Добірка наукової літератури з теми "Α-hydroxyketones"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Α-hydroxyketones".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Α-hydroxyketones"

1

Huang, Jinwen, Fanhong Wu, Zhongyuan Li, Zhuang Ni, Ran Sun, Hui Nie, Hui Tang та Lixing Song. "Indium-Mediated Reformatsky Reaction of Iododifluoro Ketones with Aldehydes: Preparation of α,α-Difluoro-β-hydroxyketone Derivatives in Water". SynOpen 06, № 01 (січень 2022): 19–30. http://dx.doi.org/10.1055/s-0040-1719888.

Повний текст джерела
Анотація:
AbstractIndium can efficiently mediate the Reformatsky reaction of iododifluoroacetylketones with aldehydes to afford the corresponding α,α-difluoro-β-hydroxyketones in high yield in pure water This reaction has excellent substrate suitability and functional group selectivity and provides an efficient approach for the synthesis of bioactive molecules containing the α,α-difluoro-β-hydroxyketone pharmacophore.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kam, Mei Kee, Akira Sugiyama, Ryouta Kawanishi та Kazutaka Shibatomi. "Asymmetric Synthesis of Tertiary α -Hydroxyketones by Enantioselective Decarboxylative Chlorination and Subsequent Nucleophilic Substitution". Molecules 25, № 17 (27 серпня 2020): 3902. http://dx.doi.org/10.3390/molecules25173902.

Повний текст джерела
Анотація:
Chiral tertiary α-hydroxyketones were synthesized with high enantiopurity by asymmetric decarboxylative chlorination and subsequent nucleophilic substitution. We recently reported the asymmetric decarboxylative chlorination of β-ketocarboxylic acids in the presence of a chiral primary amine catalyst to obtain α-chloroketones with high enantiopurity. Here, we found that nucleophilic substitution of the resulting α-chloroketones with tetrabutylammonium hydroxide yielded the corresponding α-hydroxyketones without loss of enantiopurity. The reaction proceeded smoothly even at a tertiary carbon. The proposed method would be useful for the preparation of chiral tertiary alcohols.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zheng, Shasha, Wietse Smit, Anke Spannenberg, Sergey Tin та Johannes G. de Vries. "Synthesis of α-keto aldehydes via selective Cu(i)-catalyzed oxidation of α-hydroxy ketones". Chemical Communications 58, № 29 (2022): 4639–42. http://dx.doi.org/10.1039/d2cc00773h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Naveen, Naganaboina, та Rengarajan Balamurugan. "Catalyst free synthesis of α-fluoro-β-hydroxy ketones/α-fluoro-ynols via electrophilic fluorination of tertiary propargyl alcohols using Selectfluor™ (F-TEDA-BF4)". Organic & Biomolecular Chemistry 15, № 9 (2017): 2063–72. http://dx.doi.org/10.1039/c7ob00140a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tanaka, Toru, Masami Kawase та Satoru Tani. "α-Hydroxyketones as inhibitors of urease". Bioorganic & Medicinal Chemistry 12, № 2 (січень 2004): 501–5. http://dx.doi.org/10.1016/j.bmc.2003.10.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oelerich, Jens, та Gerard Roelfes. "Alkylidene malonates and α,β-unsaturated α′-hydroxyketones as practical substrates for vinylogous Friedel–Crafts alkylations in water catalysed by scandium(iii) triflate/SDS". Organic & Biomolecular Chemistry 13, № 9 (2015): 2793–99. http://dx.doi.org/10.1039/c4ob02487g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tsukamoto, Takashi, Takashi Yamazaki та Tomoya Kitazume. "Enzymic Optical Resolution of α,α-Difluoro-β-Hydroxyketones". Synthetic Communications 20, № 20 (листопад 1990): 3181–86. http://dx.doi.org/10.1080/00397919008051543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iseki, Katsuhiko, Daisuke Asada та Yoshichika Kuroki. "Preparation of optically active α,α-difluoro-β-hydroxyketones". Journal of Fluorine Chemistry 97, № 1-2 (липень 1999): 85–89. http://dx.doi.org/10.1016/s0022-1139(99)00033-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Heng, Nan Liu, Xian Hui, and Wen-Yun Gao. "An improved enzymatic method for the preparation of (R)-phenylacetyl carbinol." RSC Advances 7, no. 52 (2017): 32664–68. http://dx.doi.org/10.1039/c7ra04641c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Muschallik, Lukas, Denise Molinnus, Melanie Jablonski, Carina Ronja Kipp, Johannes Bongaerts, Martina Pohl, Torsten Wagner, Michael J. Schöning, Thorsten Selmer та Petra Siegert. "Synthesis of α-hydroxy ketones and vicinal (R,R)-diols by Bacillus clausii DSM 8716T butanediol dehydrogenase". RSC Advances 10, № 21 (2020): 12206–16. http://dx.doi.org/10.1039/d0ra02066d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Α-hydroxyketones"

1

Higson, Sally. "Sustainable approaches to the synthesis of aromatic compounds and α-hydroxyketones". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10037691/.

Повний текст джерела
Анотація:
The unifying theme of this thesis is a sustainable approach to synthetic chemistry, focussing on two areas; the synthesis of aromatic compounds from biomass-derived furfural derivatives using environmentally friendly methodology, and the synthesis of α-hydroxyketones by expanding the substrate scope of transketolase enzymes by medium throughput mutant screening. Chapter I gives an overview of the principles and importance of sustainability in synthetic chemistry and presents a broad discussion of biomass sources and uses, the use of water as a solvent, and enzymatic catalysis in organic synthesis. Chapter II discusses the production of furfural derivatives from biomass, including the potential role of sugar beet pulp as a feedstock, and an overview of furfurals in synthesis. A new route to substituted benzene rings from furfurals via a three-step, one-pot cascade in water is then described, its scope explored, and an intramolecular variant developed. A ‘Design of Experiment’ optimisation of a furfural Michael addition is also presented. Chapter III concerns the reactivity and potential uses of the phthalimide hydrazones produced by the methodology introduced in Chapter II, presenting an overview of potential downstream products, a broad investigation of functional group manipulation, and a new synthetic route to a poly(ADP-ribose) ribose polymerase inhibitor and substituted phthalocyanines. Chapter IV explores the use of transketolase enzymes in the synthesis of α-hydroxyketones, investigating the role of enzyme variants in enhancing the acceptance of previously unreported non-natural keto-acid donor substrates. The development of a medium throughput methodology and its application in enzyme mutant screening is described. Chapter V gives a summary of the research carried out, presents some general conclusions, and describes future work, and Chapter VI contains the details of experimental procedures and compound characterisation for the results discussed in Chapters II-IV.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ocal, Nazim. "Ingénierie de la transcétolase de Geobacillus stearothermophilus : cascade enzymatique pour la synthèse d’alpha-hydroxycétones chirales." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC047.

Повний текст джерела
Анотація:
Des α-hydroxycétones dissymétriques chirales valorisables en raison de leurs propriétés biologiques ont été obtenues avec une transcétolase thermostable issue de Geobacillus stearothermophilus (TKgst) sauvage ou mutée, en présence de différents α-cétoacides donneurs et aldéhydes accepteurs. Le premier objectif a consisté en l’obtention par voie enzymatique de l’α-cétoacide le plus communément utilisé comme donneur des TKs ; l’hydroxypyruvate, à partir de D-sérine, selon une méthode écocompatible contrairement à la méthode chimique. Cette stratégie fait intervenir une D-amino acide oxydase (DAAO) qui a été couplée à des TKs sauvages ou mutées en présence d’aldéhydes accepteurs aliphatiques ou polyhydroxylés. La cascade bi-enzymatique a été réalisée dans un seul pot et a conduit à sept α-hydroxycétones chirales avec de bons rendements et d’excellentes stéréosélectivités. Ces composés à haute valeur ajoutée sont valorisables pour leurs propriétés biologiques dans le secteur des arômes, des édulcorants ou médical. Afin d’optimiser la stratégie, la production de la D-sérine a été envisagée à partir de deux substrats achiraux peu couteux que sont la glycine et le formaldéhyde grâce à une D-thréonine aldolase. L’autre objectif de cette thèse concernait l’élargissement du spectre des substrats donneurs de la TKgst par mutagenèse vers de nouveaux α-cétoacides, notamment fonctionnalisés, ainsi que la combinaison de ces nouveaux α-cétoacides avec des aldéhydes accepteurs polyhydroxylés. Un test colorimétrique basé sur la variation du pH du milieu réactionnel a été développé sur milieu semi-solide permettant de cribler les banques et de visualiser les TKgst mutés actives en présence de nouveaux α-cétoacides donneurs d’après la couleur des clones. Seuls les α-cétoacides aliphatiques et plus particulièrement l’oxobutyrate a conduit en présence de deux nouvelles TKgst mutées H102L/H474S/L118I et H102L/L118I à des gains d’activité les plus élevés par rapport à la TKgst sauvage et aux mutants déjà décrits. Le variant H102L/L118I thermostable a été couplé à une DAAO 4536 thermostable en présence de D-homoalanine, précurseur de l’oxobutyrate et de trois aldéhydes polyhydroxylés, D-érythrose, D-xylose et D-ribose comme accepteurs. La conversion du D-érythrose est complète et plus rapide par rapport au D-ribose et au D-xylose, composés à plus longue chaine carbonée. Les trois α-hydroxycétones correspondantes ont été obtenues avec des excès diastéréoisomériques élevés montrant que les positions mutées au niveau de la TKgst n’ont aucun effet sur le mécanisme catalytique
Unsymmetric chiral α-hydroxyketones highly valuable for their biological properties were obtained with a thermostable transketolase Geobacillus stearothermophilus (TKgst), wild-type or mutated in the presence of different α-ketoacids as donors and aldehydes as acceptors. The first objective was to obtain, by enzymatic way, the most commonly used enzymatic screening-ketoacid as a TK donor, hydroxypyruvate, from D-serine, according to an eco-compatible method compared the usual chemical synthesis. This strategy involves a D-amino acid oxidase (DAAO) which has been coupled to wild-type or mutated TKs in the presence of aliphatic or polyhydroxylated aldehydes. This bienzymatic cascade was performed in a single pot and led to seven chiral α-hydroxyketones with good yields and excellent stereoselectivities. These high value-added compounds can be used for their biological properties in the flavoring, sweetening or medical sectors. In order to optimize the strategy, the production of D-serine was considered from two inexpensive achiral substrates, glycine and formaldehyde, using a D-threonine aldolase. The other objective of this thesis concerned the broadening of the spectrum of TKgst donor substrates by mutagenesis towards new α-ketoacids, in particular functionalized ones, as well as the combination of these new α-ketoacids with polyhydroxylated acceptor aldehydes. A colorimetric test based on the variation of the pH of the reaction medium was developed on a solid medium making it possible to screen the libraries and to visualize the active mutated TKgst according to the color of the clones. Among the donor substrates tested, only aliphatic α-ketoacids and more particularly oxobutyrate lead, in the presence of two new mutated TKgst H102L/H474S/L118I and H102L/L118I, to the highest activity gains compared to wild-type TKgst and to the variants already described. The thermostable H102L/L118I variant was coupled to a thermostable DAAO 4536 in the presence of D-homoalanine, precursor of oxobutyrate and three polyhydroxylated aldehydes, D-erythrose, D-xylose and D-ribose as acceptors. The conversion of D-erythrose was total and faster compared to D-ribose and D-xylose, compounds with longer carbon chains. The three corresponding enzymatic screening-hydroxyketones were obtained with high diastereoisomeric excesses showing that the mutated positions at the TKgst active site have no effect on the catalytic mechanism
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maraite, Andy [Verfasser], та Marion [Akademischer Betreuer] Ansorge-Schumacher. "Identifizierung, Bereitstellung und Charakterisierung von Pseudomonas Lipasen zur kinetischen Racemattrennung von α-Hydroxyketonen / Andy Maraite. Betreuer: Marion Ansorge-Schumacher". Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1014946395/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nieguth, René [Verfasser], та Reinhard [Akademischer Betreuer] Schomäcker. "Entwicklung einer robusten chemo-enzymatisch dynamisch kinetischen Racematspaltung für die nachhaltige Synthese chiraler α-Hydroxyketone / René Nieguth. Betreuer: Reinhard Schomäcker". Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2013. http://d-nb.info/1033640417/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hornung, Claudia Katharina [Verfasser], та Wolfgang [Akademischer Betreuer] Streit. "Violacein-producing Janthinobacterium sp. HH01 : Genome analysis revealed a novel α-hydroxyketone-sensing reporter-strain / Claudia Katharina Hornung. Betreuer: Wolfgang Streit". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2013. http://d-nb.info/1042753822/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Petrenz-Beck, Annika Verfasser], Marion B. [Gutachter] Ansorge-Schumacher та Ulf [Gutachter] [Hanefeld. "Heterogene chemo-enzymatische dynamisch kinetische Racematspaltung symmetrischer und asymmetrischer α-Hydroxyketone / Annika Petrenz-Beck ; Gutachter: Marion B. Ansorge-Schumacher, Ulf Hanefeld". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://d-nb.info/1226813216/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bieler, Nora Christiane [Verfasser], та Marion [Akademischer Betreuer] Ansorge-Schumacher. "Präparation spezieller Biokatalysatoren für die chemisch-technische Nutzung zur Bereitstellung von Aromaten und chiralen α-Hydroxyketonen / Nora Christiane Bieler. Betreuer: Marion Ansorge-Schumacher". Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1014827612/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Haack, Frederike Svenja [Verfasser], та Wolfgang [Akademischer Betreuer] Streit. "Genome, mutational and RNA-seq analyses of Janthinobacterium and Duganella strains reveal the presence of a single α-hydroxyketone-like quorum sensing system involved in bacterial-fungal interactions / Frederike Svenja Haack ; Betreuer: Wolfgang Streit". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1124155376/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Haack, Frederike Svenja [Verfasser], та Wolfgang [Akademischer Betreuer] Streit. "Genome, mutational and RNA-seq analyses of Janthinobacterium and Duganella strains reveal the presence of a single α-hydroxyketone-like quorum sensing system involved in bacterial-fungal interactions / Frederike Svenja Haack ; Betreuer: Wolfgang Streit". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2016. http://d-nb.info/1120015073/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huang, Pei-Wen, та 黃姵文. "Hypervalent Iodine(III) Reagent Mediated Synthesis of Dienones, α, β-unsaturated Weinreb amides and α-Hydroxyketones". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/q22j6m.

Повний текст джерела
Анотація:
碩士
高雄醫學大學
藥學研究所
91
In recent years, hypervalent iodine reagents have attracted much attention as useful synthetic reagents. These hypervalent iodine reagents have been extensively used inorganic synthesis due to their low toxicity and easy handling. In the family of hypervalent iodine compounds, phenyl iodine(III) diacetate(PIDA), phenyliodine (III) bis(trifluoroacetate) (PIFA) and [hydroxy(tosyloxy)iodo]benzene (HTIB) are the most frequently used and easily available reagents. In this work, PIDA, PIFA, and HTIB will be applied to prepared dienones, α,β-unsatured Weinreb amides and α-hydroxyketones.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Α-hydroxyketones"

1

Calvert, Jack, Abdelwahid Mellouki, John Orlando, Michael Pilling, and Timothy Wallington. "Rate Coefficients and Mechanisms for the Atmospheric Oxidation of the Ketones." In Mechanisms of Atmospheric Oxidation of the Oxygenates. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199767076.003.0008.

Повний текст джерела
Анотація:
Ketones are emitted directly to the atmosphere, and their sources were discussed in detail in chapter I. In the U.K. acetone and butanone comprise about 7% and 5%, respectively, of the total anthropogenic emissions of oxygenated compounds, and 1.6% and 1.1%, respectively, of the total anthropogenic emissions of nonmethane volatile organic compounds. Ketone emissions from solvents (both industrial and personal) are substantial; emissions from both gasoline- and diesel-fueled vehicles also contribute. Ketones are also formed extensively in the atmosphere in the oxidation of other compounds. Acetone, for example is formed in the OH-initiated oxidation of propane, iso-butane, iso-pentane, and neopentane and from a number of higher hydrocarbons. It is also formed in the oxidation of terpenes. The distribution, sources, and sinks of acetone in the atmosphere have been analyzed by Simpson et al. (1994). Methyl vinyl ketone is an important first generation product in the OH-initiated oxidation of isoprene. In this chapter, we discuss the rate coefficients and the mechanisms of oxidation of ketones. The classes covered include alkanones, hydroxyketones, diketones, unsaturated ketones, ketenes, cyclic ketones, ketones derived from biogenic compounds, and halogen-substituted ketones. Photolysis is a major atmospheric process for many ketones, and will be discussed in chapter IX. The major bimolecular reactions removing ketones from the atmosphere are with OH. Although less important than the OH reactions, reactions with Cl have been studied quite extensively. Other than for unsaturated ketones, reactions with NO3 and O3 are unimportant in tropospheric chemistry and have been studied little. The carbonyl group deactivates the α-position with respect to reaction with OH, but activates the β-position, and possibly more distant sites as well. The net result is that the overall rate coefficient of an alkanone generally exceeds that of the equivalent alkane. The temperature dependences of the rate coefficients can be quite complex, with acetone and possibly butanone showing a minimum in the rate coefficient at ∼250 K, while the higher alkanones show negative temperature dependences across the more limited temperature ranges that have been investigated. The most likely explanation of this behavior is the formation of a pre-reaction, hydrogen-bonded complex.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії