Статті в журналах з теми "Π-Conjugated Polymers"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Π-Conjugated Polymers.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Π-Conjugated Polymers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ma, Junyu, Guolin Lu, Xiaoyu Huang та Chun Feng. "π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications". Chemical Communications 57, № 98 (2021): 13259–74. http://dx.doi.org/10.1039/d1cc04825b.

Повний текст джерела
Анотація:
π-Conjugated-polymer-based nanofibers endowed with both topological merits from fiber-like nanostructures and structural merits from π-conjugated polymers represent one of the most exciting and rapidly expanding fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Otsuka, S., G. Tanaka та T. Yamamoto. "π-Conjugated Conductive Polymers". International Polymer Science and Technology 35, № 7 (липень 2008): 23–29. http://dx.doi.org/10.1177/0307174x0803500704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holdcroft, S. "Patterning π-Conjugated Polymers". Advanced Materials 13, № 23 (грудень 2001): 1753–65. http://dx.doi.org/10.1002/1521-4095(200112)13:23<1753::aid-adma1753>3.0.co;2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chaudhuri, Saikat, Manikandan Mohanan, Andreas V. Willems, Jeffery A. Bertke та Nagarjuna Gavvalapalli. "β-Strand inspired bifacial π-conjugated polymers". Chemical Science 10, № 23 (2019): 5976–82. http://dx.doi.org/10.1039/c9sc01724k.

Повний текст джерела
Анотація:
β-Strand inspired bifacial π-conjugated polymers that are soluble despite the absence of pendant solubilizing chains are reported. Precise tunability of the bifacial monomer height enables control of polymer solubility and intermolecular interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jeong, WonJo, Kyumin Lee, Jaeyoung Jang, and In Hwan Jung. "Development of Benzobisoxazole-Based Novel Conjugated Polymers for Organic Thin-Film Transistors." Polymers 15, no. 5 (February 24, 2023): 1156. http://dx.doi.org/10.3390/polym15051156.

Повний текст джерела
Анотація:
Benzo[1,2-d:4,5-d′]bis(oxazole) (BBO) is a heterocyclic aromatic ring composed of one benzene ring and two oxazole rings, which has unique advantages on the facile synthesis without any column chromatography purification, high solubility on the common organic solvents and planar fused aromatic ring structure. However, BBO conjugated building block has rarely been used to develop conjugated polymers for organic thin film transistors (OTFTs). Three BBO-based monomers, BBO without π-spacer, BBO with non-alkylated thiophene π-spacer and BBO with alkylated thiophene π-spacer, were newly synthesized and they were copolymerized with a strong electron-donating cyclopentadithiophene conjugated building block to give three p-type BBO-based polymers. The polymer containing non-alkylated thiophene π-spacer showed the highest hole mobility of 2.2 × 10−2 cm2 V−1 s−1, which was 100 times higher than the other polymers. From the 2D grazing incidence X-ray diffraction data and simulated polymeric structures, we found that the intercalation of alkyl side chains on the polymer backbones was crucial to determine the intermolecular ordering in the film states, and the introduction of non-alkylated thiophene π-spacer to polymer backbone was the most effective to promote the intercalation of alkyl side chains in the film states and hole mobility in the devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghosh, Samrat, Yusuke Tsutsui, Katsuaki Suzuki, Hironori Kaji, Kayako Honjo, Takashi Uemura та Shu Seki. "Impact of the position of the imine linker on the optoelectronic performance of π-conjugated organic frameworks". Molecular Systems Design & Engineering 4, № 2 (2019): 325–31. http://dx.doi.org/10.1039/c8me00079d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Matsumoto, Fukashi, та Yoshiki Chujo. "Chiral π-conjugated organoboron polymers". Pure and Applied Chemistry 81, № 3 (1 січня 2009): 433–37. http://dx.doi.org/10.1351/pac-con-08-08-01.

Повний текст джерела
Анотація:
A novel π-conjugated organoboron polymer with a chiral side chain was prepared by way of hydroboration polymerization between an optically active diyne monomer and triisopropylphenylborane. The achiral analog of this organoboron polymer was also prepared as reference material. Optical properties and optical activity were investigated by UV-vis absorption, fluorescence emission, and circular dichroism (CD) spectroscopy. Concentration dependence and the influence of solvent effects upon chiroptical activity are described.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bässler, H., V. I. Arkhipov, E. V. Emelianova, A. Gerhard, A. Hayer, C. Im та J. Rissler. "Excitons in π-conjugated polymers". Synthetic Metals 135-136 (квітень 2003): 377–82. http://dx.doi.org/10.1016/s0379-6779(02)00603-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yasuda, Takuma, Itaru Osaka, Kazuo Tanaka та Keiji Tanaka. "Special issue: π-conjugated polymers". Polymer Journal 55, № 4 (квітень 2023): 295. http://dx.doi.org/10.1038/s41428-022-00750-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kausar, Ayesha. "Conjugated Polymer/Graphene Oxide Nanocomposites—State-of-the-Art." Journal of Composites Science 5, no. 11 (November 5, 2021): 292. http://dx.doi.org/10.3390/jcs5110292.

Повний текст джерела
Анотація:
Graphene oxide is an imperative modified form of graphene. Similar to graphene, graphene oxide has gained vast interest for the myriad of industrial applications. Conjugated polymers or conducting polymers are well known organic materials having conducting backbone. These polymers have semiconducting nature due to π-conjugation along the main chain. Doping and modification have been used to enhance the electrical conductivity of the conjugated polymers. The nanocomposites of the conjugated polymers have been reported with the nanocarbon nanofillers including graphene oxide. This review essentially presents the structure, properties, and advancements in the field of conducting polymer/graphene oxide nanocomposites. The facile synthesis, processability, and physical properties of the polymer/graphene oxide nanocomposites have been discussed. The conjugated polymer/graphene oxide nanocomposites have essential significance for the supercapacitors, solar cells, and anti-corrosion materials. Nevertheless, the further advanced properties and technical applications of the conjugated polymer/graphene oxide nanocomposites need to be explored to overcome the challenges related to the high performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nakajima, Kuniharu, та Hiromasa Goto. "Preparation of Network π-Conjugated Copolymers with Ullmann Type Polycondensation". International Letters of Chemistry, Physics and Astronomy 25 (січень 2014): 33–38. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.25.33.

Повний текст джерела
Анотація:
Ullmann type polycondensations in the presence of CuI and a base were carried out to afford network type π-conjugated copolymers. Infrared absorption spectroscopy measurements and surface observation using a scanning electron microscopy are carried out. Electron spin resonance spectroscopy measurements revealed that the cross-linked copolymers thus obtained contain small amount of copper. This polymerization conveniently allows production of network π-conjugated polymers. The polymer can be expected to have thermo-resistance.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Nakajima, Kuniharu, та Hiromasa Goto. "Preparation of Network π-Conjugated Copolymers with Ullmann Type Polycondensation". International Letters of Chemistry, Physics and Astronomy 25 (10 січня 2014): 33–38. http://dx.doi.org/10.56431/p-pmm6t5.

Повний текст джерела
Анотація:
Ullmann type polycondensations in the presence of CuI and a base were carried out to afford network type π-conjugated copolymers. Infrared absorption spectroscopy measurements and surface observation using a scanning electron microscopy are carried out. Electron spin resonance spectroscopy measurements revealed that the cross-linked copolymers thus obtained contain small amount of copper. This polymerization conveniently allows production of network π-conjugated polymers. The polymer can be expected to have thermo-resistance.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Wei, Xin, and Mingfeng Wang. "Two dimensional semiconducting polymers." Materials Chemistry Frontiers 4, no. 12 (2020): 3472–86. http://dx.doi.org/10.1039/d0qm00309c.

Повний текст джерела
Анотація:
Synthetic chemistry towards two-dimensional semiconducting polymers (2DSPs) with planar π-conjugated structures is reviewed and their unique chemical and physical properties derived from the extended π-conjugation are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Song, Sun Gu, Seonggyun Ha, Kyeong-Bae Seo, Jookyeong Lee, Tae-Lim Choi, Thathan Premkumar та Changsik Song. "Binaphthyl-incorporated π-conjugated polymer/gold nanoparticle hybrids: a facile size- and shape-tailored synthesis". RSC Advances 6, № 109 (2016): 107994–99. http://dx.doi.org/10.1039/c6ra22234j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Liang, Ziqi, Alexandre Nardes, Dong Wang, Joseph J. Berry та Brian A. Gregg. "Defect Engineering in π-Conjugated Polymers". Chemistry of Materials 21, № 20 (27 жовтня 2009): 4914–19. http://dx.doi.org/10.1021/cm902031n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Soos, Z. "π-electron models for conjugated polymers". Solid State Ionics 26, № 2 (березень 1988): 145. http://dx.doi.org/10.1016/0167-2738(88)90039-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

SOOS, Z., G. HAYDEN та S. RAMASESHA. "π-Electronic structure of conjugated polymers". Solid State Ionics 32-33 (лютий 1989): 567–74. http://dx.doi.org/10.1016/0167-2738(89)90269-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yamamoto, Takakazu, Hiroki Fukumoto та Take-aki Koizumi. "Metal Complexes of π-Conjugated Polymers". Journal of Inorganic and Organometallic Polymers and Materials 19, № 1 (13 січня 2009): 3–11. http://dx.doi.org/10.1007/s10904-008-9246-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Jha, Prakash Chandra, Emil Jansson та Hans Ågren. "Triplet energies of π-conjugated polymers". Chemical Physics Letters 424, № 1-3 (червень 2006): 23–27. http://dx.doi.org/10.1016/j.cplett.2006.04.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yamamoto, Yohei. "Spherical resonators from π-conjugated polymers". Polymer Journal 48, № 11 (21 вересня 2016): 1045–50. http://dx.doi.org/10.1038/pj.2016.81.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Brinkmann, Martin, Lucia Hartmann, Laure Biniek, Kim Tremel та Navaphun Kayunkid. "Orienting Semi-Conducting π-Conjugated Polymers". Macromolecular Rapid Communications 35, № 1 (2 грудня 2013): 9–26. http://dx.doi.org/10.1002/marc.201300712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Dong, Xin, Hongkun Tian, Zhiyuan Xie, Yanhou Geng, and Fosong Wang. "Donor–acceptor conjugated polymers based on two-dimensional thiophene derivatives for bulk heterojunction solar cells." Polymer Chemistry 8, no. 2 (2017): 421–30. http://dx.doi.org/10.1039/c6py01767c.

Повний текст джерела
Анотація:
D–A conjugated polymers based on accessible 2D conjugated (E)-1,2-bis(5-alkyl-[2,3′-bithiophen]-2′-yl)ethene units possess low bandgaps, shorter π–π stacking distances, higher mobility and higher photovoltaic performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Urgel, José I., Julian Bock, Marco Di Giovannantonio, Pascal Ruffieux, Carlo A. Pignedoli, Milan Kivala та Roman Fasel. "On-surface synthesis of π-conjugated ladder-type polymers comprising nonbenzenoid moieties". RSC Advances 11, № 38 (2021): 23437–41. http://dx.doi.org/10.1039/d1ra03253d.

Повний текст джерела
Анотація:
On-surface synthesis provides a powerful approach toward the fabrication of π-conjugated ladder polymers (CLPs). The synthesis of nonbenzenoid CLPs is achieved following two activation steps, including the formation of an intermediate 1D polymer.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Zhai, Yaxin, Chuanxiang Sheng та Z. Valy Vardeny. "Singlet fission of hot excitons in π -conjugated polymers". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, № 2044 (28 червня 2015): 20140327. http://dx.doi.org/10.1098/rsta.2014.0327.

Повний текст джерела
Анотація:
We used steady-state photoinduced absorption (PA), excitation dependence (EXPA( ω )) spectrum of the triplet exciton PA band, and its magneto-PA (MPA( B )) response to investigate singlet fission (SF) of hot excitons into two separated triplet excitons, in two luminescent and non-luminescent π -conjugated polymers. From the high energy step in the triplet EXPA( ω ) spectrum of the luminescent polymer poly(dioctyloxy)phenylenevinylene (DOO-PPV) films, we identified a hot-exciton SF (HE-SF) process having threshold energy at E ≈2 E T (=2.8 eV, where E T is the energy of the lowest lying triplet exciton), which is about 0.8 eV above the lowest singlet exciton energy. The HE-SF process was confirmed by the triplet MPA( B ) response for excitation at E >2 E T , which shows typical SF response. This process is missing in DOO-PPV solution, showing that it is predominantly interchain in nature. By contrast, the triplet EXPA( ω ) spectrum in the non-luminescent polymer polydiacetylene (PDA) is flat with an onset at E = E g (≈2.25 eV). From this, we infer that intrachain SF that involves a triplet–triplet pair state, also known as the ‘dark’ 2A g exciton, dominates the triplet photogeneration in PDA polymer as E g >2 E T . The intrachain SF process was also identified from the MPA( B ) response of the triplet PA band in PDA. Our work shows that the SF process in π -conjugated polymers is a much more general process than thought previously.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ohshita, Joji, Masayuki Miyazaki, Makoto Nakashima, Daiki Tanaka, Yousuke Ooyama, Takuya Sasaki, Yoshihito Kunugi, and Yasushi Morihara. "Synthesis of conjugated D–A polymers bearing bi(dithienogermole) as a new donor component and their applications to polymer solar cells and transistors." RSC Advances 5, no. 17 (2015): 12686–91. http://dx.doi.org/10.1039/c4ra16749j.

Повний текст джерела
Анотація:
Donor–acceptor π-conjugated polymers with alternating bi(dithienogermole) and benzo- or pyridinothiadiazole units were prepared and their potential applications to bulk heterojunction-type polymer solar cells and thin film transistors were explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rudyak, Vladimir Yu, Alexey A. Gavrilov, Daria V. Guseva, Shih-Huang Tung та Pavel V. Komarov. "Accounting for π–π stacking interactions in the mesoscopic models of conjugated polymers". Molecular Systems Design & Engineering 5, № 6 (2020): 1137–46. http://dx.doi.org/10.1039/d0me00034e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Trhlíková, Olga, Sviatoslav Hladyš, Jan Sedláček та Dmitrij Bondarev. "SEC-DAD - Effective Method for the Characterization of π-Conjugated Polymers". Materials Science Forum 851 (квітень 2016): 167–72. http://dx.doi.org/10.4028/www.scientific.net/msf.851.167.

Повний текст джерела
Анотація:
In the article we present a unique analytical tool for the characterization of conjugated polymers – SEC-DAD (Size Exclusion Chromatography – Diode Array Detector). The chromatographic separation is performed in a conventional SEC mode which provides narrow molecular-weight fractions of the analyzed polymer. The uniqueness of the SEC-DAD combination comes out with the utilization of DAD for the monitoring the absorption characteristics of particular fractions along the molecular weight distribution. If applied in the characterization of the conjugated polymers, SEC-DAD helps to reveal the dependencies of (i) the extent of conjugation and (ii) covalent and configuration structure of the polymer on the molecular weight.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wan, Tao, Xiaojun Yin, Chengjun Pan, Danqing Liu, Xiaoyan Zhou, Chunmei Gao, Wai-Yeung Wong та Lei Wang. "Boosting the Adhesivity of π-Conjugated Polymers by Embedding Platinum Acetylides towards High-Performance Thermoelectric Composites". Polymers 11, № 4 (1 квітня 2019): 593. http://dx.doi.org/10.3390/polym11040593.

Повний текст джерела
Анотація:
Single-walled carbon nanotubes (SWCNTs) incorporated with π-conjugated polymers, have proven to be an effective approach in the production of advanced thermoelectric composites. However, the studied polymers are mainly limited to scanty conventional conductive polymers, and their performances still remain to be improved. Herein, a new planar moiety of platinum acetylide in the π-conjugated system is introduced to enhance the intermolecular interaction with the SWCNTs via π–π and d–π interactions, which is crucial in regulating the thermoelectric performances of SWCNT-based composites. As expected, SWCNT composites based on the platinum acetylides embedded polymers displayed a higher power factor (130.7 ± 3.8 μW·m−1·K−2) at ambient temperature than those without platinum acetylides (59.5 ± 0.7 μW·m−1·K−2) under the same conditions. Moreover, the strong interactions between the platinum acetylide-based polymers and the SWCNTs are confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Yufei, Xueliang Hou, Chi Cheng, Ling Qiu, Xuehua Zhang, George P. Simon, and Dan Li. "Optical Characterisation of Non-Covalent Interactions between Non-Conjugated Polymers and Chemically Converted Graphene." Australian Journal of Chemistry 67, no. 1 (2014): 168. http://dx.doi.org/10.1071/ch13243.

Повний текст джерела
Анотація:
Optical characterisation using dye molecules as probes was used to study the non-covalent interactions between chemically converted graphene (CCG) and non-conjugated, water soluble polymers in aqueous solution. The strong adsorption of non-conjugated polymers such as poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) on CCG is observed by fluorescence and ultraviolet-visible spectroscopy and atomic force microscopy, and this leads to desorption of π-conjugated molecules from CCG. Such adsorption/desorption behaviour can be tailored by modifying the molecular weight of polymers and the chemistry of graphene. This finding provides a facile and non-covalent approach to the functionalisation of CCG and opens up new opportunities for the fabrication of graphene/polymer nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ohshita, Joji, Kazuaki Kawashima, Arihiro Iwata, Heqing Tang, Miho Higashi та Atsutaka Kunai. "Selective Substitution of Hex2SiFCl for the Preparation of Polymers with Two Different Alternate π-Electron Systems Linked by Hex2Si Units". Zeitschrift für Naturforschung B 59, № 11-12 (1 грудня 2004): 1332–36. http://dx.doi.org/10.1515/znb-2004-11-1253.

Повний текст джерела
Анотація:
Abstract Organosilicon polymers having a regular alternate arrangement of -Hex2Si-π-Hex2Si-π’-(π, π’ = π-electron system) were prepared by successive treatment of Hex2SiFCl with dilithiated π- conjugated compounds, Li-π-Li and Li-π’ -Li (π = diethynylanthracene, diethynylpyrene, diethynylcarbazole; π’ = bithiophenediyl, terthiophenediyl). UV-vis absorption spectra and cyclic voltammograms of the resulting polymers indicated that the two π-electron systems, π and π’, are electronically isolated, while the emission spectra indicated that energy transfer between the π-electron systems occurred in the excited states.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pan, Chengjun, Kazunori Sugiyasu, Yutaka Wakayama, Akira Sato та Masayuki Takeuchi. "Thermoplastic Fluorescent Conjugated Polymers: Benefits of Preventing π-π Stacking". Angewandte Chemie 125, № 41 (22 серпня 2013): 10975–79. http://dx.doi.org/10.1002/ange.201305728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Pan, Chengjun, Kazunori Sugiyasu, Yutaka Wakayama, Akira Sato та Masayuki Takeuchi. "Thermoplastic Fluorescent Conjugated Polymers: Benefits of Preventing π-π Stacking". Angewandte Chemie International Edition 52, № 41 (22 серпня 2013): 10775–79. http://dx.doi.org/10.1002/anie.201305728.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mikie, Tsubasa, та Itaru Osaka. "Small-bandgap quinoid-based π-conjugated polymers". Journal of Materials Chemistry C 8, № 41 (2020): 14262–88. http://dx.doi.org/10.1039/d0tc01041c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Barford, William, та Xibai Xu. "Groundstate dispersion interaction between π-conjugated polymers". Journal of Chemical Physics 128, № 3 (21 січня 2008): 034705. http://dx.doi.org/10.1063/1.2822127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kersting, R., U. Lemmer, R. F. Mahrt, K. Leo, H. Kurz, H. Bässler та E. O. Göbel. "Femtosecond energy relaxation in π-conjugated polymers". Physical Review Letters 70, № 24 (14 червня 1993): 3820–23. http://dx.doi.org/10.1103/physrevlett.70.3820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Gang, Nils Persson, Ping-Hsun Chu, Nabil Kleinhenz, Boyi Fu, Mincheol Chang, Nabankur Deb та ін. "Microfluidic Crystal Engineering of π-Conjugated Polymers". ACS Nano 9, № 8 (22 липня 2015): 8220–30. http://dx.doi.org/10.1021/acsnano.5b02582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ley, K. D., та K. S. Schanze. "Photophysics of metal-organic π-conjugated polymers". Coordination Chemistry Reviews 171 (квітень 1998): 287–307. http://dx.doi.org/10.1016/s0010-8545(98)90043-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Guo, Xin, Martin Baumgarten та Klaus Müllen. "Designing π-conjugated polymers for organic electronics". Progress in Polymer Science 38, № 12 (грудень 2013): 1832–908. http://dx.doi.org/10.1016/j.progpolymsci.2013.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Rosu, Cornelia, Nabil Kleinhenz, Dalsu Choi, Christopher J. Tassone, Xujun Zhang, Jung Ok Park, Mohan Srinivasarao, Paul S. Russo та Elsa Reichmanis. "Protein-Assisted Assembly of π-Conjugated Polymers". Chemistry of Materials 28, № 2 (10 грудня 2015): 573–82. http://dx.doi.org/10.1021/acs.chemmater.5b04192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

List, E. J. W., C. Creely, G. Leising, N. Schulte, A. D. Schlüter, U. Scherf, K. Müllen та W. Graupner. "Excitation energy migration in π-conjugated polymers". Synthetic Metals 119, № 1-3 (березень 2001): 659–60. http://dx.doi.org/10.1016/s0379-6779(00)01417-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Guo, F., M. Chandross та S. Mazumdar. "Theory of Biexcitons in π-Conjugated Polymers". Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 256, № 1 (листопад 1994): 53–62. http://dx.doi.org/10.1080/10587259408039231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Song, Su Hee, Young Eup Jin, Joo Young Shim, Kwang Hee Lee, and Hong Suk Suh. "Organic Syntheses and Characteristics of Novel Conjugated Polymers for AMOLEDs." Advances in Science and Technology 75 (October 2010): 91–96. http://dx.doi.org/10.4028/www.scientific.net/ast.75.91.

Повний текст джерела
Анотація:
Conjugated polymers with a stabilized blue emission are of importance for the realization of large flat panel AMOLED displays using polymer light-emitting diodes. Several novel conjugated polymers using newly developed templates for the stabilized EL emission are reported. Poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene)) (PCPP) is a new class of blue-emitting polymers utilizing a new back-bone. This material emits a efficient blue EL without exhibiting any unwanted peak in the long wavelength region (green region) even after prolonged annealing at an elevated temperature of 150oC in air, or operation of the device. New electroluminescent spiro-PCPPs, poly((2,6-(3',6'-bis(2-ethylhexyloxy)-spiro(4H-cyclopenta[def] phenanthrene-4,9'-[9H]fluorene)))-alt-(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[def]phenanthrene))) (spiro-PCPP-alt-PCPP) and poly((2,6-(3',6'-bis(2-ethylhexyloxy)-spiro(4H-cyclopenta[def] phenanthrene-4,9'-[9H]fluorene)))-alt-(1,4-phenylene)) (spiro-PCPPP), have been synthesized by the Suzuki polymerization. The PL emission spectra of polymers in THF solution show a same maximum peak at 397 nm. The maximum PL emission spectra of polymers appeared at around 463 and 456 nm in solid state, respectively. The PL spectra in solid thin films show more red-shifted over 60 nm than solution conditions. The blue emissions at 400-409 nm for the π–π* transitions of conjugated polymer backbone are almost completely quenched or decreased.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Dai, Chunhui, and Bin Liu. "Conjugated polymers for visible-light-driven photocatalysis." Energy & Environmental Science 13, no. 1 (2020): 24–52. http://dx.doi.org/10.1039/c9ee01935a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Santos, Jose, Pavel Jelínek, David Ecija, and Nazario Martin. "(Invited) On-Surface Synthesis of Acene Polymers." ECS Meeting Abstracts MA2022-01, no. 11 (July 7, 2022): 811. http://dx.doi.org/10.1149/ma2022-0111811mtgabs.

Повний текст джерела
Анотація:
The design and study of π-conjugated polymers has received great attention along the last decades. The relevant optical and electronic properties stemming from their delocalised π-electrons allow for a number of applications in the emerging field of organic electronics. However, the inherent limited solubility of planar π-conjugated systems hinders their development, forcing chemists to introduce ancillary solubilising side-chains. On the other hand, ultrahigh-vacuum on-surface synthesis has become a powerful discipline that enables designing with atomistic precision a new plethora of molecular compounds, polymers, and nanomaterials that otherwise are unachievable by conventional organic chemistry. Herein we present a novel on-surface chemical transformation that allows obtaining π-conjugated acene polymers from simple aromatic molecules carrying =CBr2 functionalities. The deposition of such precursors on an Au(111) surface gives rise to close-packed assemblies. Thermal annealing promotes the debromination of the species that thereafter homocouple and give rise to long anthracene wires linked by acetylene bridges, featuring a bandgap of 1.5 eV (see figure below). When larger acenes or periacenes are used (i.e. pentacene, bisanthene, peripentacene) the resulting polymers undergo dramatic structural and electronic changes. Non-contact-AFM evince that the benzoid subunits evolve from aromatic (anthracene) to quinoid (pentacene, bisanthene...), while the alkyne linkers turn into cumulenic. The STM images allow witnessing the HOMO-LUMO levels crossing from anthracene to pentacene. This swap destabilises the aromatic structure and enables a biradical-quinoid one, that permit almost vanishing bandgaps below 0.35 eV. These findings can also be rationalised by topological band gap theory: DFT, tight binding and GW calculations predict that polymers these quasi-metallic polymers exhibit a topologically non-trivial electronic structure. Our results herald novel pathways to engineer π-conjugated polymers on solid surfaces, addressing the relevant family of acenes and, thus, contributing to develop the field of on-surface chemistry and to steer the design of modern low bandgap polymers. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
45

van der Scheer, Pieter, Quintin van Zuijlen, and Joris Sprakel. "Rigidochromic conjugated polymers carrying main-chain molecular rotors." Chemical Communications 55, no. 77 (2019): 11559–62. http://dx.doi.org/10.1039/c9cc05713g.

Повний текст джерела
Анотація:
We design and prepare rigidochromic conjugated polymers that carry molecular rotors in the main chain. We show how a suitable design maintains the mechanosensitivity of the rotors upon incorporation into an extended π-conjugated system.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Salaneck, W. R., and J. L. Brédas. "Conjugated Polymer Surfaces and Interfaces for Light-Emitting Devices." MRS Bulletin 22, no. 6 (June 1997): 46–51. http://dx.doi.org/10.1557/s0883769400033625.

Повний текст джерела
Анотація:
Since the discovery of high electrical conductivity in doped polyacetylene in 1977, π-conjugated polymers have emerged as viable semiconducting electronic materials for numerous applications. In the context of polymer electronic devices, one must understand the nature of the polymer surface's electronic structure and the interface with metals. For conjugated polymers, photoelectron spectroscopy—especially in connection with quantum-chemical modeling—provides a maximum amount of both chemical and electronic structural information in one (type of) measurement. Some details of the early stages of interface formation with metals on the surfaces of conjugated polymers and model molecular solids in connection with polymer-based light-emitting devices (LEDs) are outlined. Then a chosen set of issues is summarized in a band structure diagram for a polymer LED, based upon a “clean calcium electrode” on the clean surface of a thin film of poly(p-phenylene vinylene) (PPV). This diagram helps to point out the complexity of the systems involved in polymer LEDs. No such thing as “an ideal metal-on-polymer contact” exists. There is always some chemistry occurring at the interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Yokozawa, Tsutomu, Yutaka Nanashima, Haruhiko Kohno, Ryosuke Suzuki, Masataka Nojima та Yoshihiro Ohta. "Catalyst-transfer condensation polymerization for precision synthesis of π-conjugated polymers". Pure and Applied Chemistry 85, № 3 (12 серпня 2012): 573–87. http://dx.doi.org/10.1351/pac-con-12-03-13.

Повний текст джерела
Анотація:
Catalyst-transfer condensation polymerization, in which the catalyst activates the polymer end-group, followed by reaction with the monomer and transfer of the catalyst to the elongated polymer end-group, has made it feasible to control the molecular weight, polydispersity, and end-groups of π-conjugated polymers. In this paper, our recent progress of Kumada–Tamao Ni catalyst-transfer coupling polymerization and Suzuki–Miyaura Pd catalyst-transfer coupling polymerization is described. In the former polymerization method, the polymerization of Grignard pyridine monomers was investigated for the synthesis of well-defined n-type π-conjugated polymers. Para-type pyridine monomer, 3-alkoxy-2-bromo-5-chloromagnesiopyridine, afforded poly(pyridine-2,5-diyl) with low solubility in the reaction solvent, whereas meta-type pyridine monomer, 2-alkoxy-5-bromo-3-chloromagnesio-pyridine, yielded soluble poly(pyridine-3,5-diyl) with controlled molecular weight and low polydispersity. In Suzuki–Miyaura catalyst-transfer coupling polymerization, t-Bu3PPd(Ph)Br was an effective catalyst, and well-defined poly(p-phenylene) and poly(3-hexylthiophene) (P3HT) were obtained by concomitant use of CsF/18-crown-6 as a base in tetrahydrofuran (THF) and a small amount of water.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ji, Xiaozhou, and Lei Fang. "Quinoidal conjugated polymers with open-shell character." Polymer Chemistry 12, no. 10 (2021): 1347–61. http://dx.doi.org/10.1039/d0py01298j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Yan, Zhuojun, Jinni Liu, Congke Miao, Pinjie Su, Guiyue Zheng, Bo Cui, Tongfei Geng, et al. "Pyrene-Based Fluorescent Porous Organic Polymers for Recognition and Detection of Pesticides." Molecules 27, no. 1 (December 26, 2021): 126. http://dx.doi.org/10.3390/molecules27010126.

Повний текст джерела
Анотація:
Eating vegetables with pesticide residues over a long period of time causes serious adverse effects on the human body, such as acute poisoning, chronic poisoning, and endocrine system interference. To achieve the goal of a healthy society, it is an urgent issue to find a simple and effective method to detect organic pesticides. In this work, two fluorescent porous organic polymers, LNU-45 and LNU-47 (abbreviation for Liaoning University), were prepared using π-conjugated dibromopyrene monomer and boronic acid compounds as building units through a Suzuki coupling reaction. Due to the large π-electron delocalization effect, the resulting polymers revealed enhanced fluorescence performance. Significantly, in sharp contrast with the planar π-conjugated polymer framework (LNU-47), the distorted conjugated structure (LNU-45) shows a higher specific surface area and provides a broad interface for analyte interaction, which is helpful to achieve rapid response and detection sensitivity. LNU-45 exhibits strong fluorescence emission at 469 nm after excitation at 365 nm in THF solution, providing strong evidence for its suitability as a luminescent chemosensor for organic pesticides. The fluorescence quenching coefficients of LNU-45 for trifluralin and dicloran were 5710 and 12,000 (LNU-47 sample by ca. 1.98 and 3.38 times), respectively. Therefore, LNU-45 serves as an effective “real-time” sensor for the detection of trifluralin and dicloran with high sensitivity and selectivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zheng, Feng, Yusuke Komatsuzaki, Naoki Shida, Hiroki Nishiyama, Shinsuke Inagi та Ikuyoshi Tomita. "Te–Li Exchange Reaction of Tellurophene‐Containing π‐Conjugated Polymer as Potential Synthetic Tool for Functional π‐Conjugated Polymers". Macromolecular Rapid Communications 40, № 20 (2 серпня 2019): 1900171. http://dx.doi.org/10.1002/marc.201900171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії