідковування точки максимальної потужності фотоелектричного модуля 6 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 6.1 Вимоги до охорони праці при виготовлені автоматизованої системи електроживлення мобільної установки переробки пластикових відходів 6.2 Екологічні вимоги при виготовленні та експлуатації автоматизованої системи електроживлення мобільної установки переробки пластикових відходів 6.3 Розрахунок місцевої витяжної вентиляції на робочому місці монтажника автоматизованої системи електроживлення мобільної установки переробки пластикових відходів 6.4 Безпека в надзвичайних ситуаціях на малому підприємстві по виробництву автоматизованої системи електроживлення мобільної установки переробки пластикових відходів ВИСНОВКИ ПЕРЕЛІК ПОСИЛАНЬ
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Кошик, Олег Іванович, та Oleh Koshyk. "Розробка автономної системи зовнішнього освітлення автомобільної дороги загального користування державного значення М-19". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2020. http://elartu.tntu.edu.ua/handle/lib/33378.

Повний текст джерела
Анотація:
В даний час відбувається масштабне впровадження комплексів сонячних батарей у багатьох країнах Європи та Азії. Так в Німеччині на частку сонячної енергії приходиться приблизно 20% від усієї енергією, що виробляється за рахунок відновлюваних джерел енергії. Разом з тим, процес будівництва систем вуличного освітлення досить тривалий, в окремих випадках вимагає повного відновлення всієї інфраструктури, починаючи від мереж живлення та підстанцій, і закінчуючи встановленням опор і щогл освітлення. Відповідно, через відсутність необхідних фінансових ресурсів, вирішити дану проблему досить складно. У зв'язку з цим, розробка таких систем вуличного освітлення, які б не вимагали великих капітальних витрат, дозволяли б нарощувати потужність, а їх обслуговування проводилося 1-2 рази на рік, є актуальною темою.
Основною метою дипломної роботи є розробка високоефективної автономної системи зовнішнього освітлення автомобільної дороги загального користування державного значення М-19. Для досягнення поставленої мети було вирішено такі завдання: - проведено аналіз нормативних вимог до систем зовнішнього освітлення; - проведено аналіз та обробку статистичних даних, щодо рівня сонячної радіації в містах України - проведено розрахунки елементної бази із якої буде складатися автономний освітлювальний комплекс; - проведено моделювання світлотехнічних параметрів устав ноки зовнішнього (вуличного) освітлення. - досліджено параметрів автономного комплексу в залежності від умов експлуатації; - розроблено математичну модель для керування та оптимізацією роботи сонячної батареї.
англійською: The main purpose of the thesis is to develop a highly effective autonomous system of external lighting of the general highway use of state importance M-19. To achieve this goal, the following tasks were solved: - analysis of regulatory requirements for outdoor lighting systems; - analysis and processing of statistical data on the level of solar radiation in the cities of Ukraine - calculations of the element base of which the autonomous lighting complex will consist are carried out; - modeling of lighting parameters of outdoor (street) lighting was carried out. - the parameters of the autonomous complex depending on the operating conditions are investigated; - developed a mathematical model for controlling and optimizing the operation of the solar panel.
ВСТУП ...5 1 АНАЛІТИЧНИЙ РОЗДІЛ ...7 1.1 Основні вимоги до системи освітлення ...7 1.2 Принцип роботи та особливості конструкції системи автономного освітлення ...11 1.3 Орієнтація сонячних батарей в просторі ...12 1.4 Висновки до розділу ...16 2 ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ ...17 2.1 Аналіз конструктивних особливостей автономної системи вуличного освітлення ...17 2.2 Розрахунок потужності сонячних батарей ...21 2.3 Розрахунок ємності акумуляторних батарей для автономної освітлювальної установки ...27 2.4 Світлотехнічний розрахунок ...30 2.5 Висновки до розділу ...38 3 РОЗРАХУНКОВО–ДОСЛІДНИЦЬКИЙ РОЗДІЛ ...39 3.1 Дослідження характеристик фотоелектричних систем ...39 3.2 Розробка математичної моделі для керування та оптимізації роботи сонячної батареї ...43 3.3 Висновки до розділу ...52 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ ...53 4.1 Забезпечення охорони праці при будівництві і експлуатації об’єкту, що проектується ...54 4.2 Проектні рішення щодо запобігання виникненню надзвичайних ситуацій, у разі ймовірних аварій на об’єкті будівництва ...56 ЗАГАЛЬНІ ВИСНОВКИ ...58 ПЕРЕЛІК ПОСИЛАНЬ ...59
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Хоменко, А. К. "Універсальна система зарядки акумуляторних батарей". Master's thesis, Сумський державний університет, 2020. https://essuir.sumdu.edu.ua/handle/123456789/81588.

Повний текст джерела
Анотація:
Пояснювальна записка містить: 80 сторінок, 29 малюнків, 17 таблиць, вступ і 5 розділів тексту. Графічна частина роботи містить алгоритм, структурну і принципову схеми. У першому розділі проведений огляд літературних джерел по обраному напрямку проектування. Другий розділ містить науково-дослідницьку частину роботи. Третій розділ містить розробку алгоритму функціонування і структурної схеми пристрою. Четвертий розділ присвячений розробці та розрахунку принципової схеми пристрою. П’ятий розділ містить розрахунок собівартості виготовлення пристрою. По результатам проектування, зроблені висновки. Наведено 15 літературних джерел. У додатку наведена програма для мікроконтролера та перелік елементів принципової схеми. Ключові словосполучення: зарядні станції; перетворювач напруги; акумулятор; електромобіль. Key phrases: charging stations; voltage converter; the battery; electric car.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Осипенко, О. Ю., та О. В. Ткаченко. "Cучасні конструкції акумуляторних систем". Thesis, КНУТД, 2016. https://er.knutd.edu.ua/handle/123456789/4540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Тур, В. І. "Багатофункціональна система зарядки акумуляторних батарей електрокарів". Master's thesis, Сумський державний університет, 2021. https://essuir.sumdu.edu.ua/handle/123456789/86595.

Повний текст джерела
Анотація:
Пояснювальна записка містить: 78 сторінок тексту, 37 малюнків, 16 таблиць, вступ і 5 розділів тексту. Графічна частина роботи містить алгоритм, структурну і принципову схеми. У першому розділі проведений огляд літературних джерел по обраному напрямку проектування. Другий розділ містить науково-дослідницьку частину роботи. Третій розділ містить розробку алгоритму функціонування і структурної схеми пристрою. Четвертий розділ присвячений розробці та розрахунку принципової схеми пристрою. П’ятий розділ містить розрахунок собівартості виготовлення пристрою. По результатам проектування, зроблені висновки. Наведено 15 літературних джерел. У додатку наведена програма для мікроконтролера та перелік елементів принципової схеми. Ключові словосполучення: зарядні станції; бустер; драйвер; конвертор; акумулятор; електромобіль. Key phrases: charging stations; voltage converter; the battery; electric car.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Кайдалов, О. О., та В. В. Лисенко. "Мікропроцесорна система вимірювання характеристик літієвих акумуляторів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/45161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Щербаков, І. Р., та В. М. Павленко. "Модернізація системи живлення акумуляторної викрутки". Thesis, Київський національний університет технологій та дизайну, 2020. https://er.knutd.edu.ua/handle/123456789/16573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Машталяр, Степан Володимирович, та Stepan Mashtaliar. "Розробка вітроенергетичної системи електропостачання навчальної лабораторії кафедри електричної інженерії ТНТУ ім. І. Пулюя". Master's thesis, Тернопільський національний технічний університет імені Івана Пулюя, кафедра електричної інженерії,Тернопіль, Україна, 2021. http://elartu.tntu.edu.ua/handle/lib/36696.

Повний текст джерела
Анотація:
Вітроенергетика останнім часом достатньо ефек-тивно виокремилася в багатьох країнах в окремі галузі енергетичних госпо-дарств, що успішно конкурують із традиційною енергетикою. Особливу увагу надано вітроенергетичним установкам середньої та великої потужності, які входять в мережі розподілу та передачі електроенергії [1]. Відомо, що зараз світовий ринок малих вітроенергетичних установок доволі динамічно розвива-ється за рахунок масових споживачів, зокрема об'єктів малоповерхового будів-ництва, сільськогосподарських підприємств, системи віддаленого контролю, освітлювальних систем, телекомунікаційного обладнання та інших автономних споживачів електроенергії. Відповідно, ефективне використання вітрового потенціалу є актуальним науково-технічним завданням, суть якого полягає у покращенні аеродинамічних характеристик вітроенергетичних установок та збільшенні їх продуктивності в цілому [2]. Вітроенергетика вважається перспективним напрямом генерації електрич-ної енергії. Використання відновлюваної екологічно чистої енергії вітру дозво-ляє компенсувати зростання електроспоживання у зв’язку зі збільшенням насе-лення планети. Основною перешкодою при використання вітру в якості енерге-тичного джерела є непостійна його швидкість і, відповідно, й енергія в часі. Ві-тер володіє не тільки багаторічною і сезонною непостійністю, але може також змінювати свою активність на протязі доби за дуже малі проміжки часу [3]. Конструкції вітроенергетичних установок постійно вдосконалюються, що дозволяє підвищити їхню режимну керованість за допомогою інноваційних рішень, наприклад, застосуванням пристроїв активного управління потоком та зміною геометрії лопатей. В Україні цей напрямок поки що не отримав розвитку, але такі способи підвищення енергоефективності режимів роботи цих установок отримали підтримку у тих країнах, які є лідерами позиції з вироблення енергії , вітроенергетичними установками (Китай, США, Німеччини, Нідерланди та ін.).
У кваліфікаційній роботі розглянуто питання розробки вітроенергетичної системи електропостачання навчальної лабораторії кафедри електричної інже¬нерії ТНТУ ім. І. Пулюя та її практичне впровадження. Базовим джерелом є вітрогенератор, а резервним додатковим джерелом – акумуляторна батарея.У пояснювальній записці кваліфікаційної роботи розглянуто питання вибору об’єкта альтернативного електропостачання, розрахунок і вибір вітроге¬нератора та додаткового обладнання вітроенергетичної установки. Також вико¬нано розрахунок технічних характеристик вітроелектричної установки з гори-зонтальною віссю обертання та її аеродинамічних параметрів. Проведено мате¬матичне моделювання вітроенергетичної установки, результати якого підтвер¬дили, що розроблена вітроенергетична установка здатна забезпечити електро¬постачання освітлювального обладнання 4-го поверху кафедри електричної інженерії
In the qualification work the question of development of wind power system of power supply of educational laboratory of the department of electrical engineering of Ivan Puluj TNTU and its practical implementation. The basic source is a wind generator, and the backup additional source is a rechargeable battery. In the explanatory note of the qualification work the issues of selection of the object of alternative power supply, calculation and selection of the wind generator and additional equipment of the wind power plant are considered. The calculation of technical characteristics of a wind power plant with a horizontal axis of rotation and its aerodynamic parameters was also performed. Mathematical modeling of the wind power plant was carried out, the results of which confirmed that the developed wind power plant is able to provide power supply of lighting equipment on the 4th floor of the Department of Electrical Engineering.
ЗМІСТ ВСТУП 7 1 АНАЛІТИЧНИЙ РОЗДІЛ 10 1.1 Конструкція вітрогенераторів та їх застосування 10 1.2 Вітрові генератори з горизонтальною віссю обертання 12 1.3 Вітрові генератори з вертикальною віссю обертання 17 1.4 Принцип роботи вітроенергетичної установки 22 1.5 Висновки до розділу 1 26 2 ПРОЕКТНО-КОНСТРУКТОРСЬКИЙ РОЗДІЛ 27 2.1 Вибір об’єкта альтернативного електропостачання 27 2.2 Розрахунок освітлювальної потужності 29 2.3 Аналіз вітроенергетичного потенціалу 31 2.4 Розрахунок та вибір вітрогенератора 33 2.5 Висновки до розділу 2 38 3 РОЗРАХУНКОВО-ДОСЛІДНИЦЬКИЙ РОЗДІЛ 39 3.1 Додаткове обладнання вітроенергетичної установки 39 3.2 Розрахунок технічних характеристик вітроелектричної установки 41 3.3 Розрахунок вітроколеса з горизонтальною віссю обертання 43 3.4 Розрахунок аеродинамічних параметрів вітроелектричної установки 45 3.5 Математичне моделювання вітроенергетичної установки 49 3.6 Висновки до розділу 3 55 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 56 4.1 Заходи з охорони праці під час експлуатації вітрових турбін 56 4.2 Техніка безпеки при монтажі і експлуатації системи стабілізації 60 4.3 Пожежна безпека і мкроклімат при експлуатації вітроелектростанцій 61 4.4 Висновки до розділу 4 63 ЗАГАЛЬНІ ВИСНОВКИ 64 ПЕРЕЛІК ПОСИЛАНЬ 65
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Акумуляторна система"

1

Болцарівський, Артем, Сергій Трачук та Тарас Сверида. "ВДОСКОНАЛЕННЯ СИСТЕМИ КОНТРОЛЮ ТИСКУ В АКУМУЛЯТОРІ ТИСКУ ПІДЙОМНО-ВРІВНОВАЖУЮЧОГО МЕХАНІЗМУ БМ 9А52". У ПРОБЛЕМИ ТА ПЕРСПЕКТИВИ РЕАЛІЗАЦІЇ ТА ВПРОВАДЖЕННЯ МІЖДИСЦИПЛІНАРНИХ НАУКОВИХ ДОСЯГНЕНЬ. Міжнародний центр наукових досліджень, 2020. http://dx.doi.org/10.36074/12.06.2020.v2.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії