Статті в журналах з теми "Β-FeSi2"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Β-FeSi2.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Β-FeSi2".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tsunoda, Tatsuo, Masakazu Mukaida, Akio Watanabe, and Yoji Imai. "Composition dependence of morphology, structure, and thermoelectric properties of FeSi2 films prepared by sputtering deposition." Journal of Materials Research 11, no. 8 (August 1996): 2062–70. http://dx.doi.org/10.1557/jmr.1996.0259.

Повний текст джерела
Анотація:
Direct β–FeSi2 film preparation from gaseous phase was examined using a radio-frequency (rf) sputtering deposition apparatus equipped with a composite target of iron and silicon. Films composed of only β–FeSi2 phase were formed at substrate temperatures above 573 K when the chemical composition of the film was very close to stoichiometric FeSi2. The β–FeSi2 films thus formed showed rather large positive Seebeck coefficient. When the chemical composition of the films were deviated to the Fe-rich side, ∈–FeSi phase was formed along with β–FeSi2. On the other hand, α–FeSi2 phase, which is stable above 1210 K in the equilibrium phase diagram, was formed at the substrate temperature as low as 723 K when the chemical composition was deviated to the Si-rich side. The formation of α–FeSi2 phase induced drastic changes in the morphology and thermoelectric properties of the films. The α–FeSi2 phase formed in the films was easily transformed to β–FeSi2 phase by a thermal treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nanko, Makoto, Se Hun Chang, Koji Matsumaru, Kozo Ishizaki та Masatoshi Takeda. "Isothermal Oxidation of Sintered β-FeSi2 in Air". Materials Science Forum 522-523 (серпень 2006): 641–48. http://dx.doi.org/10.4028/www.scientific.net/msf.522-523.641.

Повний текст джерела
Анотація:
High-temperature oxidation of sintered β-FeSi2 doped with Mn and Co was evaluated at 800°C in air. Amorphous SiO2 was developed as an oxide scale. Granular ε-FeSi also appeared below the SiO2 scale as a result of consumption of Si in β-FeSi2. Growth of the oxide scale on doped FeSi2 followed a parabolic law and its rate was similar to oxidation of undoped samples. Thermoelectric properties of sintered β-FeSi2 were also evaluated before and after oxidation at 800°C for 7 days. There was no significant change in thermoelectric properties after high-temperature oxidation on β-FeSi2 sintered bodies.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hong, Soon Jik, Chang Kyu Rhee та Byong Sun Chun. "Phase Transition and Thermoelectric Property of Ultra-Fine Structured β-FeSi2 Compounds". Solid State Phenomena 118 (грудень 2006): 591–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.118.591.

Повний текст джерела
Анотація:
FeSi2 compounds were fabricated by rapid solidification and hot pressing, which is considered to be a mass production technique for this alloy. Structural behavior of melt-spun ribbon during heat-treatment and Seebeck coefficient of the hot pressed bulk were systemically investigated and compared with conventionally fabricated alloys. The melt-spun ribbon consists of α-Fe2Si5 and ε-FeSi phase. With increasing annealing time, the phase transition to β-FeSi2 phase occurred more rapidly. 20 min of annealing is sufficient for a homogeneous formation of β-FeSi2 phase in melt-spun ribbon, while it is 100 h in as-cast alloy. In this research, the formation mechanism of β-FeSi2 phase during annealing is a transition of α+ε→β. The microstructure of sintered bulk generally consist of a randomly distributed β-FeSi2 phase with an average grain size of 0.9 μm. The increase of Seebeck coefficient in melt-spun and sintered specimen is due to fine grain size formed by rapid solidification.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Meng, Qing Sen, Wen Hao Fan, L. Q. Wang та L. Z. Ding. "Effect of FAPAS Process on the Thermoelectric Properties of β-FeSi2". Materials Science Forum 650 (травень 2010): 137–41. http://dx.doi.org/10.4028/www.scientific.net/msf.650.137.

Повний текст джерела
Анотація:
Iron disilicide (-FeSi2, and -FeSi2+Cu0.1wt%) were prepared by a field-activated pressure assisted synthesis(FAPAS) method from elemental powders and the thermoelectric properties were investigated. The average grain size of these products is about 0.3m. The thermal conductivity of these materials is 3-4wm-1K-1in the temperature range 300-725K. These products’ figure of merit is 28.50×10-4 in the temperature range 330-450K. The additions of Cu promote the phase transformation of -Fe2Si5 + -FeSi → β-FeSi2 and shorten the annealing time. It is proved that FAPAS is a benign and rapid process for sintering of -FeSi2 thermoelectric materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kawabata, Naoki, та Kazuhiro Nakamura. "Transformation from ε-FeSi to β- FeSi2 in RF-sputtered FeSix films". Physics Procedia 11 (2011): 87–90. http://dx.doi.org/10.1016/j.phpro.2011.01.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kloc, Ch, E. Arushanov, M. Wendl, H. Hohl, U. Malang та E. Bucher. "Preparation and properties of FeSi, α-FeSi2 and β-FeSi2 single crystals". Journal of Alloys and Compounds 219, № 1-2 (березень 1995): 93–96. http://dx.doi.org/10.1016/0925-8388(94)05055-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

KLOC, CH, E. ARUSHANOV, M. WENDL, H. HOHL, U. MALANG та E. BUCHER. "ChemInform Abstract: Preparation and Properties of FeSi, α-FeSi2 and β-FeSi2 Single Crystals." ChemInform 26, № 32 (17 серпня 2010): no. http://dx.doi.org/10.1002/chin.199532022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laila, Assayidatul, та Makoto Nanko. "Characterization of Cast Iron Scrap Chips toward β-FeSi2 Thermoelectric Materials". Materials Science Forum 804 (жовтень 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/msf.804.3.

Повний текст джерела
Анотація:
The upgrade recycling process of cast-iron scrap chips toward β-FeSi2 is regarded as an eco-friendly and cost-effective production process. It is useful for reducing the material cost in fabricating β-FeSi2 by utilizing the waste that is obtained from the manufacturing process of cast-iron components. In this research, β-FeSi2 was successfully obtained from cast iron bscrap chips and showed good thermoelectric performance in Seebeck coefficient and electrical conductivity which is around 70% to almost 100% compared to β-FeSi2 that was prepared from pure Fe and other publications. The thermoelectric power factor was achieved 90% performance compared to other literatures and β-FeSi2 prepared from pure Fe.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cho, Sung-Pyo, Yoshiaki Nakamura, Jun Yamasaki, Eiji Okunishi, Masakazu Ichikawa та Nobuo Tanaka. "Microstructure and interdiffusion behaviour of β-FeSi2 flat islands grown on Si(111) surfaces". Journal of Applied Crystallography 46, № 4 (4 липня 2013): 1076–80. http://dx.doi.org/10.1107/s0021889813015355.

Повний текст джерела
Анотація:
β-FeSi2 flat islands have been fabricated on ultra-thin oxidized Si(111) surfaces by Fe deposition on Si nanodots. The microstructure and interdiffusion behaviour of the β-FeSi2/Si(111) system at the atomic level were studied by using spherical aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. The formed β-FeSi2 flat islands had a disc shape with an average size of 30–150 nm width and 10–20 nm height, and were epitaxically grown on high-quality single-phase Si with a crystallographic relationship (110)β-FeSi2/(111)Si and [001]β-FeSi2/[1\bar 10]Si. Moreover, the heterojunction between the β-FeSi2(110) flat islands and the Si(111) substrate was an atomically and chemically abrupt interface without any irregularities. It is believed that these results are caused by the use of ultra-thin SiO2 films in our fabrication method, which is likely to be beneficial particularly for fabricating practical nanoscaled devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eguchi, Hajime, Motoki Iinuma, Hirofumi Hoshida, Naoki Murakoso та Yoshikazu Terai. "Growth of Sb-Doped β-FeSi2 Epitaxial Films and Optimization of Donor Activation Conditions". Defect and Diffusion Forum 386 (вересень 2018): 38–42. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.38.

Повний текст джерела
Анотація:
Sb-doped β-FeSi2 epitaxial films on Si(111) were grown by molecular beam epitaxy to control an electron density of β-FeSi2. After an optimization of donor activation conditions in the Sb-doped β-FeSi2, the electron density of 6 × 1018 cm-3 at 300 K was achieved by thermal annealing in a N2 ambient. In the temperature dependence of carrier density, the n-type conduction was changed to p-type conduction at low temperatures in the film annealed at high temperature (600 °C). Raman spectra of the annealed films showed that both Fe and Si sites were substituted by the doped Sb in β-FeSi2 lattice.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Xiangdong, Lianwei Wang, Qinwo Shen, Rushan Ni та Chenglu Lin. "Characterization of FeSix film by codeposition on β‐FeSi2 template". Applied Physics Letters 68, № 20 (13 травня 1996): 2858–60. http://dx.doi.org/10.1063/1.116348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Akiyama, Kensuke, Hiroshi Funakubo та Masaru Itakura. "Epitaxial growth of (010)-oriented β-FeSi2 film on Si(110) substrate". MRS Proceedings 1493 (2013): 189–94. http://dx.doi.org/10.1557/opl.2013.407.

Повний текст джерела
Анотація:
ABSTRACTHigh-quality (010)-oriented epitaxial β-FeSi2 films were grown on Si(110) substrates by coating silver thin layer. The full width at half maximum of the rocking curve of β-FeSi2040 was 0.14o for the film deposited at 800°C on Si(110) substrates with 95 nm-thick silver layer. Moreover, this epitaxial β-FeSi2 film was constructed with single domain structure, and the lattice parameter of a-axis was extended by 0.7%. The photoluminescence spectrum from this epitaxial β-FeSi2 indicated that the band-gap was modulated by lattice strain of a-axis.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Suvorova, Elena I., Natalya A. Arkharova, Anna G. Ivanova, Fedor Yu Solomkin, and Philippe A. Buffat. "Phases and Interfaces in the Cr–Fe–Si Ternary System: X-ray Diffraction and Electron Microscopy Study." Inorganics 11, no. 2 (February 3, 2023): 73. http://dx.doi.org/10.3390/inorganics11020073.

Повний текст джерела
Анотація:
The ternary Cr-Fe-Si system was investigated with X-ray diffraction, energy dispersive X-ray spectrometry, scanning and transmission electron microscopy, and electron diffraction. Samples melted at 1723 K were examined right after cooling or after annealing at 1073 K for 3 days to determine phases, grain sizes, and interphase interfaces. During annealing, a polymorphic transformation of the tetragonal α-FeSi2 to the orthorhombic β-FeSi2 phase occurs, while CrSi2 retains its hexagonal structure at high-temperature treatment. Thin layers of ε-FeSi with a cubic structure were observed and identified within the CrSi2 grains. Crystallographic orientation relationships are determined at the interphase interfaces. The contributions of lattice mismatch and thermal expansion coefficient misfit to deformation are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Akiyama, Kensuke, Yuu Motoizumi, Tetsuya Okuda, Hiroshi Funakubo, Hiroshi Irie, and Yoshihisa Matsumoto. "Synthesis and Photocatalytic Properties of Iron Disilicide/SiC Composite Powder." MRS Advances 2, no. 8 (2017): 471–76. http://dx.doi.org/10.1557/adv.2017.221.

Повний текст джерела
Анотація:
ABSTRACTSemiconducting iron disilicide (β-FeSi2) island grains of 50-100 nanometers in size were formed on the surface of Au-coated 3C-SiC powder by metal-organic chemical vapor deposition. On the surface of 3C-SiC powder, the Au-Si liquidus phase was obtained via a Au-Si eutectic reaction, which contributed to the formation of the β-FeSi2 island grains. This β-FeSi2/SiC composite powder could evolve hydrogen (H2) from methyl-alcohol aqueous solution under irradiation of visible light with wavelengths of 420-650 nm.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gotoh, Kouhei, Hirokazu Suzuki, Haruhiko Udono, Isao Kikuma, Fumitaka Esaka, Masahito Uchikoshi та Minoru Isshiki. "Single crystalline β-FeSi2 grown using high-purity FeSi2 source". Thin Solid Films 515, № 22 (серпень 2007): 8263–67. http://dx.doi.org/10.1016/j.tsf.2007.02.066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Li, Xiao Na, Bing Hu, Chuang Dong, and Xin Jiang. "Structural Evolution Upon Annealing of Multi-Layer Si/Fe Thin Films Prepared by Magnetron Sputtering." Materials Science Forum 561-565 (October 2007): 1161–64. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1161.

Повний текст джерела
Анотація:
Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Arushanov, Ernest, та Konstantin G. Lisunov. "Transport properties of β-FeSi2". Japanese Journal of Applied Physics 54, № 7S2 (27 квітня 2015): 07JA02. http://dx.doi.org/10.7567/jjap.54.07ja02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Pandey, Tribhuwan, David J. Singh, David Parker та Abhishek K. Singh. "Thermoelectric properties of β-FeSi2". Journal of Applied Physics 114, № 15 (21 жовтня 2013): 153704. http://dx.doi.org/10.1063/1.4825217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Christensen, N. E. "Electronic structure of β-FeSi2". Physical Review B 42, № 11 (15 жовтня 1990): 7148–53. http://dx.doi.org/10.1103/physrevb.42.7148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ootsuka, Teruhisa, Yasunori Fudamoto, Masato Osamura, Takashi Suemasu, Yunosuke Makita, Yasuhiro Fukuzawa та Yasuhiko Nakayama. "Photoresponse properties of Al∕n-β-FeSi2 Schottky diodes using β-FeSi2 single crystals". Applied Physics Letters 91, № 14 (жовтень 2007): 142114. http://dx.doi.org/10.1063/1.2789706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Heinrich, A., H. Griessmann, G. Behr, K. Ivanenko, J. Schumann та H. Vinzelberg. "Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films". Thin Solid Films 381, № 2 (січень 2001): 287–95. http://dx.doi.org/10.1016/s0040-6090(00)01758-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Charoenyuenyao, Peerasil, Nathaporn Promros, Rawiwan Chaleawpong, Nattakorn Borwornpornmetee, Pattarapol Sittisart, Yūki Tanaka та Tsuyoshi Yoshitake. "Wettability, Surface Morphology and Structural Properties of β-FeSi2 Films Manufactured Through Usage of Radio-Frequency Magnetron Sputtering". Journal of Nanoscience and Nanotechnology 20, № 8 (1 серпня 2020): 5075–81. http://dx.doi.org/10.1166/jnn.2020.17839.

Повний текст джерела
Анотація:
In this research, β-FeSi2 thin films were manufactured onto Si(111) wafer substrates through the usage of radio-frequency magnetron sputtering (RFMS) method at 2.66 × 10−1 Pa of sputtering pressure. The substrate temperatures were varied at 500 °C, 560 °C, and 600 °C. The Raman lines of the β-FeSi2 fabricated at 500 °C revealed the peaks at the positions of ~174 cm−1, ~189 cm−1, ~199 cm−1, ~243 cm−1, ~278 cm−1, and ~334 cm−1. For the higher substrate temperatures of 560 °C and 600 °C, the Raman peaks of ~189 cm−1, ~243 cm−1, and ~278 cm−1 were shifted toward higher Raman positions. The surface view of the films was observed with several grains over the β-FeSi2 film surface at all substrate temperatures. The average grain size of the films for the samples deposited at 500 °C and 560 °C was in the range of 28 to 30 nm, where the size was enlarged to 36 nm at 600 °C of substrate temperature. The root mean square roughness were 10.19 nm, 10.84 nm, and 13.67 nm for the β-FeSi2 film surface prepared at the substrate temperatures of 500 °C, 560 °C, and 600 °C, respectively. The contact angle (CA) values were 99.25°, 99.80°, and 102.00° for the created samples at 500 °C, 560 °C, and 600 °C, respectively. As the acquired CA values, all β-FeSi2 samples exhibited a hydrophobic property with CA in the range of 90° to 150°. Consequently, the produced β-FeSi2 film surface employing the RFMS method indicated a potential to be employed in a hydrophobic coating application.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Costa, Benilde F. O., Gerard Le Caër та M. Ramos Silva. "Ball Milling of the β-FeSi2 Phase". Materials Science Forum 587-588 (червень 2008): 410–14. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.410.

Повний текст джерела
Анотація:
A β-FeSi2 sample was ball-milled for different periods in a vibratory ball-mill and studied by X-ray diffraction and Mössbauer spectroscopy. It transforms gradually with milling time into an α-FeSi2 phase.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lin, X. W., Z. Liliental-Weber, J. Washburn, J. Desimoni та H. Bernas. "Formation of β-FeSi2, by thermal annealing of Fe-implanted (001) Si". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 серпня 1993): 808–9. http://dx.doi.org/10.1017/s0424820100149878.

Повний текст джерела
Анотація:
Epitaxy of semiconducting β-FeSi2 on Si is of interest for optoelectronic device technology, because of its direct bandgap of ≈0.9 eV. Several techniques, including solid phase epitaxy (SPE) and ion beam synthesis, have been successfully used to grow β-FeSi2 on either Si (001) or (111) wafers. In this paper, we report the epitaxial formation of β-FeSi2 upon thermal annealing of an Fe-Si amorphous layer formed by ion implantation.Si (001) wafers were first implanted at room temperature with 50-keV Fe+ ions to a dose of 0.5 - 1×1016 cm−2, corresponding to a peak Fe concentration of cp ≈ 2 - 4 at.%, and subsequently annealed at 320, 520, and 900°C, in order to induce SPE of the implanted amorphous layer. Cross-sectional high-resolution electron microscopy (HREM) was used for structural characterization.We find that the implanted surface layer ( ≈100 nm thick) remains amorphous for samples annealed at 320°C for as long as 3.2 h, whereas annealing above 520°C results in SPE of Si, along with precipitation of β-FeSi2.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Bosholm, O., H. Oppermann, and S. Däbritz. "Chemischer Transport intermetallischer Phasen, II: Das System Fe-Si/Chemical Vapour Transport of Intermetallic Phases, II: The System Fe-Si." Zeitschrift für Naturforschung B 55, no. 7 (July 1, 2000): 614–26. http://dx.doi.org/10.1515/znb-2000-0709.

Повний текст джерела
Анотація:
AbstractFive phases exist in the system Fe-Si: Fe3Si, Fe2Si, Fe5Si3, FeSi, α-and β-FeSi2. All phases could be prepared by chemical transport with iodine as transport agent in the temperature range between T1 (700 °C) and T2 (1030 °C). In a attempted systematic clarification of the chemical transport reactions of all phases in the system, the effective transport equilibria were determined. Thermodynamic calculations show satisfactory agreement between calcula­tion and experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Muroga, M., H. Suzuki, H. Udono, I. Kikuma, A. Zhuravlev, K. Yamaguchi, H. Yamamoto та T. Terai. "Growth of β-FeSi2 thin films on β-FeSi2 (110) substrates by molecular beam epitaxy". Thin Solid Films 515, № 22 (серпень 2007): 8197–200. http://dx.doi.org/10.1016/j.tsf.2007.02.040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Visotin, Maxim A., I. A. Tarasov, A. S. Fedorov, S. N. Varnakov та S. G. Ovchinnikov. "Prediction of orientation relationships and interface structures between α-, β-, γ-FeSi2 and Si phases". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, № 3 (22 травня 2020): 469–82. http://dx.doi.org/10.1107/s2052520620005727.

Повний текст джерела
Анотація:
A pure crystallogeometrical approach is proposed for predicting orientation relationships, habit planes and atomic structures of the interfaces between phases, which is applicable to systems of low-symmetry phases and epitaxial thin film growth. The suggested models are verified with the example of epitaxial growth of α-, γ- and β-FeSi2 silicide thin films on silicon substrates. The density of near-coincidence sites is shown to have a decisive role in the determination of epitaxial thin film orientation and explains the superior quality of β-FeSi2 thin grown on Si(111) over Si(001) substrates despite larger lattice misfits. Ideal conjunctions for interfaces between the silicide phases are predicted and this allows for utilization of a thin buffer α-FeSi2 layer for oriented growth of β-FeSi2 nanostructures on Si(001). The thermal expansion coefficients are obtained within quasi-harmonic approximation from the DFT calculations to study the influence of temperature on the lattice strains in the derived interfaces. Faster decrease of misfits at the α-FeSi2(001)||Si(001) interface compared to γ-FeSi2(001)||Si(001) elucidates the origins of temperature-driven change of the phase growing on silicon substrates. The proposed approach guides from bulk phase unit cells to the construction of the interface atomic structures and appears to be a powerful tool for the prediction of interfaces between arbitrary phases for subsequent theoretical investigation and epitaxial film synthesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Theis, Jens, Robert Bywalez, Sebastian Küpper, Axel Lorke та Hartmut Wiggers. "Charge storage in β-FeSi2 nanoparticles". Journal of Applied Physics 117, № 5 (7 лютого 2015): 054303. http://dx.doi.org/10.1063/1.4906500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Arushanov, E., Ch Kloc та E. Bucher. "Impurity band inp-type β-FeSi2". Physical Review B 50, № 4 (15 липня 1994): 2653–56. http://dx.doi.org/10.1103/physrevb.50.2653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Higashi, T., T. Nagase та I. Yamauchi. "Long period structure of β-FeSi2". Journal of Alloys and Compounds 339, № 1-2 (червень 2002): 96–99. http://dx.doi.org/10.1016/s0925-8388(01)01975-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Daraktchieva, V., M. Baleva, E. Goranova та Ch Angelov. "Ion beam synthesis of β-FeSi2". Vacuum 58, № 2-3 (серпень 2000): 415–19. http://dx.doi.org/10.1016/s0042-207x(00)00199-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

He, J. Y., X. Wang, X. L. Wu та Paul K. Chu. "Anisotropic etching of microscale β-FeSi2 particles: Formation, mechanism, and quantum confinement of β-FeSi2 nanowhiskers". RSC Advances 2, № 8 (2012): 3254. http://dx.doi.org/10.1039/c2ra00893a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Suzuno, Mitsushi, Keiichi Akutsu, Hideki Kawakami, Kensuke Akiyama та Takashi Suemasu. "Metalorganic chemical vapor deposition of β-FeSi2 on β-FeSi2 seed crystals formed on Si substrates". Thin Solid Films 519, № 24 (жовтень 2011): 8473–76. http://dx.doi.org/10.1016/j.tsf.2011.05.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Fedorov, A. S., A. A. Kuzubov, T. A. Kozhevnikova, N. S. Eliseeva, N. G. Galkin, S. G. Ovchinnikov, A. A. Saranin та A. V. Latyshev. "Features of the structure and properties of β-FeSi2 nanofilms and a β-FeSi2/Si interface". JETP Letters 95, № 1 (березень 2012): 20–24. http://dx.doi.org/10.1134/s0021364012010055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Esaka, F., H. Yamamoto, H. Udono, N. Matsubayashi, K. Yamaguchi, S. Shamoto, M. Magara та T. Kimura. "Spectroscopic characterization of β-FeSi2 single crystals and homoepitaxial β-FeSi2 films by XPS and XAS". Applied Surface Science 257, № 7 (січень 2011): 2950–54. http://dx.doi.org/10.1016/j.apsusc.2010.10.097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Grimaldi, M. G., G. Franzò, S. Ravesi, A. Terrasi, C. Spinella та A. La Mantia. "Formation of epitaxial γ-FeSi2 and β-FeSi2 layers on (111) Si". Applied Surface Science 74, № 1 (січень 1994): 19–26. http://dx.doi.org/10.1016/0169-4332(94)90095-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Polyakova, E. G. "DEVICE STRUCTURES BASED ON β-FeSi2 (OVERVIEW)". Electronic engineering. Series 2. Semiconductor device 249, № 2 (2018): 4–18. http://dx.doi.org/10.36845/2073-8250-2018-249-2-4-18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Okajima, Keiichi, Ching-ju Wen, Manabu Ihara, Isao Sakata та Koichi Yamada. "Optical and Electrical Properties of β-FeSi2/Si, β-FeSi2/InP Heterojunction Prepared by RF-Sputtering Deposition". Japanese Journal of Applied Physics 38, Part 1, No. 2A (15 лютого 1999): 781–86. http://dx.doi.org/10.1143/jjap.38.781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Olk, C. H., O. P. Karpenko, S. M. Yalisove, G. L. Doll та J. F. Mansfield. "Growth of epitaxial β-FeSi2 thin films by pulsed laser deposition on silicon (111)". Journal of Materials Research 9, № 11 (листопад 1994): 2733–36. http://dx.doi.org/10.1557/jmr.1994.2733.

Повний текст джерела
Анотація:
Epitaxial films of semiconducting iron disilicide (β-FeSi2) have been grown by pulsed laser deposition. We find that pulsed laser deposition creates conditions favorable to the formation of films with the smallest geometric misfit possessed by this material system. In situ reflection high energy electron diffraction results indicate a layer by layer growth of the silicide. Analysis of transmission electron diffraction data has determined that the films are single phase and that this growth method reproduces the epitaxial relationship: β-FeSi2 (001) ‖ Si(111).
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Kimura, Yoshisato, Hiroaki Otani, Ayaka Mori та Yaw-Wang Chai. "Evaluation of Microstructure Formation and Phase Equilibria for Thermoelectric β-FeSi2 Composite Alloys". MRS Advances 2, № 26 (2017): 1369–74. http://dx.doi.org/10.1557/adv.2017.115.

Повний текст джерела
Анотація:
ABSTRACTThermoelectric composite alloys consisting of the β-FeSi2 matrix and SiO2 particles dispersion were fabricated by a so-called combined reactions sintering process using reduction and oxidation reactions between eutectoid Si decomposed from α-Fe2Si5 and added Fe-oxide powder. Typical microstructure may include some of residual eutectoid Si particles, intermediate product Fe2SiO4 particles, and/or remaining reduced Fe particles depending on the composite alloy compositions and the process conditions. Partitioning of doping element, n-type Co or p-type Mn, during the process plays an important role to control the optimum carrier concentration of the composite alloys. Thermal conductivity can be reduced, as expected, by the dispersion of SiO2 particles. The solubility of doping elements, Co, Mn, Al, and Ru was evaluated in α-Fe2Si5 at 1373 K and in β-FeSi2 at 1073 K being based on the isotherm determination. It is suggested that suitable dopants for the present process are n-type Co and p-type Mn, since they have sufficiently large solubility around 10 at% in both α-Fe2Si5 and β-FeSi2 phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhang, Chi, Zhi Hao Zhang, Zhi Peng Jiang, Wei Li Wang, and Jian Xin Xie. "Effects of Melt Cyclical Superheating Conditions on the Microstructure of FeSi2 Alloy." Materials Science Forum 789 (April 2014): 320–27. http://dx.doi.org/10.4028/www.scientific.net/msf.789.320.

Повний текст джерела
Анотація:
In order to avoid coarse primary-precipitated ε phase which prolong α+ε→β phase transition time in FeSi2 material prepared by conventional casting, a cyclical superheating process of melt for preparing FeSi2 with complete α+ε eutectic structure was proposed. The effects of melt superheating conditions on the microstructure of FeSi2 were investigated. The results showed that, with the increase of the superheating temperature, the superheating time, the recycling times and the cooling velocity, the size and quantity of the ε phase reduced. Meanwhile, the number of the fine eutectic structure increased. FeSi2 sample with uniform and complete α+ε eutectic structure was successfully prepared in the conditions of melt superheating temperature at 1550°C, superheating time for 10mins, recycling 3 times,melt cooling rate of 30°C/s.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Galkin, Nikolay G., Konstantin Nickolaevich Galkin, Evgeniy Y. Subbotin, Evgeniy Anatoljevich Chusovotin та Dmitrii L. Goroshko. "Multilayer Heterostructures with Embedded CrSi2 and β-FeSi2 Nanocrystals on Si(111) Substrate: From the Formation to Photoelectric Properties". Solid State Phenomena 312 (листопад 2020): 45–53. http://dx.doi.org/10.4028/www.scientific.net/ssp.312.45.

Повний текст джерела
Анотація:
The studies are devoted to the development of the technology of multilayer incorporation of nanocrystals (NCs) of semiconductor chromium and iron disilicides with a layer density no less than 2x1010 cm-2, the establishment of the growth mechanism of heterostructures with two types of NCs, the determination of their crystalline quality and optical properties, as well as the creation and study of rectification and photoelectric properties of p-i-n diodes based on them. Morphologically smooth heterostructures with 6 embedded layers of CrSi2 nanocrystals and two types of embedded nanocrystals (with 4 layers of CrSi2 NCs and 2 layers of β-FeSi2 NCs) for optical studies and built-in silicon p-i-n diodes were grown for the first time. The possibility of optical identification of interband transitions in embedded nanocrystals in the photon energy range of 1.2 - 2.5 eV was determined from the reflection spectra and the strongest peaks in reflection from the integrated nanocrystals were determined: 2.0 eV for CrSi2 NCs and 1.75 eV for β-FeSi2 NCs. The created p-i-n diodes have a contact potential difference of 0.95 V, regardless of the type of embedded NCs. At 80 K, an absorption band (0.7 - 1.1 eV) was detected in the diodes, which was associated with carrier photo generation in the embedded CrSi2 and β-FeSi2 NCs. From the spectra of the photoresponse at 80 K, the band gap widths in the NCs were determined: 0.50 eV in CrSi2 and 0.70 eV in the superposition of the CrSi2 and β-FeSi2 NCs.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Inaba, T., Y. Saito, H. Kominami, Y. Nakanishi, K. Murakami, T. Matsuyama та H. Tatsuoka. "Growth of SiOx nanofibers using FeSi and β-FeSi2 substrates with Ga droplets". Thin Solid Films 515, № 22 (серпень 2007): 8158–61. http://dx.doi.org/10.1016/j.tsf.2007.02.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ohishi, T., A. Mishina, I. Yamauchi, T. Matsuyama та H. Tatsuoka. "Structural property of β-FeSi2 layers deposited on FeSi from a molten salt". Thin Solid Films 515, № 22 (серпень 2007): 8201–4. http://dx.doi.org/10.1016/j.tsf.2007.02.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Tani, Jun-ichi, та Hiroyasu Kido. "Electrical Properties of Cr-Doped β-FeSi2". Japanese Journal of Applied Physics 38, Part 1, No. 5A (15 травня 1999): 2717–20. http://dx.doi.org/10.1143/jjap.38.2717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Rebien, M., W. Henrion, U. Müller та S. Gramlich. "Exciton absorption in β-FeSi2 epitaxial films". Applied Physics Letters 74, № 7 (15 лютого 1999): 970–72. http://dx.doi.org/10.1063/1.123426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Dimitriadis, C. A. "Electrical properties of β‐FeSi2/Si heterojunctions". Journal of Applied Physics 70, № 10 (15 листопада 1991): 5423–26. http://dx.doi.org/10.1063/1.350372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Terrasi, A., S. Ravesi, M. G. Grimaldi та C. Spinella. "Ion beam assisted growth of β‐FeSi2*". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 12, № 2 (березень 1994): 289–94. http://dx.doi.org/10.1116/1.578870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Arushanov, E., J. H. Schön та H. Lange. "Transport properties of Cr-doped β-FeSi2". Thin Solid Films 381, № 2 (січень 2001): 282–86. http://dx.doi.org/10.1016/s0040-6090(00)01757-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Maeda, Yoshihito. "Semiconducting β-FeSi2 towards optoelectronics and photonics". Thin Solid Films 515, № 22 (серпень 2007): 8118–21. http://dx.doi.org/10.1016/j.tsf.2007.02.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії