Literatura científica selecionada sobre o tema "Γ' precipitation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Γ' precipitation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Γ' precipitation"
Xu, H. P., A. H. W. Ngan, B. J. Duggan e Q. Z. Chen. "Toughening of γ′-Ni3A1 by γ precipitation". Materials Letters 31, n.º 3-6 (junho de 1997): 233–37. http://dx.doi.org/10.1016/s0167-577x(96)00280-7.
Texto completo da fonteLi, Zhiru. "Influence of Different Precipitation Periods on Dendrolimus superans Occurrence: A Biostatistical Analysis". International Journal of Agriculture and Biology 25, n.º 01 (1 de janeiro de 2021): 61–67. http://dx.doi.org/10.17957/ijab/15.1638.
Texto completo da fonteWatanabe, Chihiro, e Ryoichi Monzen. "Precipitation Process in a Cu-Ni-Be Alloy". Solid State Phenomena 172-174 (junho de 2011): 432–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.432.
Texto completo da fonteLück, Janik Marius, e Joachim Rösler. "Reducing the γ′-Particle Size in CMSX-4 for Membrane Development". Materials 15, n.º 4 (10 de fevereiro de 2022): 1320. http://dx.doi.org/10.3390/ma15041320.
Texto completo da fonteZelinskiy, A. S., G. A. Yakovlev e D. E. Fil’trov. "Связь мощности дозы гамма-излучения с интенсивностью ливневых осадков". Вестник КРАУНЦ. Физико-математические науки, n.º 3 (22 de novembro de 2021): 189–99. http://dx.doi.org/10.26117/2079-6641-2021-36-3-189-199.
Texto completo da fonteSun, W. R., Z. Q. Hu, J. H. Lee, S. M. Ceo e S. J. Choe. "Influence of solidification rate on precipitation and microstructure of directional solidification IN792 + Hf superalloy". Journal of Materials Research 14, n.º 10 (outubro de 1999): 3873–81. http://dx.doi.org/10.1557/jmr.1999.0524.
Texto completo da fonteChen, S., P. A. Beaven e R. Wagner. "Carbide precipitation in γ-TiAl alloys". Scripta Metallurgica et Materialia 26, n.º 8 (abril de 1992): 1205–10. http://dx.doi.org/10.1016/0956-716x(92)90564-u.
Texto completo da fonteCampbell, S. J., e G. L. Whittle. "γ-Fe precipitation in melt-spunCuFe". Hyperfine Interactions 41, n.º 1 (dezembro de 1988): 567–70. http://dx.doi.org/10.1007/bf02400454.
Texto completo da fonteTuri, Maria-Lynn, George Weatherly e Gary Purdy. "Grain boundary precipitation of γ in γ′ Ni3(Al,Ti)". Materials Science and Engineering: A 192-193 (fevereiro de 1995): 945–49. http://dx.doi.org/10.1016/0921-5093(94)03325-0.
Texto completo da fonteZeng, Xubin, Mike Barlage, Chris Castro e Kelly Fling. "Comparison of Land–Precipitation Coupling Strength Using Observations and Models". Journal of Hydrometeorology 11, n.º 4 (1 de agosto de 2010): 979–94. http://dx.doi.org/10.1175/2010jhm1226.1.
Texto completo da fonteTeses / dissertações sobre o assunto "Γ' precipitation"
Orlacchio, Federico. "Évolution de la microstructure du superalliage à base nickel γ-γ' René 65 au cours de sa mise en forme pour la fabrication de disques de turbine". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM034.
Texto completo da fonteNickel-based superalloys are high-performance metallic materials offering excellent mechanical properties at high temperatures. For this reason, they are widely used in the aerospace industry for the hottest, most highly stressed parts of jet engines. To increase operating temperature and, at the same time, reduce fuel consumption and greenhouse gas emissions, the nickel-based polycrystalline superalloy γ-γ' René 65 has been chosen for the manufacture of certain turbine disks in new-generation turbojet engines. In service and during hot forming, this family of superalloys features two distinct phases: γ, a Ni-rich solid solution, and γ', an intermetallic compound with a stoichiometric Ni3(Al,Ti) composition. During forging, both phases can evolve simultaneously, with comparable kinetics and different possible interaction mechanisms such as Smith-Zener pinning and heteroepitaxial recrystallization, making the study of underlying microstructural evolutions complex and ambitious. The main objective of this work is to study the microstructural evolutions at work during the various hot forging operations for the two phases, γ and γ', using a mainly experimental approach. To achieve this, a themomechanical path with subsolvus heat treatment, followed by hot compression and finalized by solution treatment, was reproduced in the laboratory. In the course of this work, the experimental dissolution kinetics of γ' precipitates and the static recrystallization kinetics of the γ matrix during subsolvus treatment were determined. The effect of thermomechanical parameters such as deformation level, strain rate and temperature on dynamic recrystallization has been studied in detail in the subsolvus domain of the alloy. The evolution of the microstructure during solution treatment, i.e. in the grain growth regime, was analyzed from different initial microstructures. In addition, a mean-field grain growth model in the presence of γ' precipitates was calibrated and validated for the René 65 alloy. This work provides a better understanding of the forging behavior of nickel-based γ-γ' superalloys in the subsolvus domain, i.e. in a context of strong interaction and coupling between the γ matrix and γ' precipitates. In conclusion, the results obtained are also industrially important for future optimization of the hot-forging process for this alloy
Ahmad, Afandi. "Development of Fe-based Superalloys Strengthened by the γ'Phase". Kyoto University, 2020. http://hdl.handle.net/2433/259045.
Texto completo da fonteKo, Chien-Shen, e 柯建盛. "Kinetics of the CO oxidation of Au/γ-Al2O3 catalysts Prepared by Deposition-precipitation". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/58dssw.
Texto completo da fonte元智大學
化學工程學系
92
Alumina-supported gold catalysts were prepared by deposition-precipitation method. The preparation parameters investigated include pH, pretreatment , sequence of raw material addition. The Au/γ-Al2O3 prepared at pH >9.5 became very active for CO oxidation above at 213K after a calcination at 573K for 2h. This activity is similar to the 1.5% Au/TiO2 reference catalyst. With a feed of 1% CO+10% O2 in He, almost 90% of the CO was converted at 298K at CO a space velocity of 21,415 μ mole/g-cat/h. Lower CO oxidation activity was observed, when the calcination temperature reduced to 473K or when a calcination time of 1h was used. Kinetic studies were performed with both 1% Au/γ-Al2O3 and 1.5% Au/TiO2. Both catalysts showed a near -1 order rate dependence on CO and a near 0.2 order rate dependence on O2 between 213K and 253K. This conforms to a single-site Langmuir-Hinshelwood rate model. However, it is not sure whether the O2 was dissociative or nondissociative adsorbed.
Capítulos de livros sobre o assunto "Γ' precipitation"
Zhang, Fan, Weisheng Cao, Chuan Zhang, Shuanglin Chen, Jun Zhu e Duchao Lv. "Simulation of Co-precipitation Kinetics of γ′ and γ″ in Superalloy 718". In Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, 147–61. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89480-5_8.
Texto completo da fonteKim, Il Ho, e S. I. Kwun. "Precipitation Behavior of γ" in Severely Plastic Deformed Ni-Base Alloys". In Progress in Powder Metallurgy, 213–16. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.213.
Texto completo da fonteMukhopadhyay, Semanti, Fei Xue, Hariharan Sriram, Robert W. Hayes, Emmanuelle A. Marquis, Yunzhi Wang e Michael J. Mills. "Preferential γ′ Precipitation on Coherent Annealing Twin Boundaries in Alloy 718". In The Minerals, Metals & Materials Series, 135–46. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27447-3_9.
Texto completo da fonteZajac, Stanislaw. "Precipitation of Microalloy Carbo-Nitrides Prior, during and after γ/α Transformation". In Materials Science Forum, 75–86. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-981-4.75.
Texto completo da fonteImata, Hideo, e Keiko Takahashi. "Specific Binding and Precipitation of γ-Cyclodextrin with Monosaccharide in an Aqueous Solution". In Proceedings of the Ninth International Symposium on Cyclodextrins, 15–18. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4681-4_4.
Texto completo da fonteKoyama, Toshiyuki, e Hidehiro Onodera. "Phase-Field Simulation of γ"(D022) Precipitation in Ni Base Superalloys". In Materials Science Forum, 2287–92. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.2287.
Texto completo da fontePark, June Soo, Dong Hyun Kim e Young Kook Lee. "NbC Precipitation Kinetics during and after γ/α Transformation of a Nb Microalloyed Steel". In THERMEC 2006, 4191–95. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4191.
Texto completo da fonteWu, Kaisheng, Youhai Wen e Jeffrey A. Hawk. "Phase Field Simulations on the Precipitation Kinetics of γ′ in Ni-Base Superalloy Haynes 282". In TMS2013 Supplemental Proceedings, 711–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663547.ch88.
Texto completo da fonteKim, Il Ho, e S. I. Kwun. "Influence of Plastic Deformation during ECAP on Precipitation Temperature of γ″ in IN 718 Alloy". In Solid State Phenomena, 431–36. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-25-6.431.
Texto completo da fonteQin, Hailong, Hai Chi, Ying Tao, Mingzhao Xie, Songyi Shi, Hongyao Yu, Jinli Xie, Qing Tan e Zhongnan Bi. "Characterization of γ′ Precipitation Behavior in Additively Manufactured IN738LC Superalloy via In-Situ Small-Angle Neutron Scattering". In The Minerals, Metals & Materials Series, 211–23. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27447-3_14.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Γ' precipitation"
Semba, H., H. Okada e M. Igarashi. "Creep Properties and Strengthening Mechanisms In 23Cr-45Ni-7W (HR6W) Alloy and Ni-Base Superalloys For 700°C A-USC Boilers". In AM-EPRI 2007, editado por R. Viswanathan, D. Gandy e K. Coleman, 168–84. ASM International, 2007. https://doi.org/10.31399/asm.cp.am-epri-2007p0168.
Texto completo da fonteShen, Hongwei, Weili Wang, Zhizheng Wang, Lihong Zhang, Xishan Xie e Shuhong Fu. "The Application of Ni-Base Alloy Nimonic 80A for Buckets of USC Steam Turbine in China". In AM-EPRI 2007, editado por R. Viswanathan, D. Gandy e K. Coleman, 402–12. ASM International, 2007. https://doi.org/10.31399/asm.cp.am-epri-2007p0402.
Texto completo da fonteYuan, Zhetao, Satoru Kobayashi e Masao Takeyama. "Microstructure Control Using the Formation of Laves Phase through Interphase Precipitation in Ferritic Heat Resistant Steels". In AM-EPRI 2019, editado por J. Shingledecker e M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0090.
Texto completo da fonteKobayashi, Satoru, Tomoki Otsuka, Masao Takeyama, Chuya Aoki e Tomonori Ueno. "Grain Boundary Design Using Precipitation of Delta-Ni3Nb Phase for Ni-Based Wrought Alloys". In AM-EPRI 2019, editado por J. Shingledecker e M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0391.
Texto completo da fonteOtake, Takuji, Takashi Nishimoto e Takuma Okajima. "Influence of Initial Precipitated γ′′ Phase Microstructure on δ-Phase Precipitation Behavior in Alloy 718". In AM-EPRI 2019, editado por J. Shingledecker e M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0738.
Texto completo da fonteKikuchi, Kenta, Hirotoyo Nakashima e Masao Takeyama. "Experimental and Computational Study on Grain Boundary and Grain Interior Precipitation of Fe2Nb Laves Phase in Fe-Cr-Ni-Nb Austenitic Heat Resistant Steels". In AM-EPRI 2019, editado por J. Shingledecker e M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p1408.
Texto completo da fonteKhoiroh, Lilik, Lisana Rodliya, Nur Aini e Rachmawati Ningsih. "Synthesis of Maghemite Pigment (γ-Fe2O3) from Lathe Waste Using Precipitation-Calcination Route". In Proceedings of the 2nd International Conference on Quran and Hadith Studies Information Technology and Media in Conjunction with the 1st International Conference on Islam, Science and Technology, ICONQUHAS & ICONIST, Bandung, October 2-4, 2018, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-10-2018.2295571.
Texto completo da fonteKumagai, Yoshiki, Yoshinori Sumi e Hiroyuki Takabayashi. "Influence of γ′ Morphology on Hot Workability of Alloy U520 below the γ′-Solvus Temperature". In AM-EPRI 2019, editado por J. Shingledecker e M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0506.
Texto completo da fonteGiroud, Tiphaine, Philippe Egea, Peter Vikner, Solange Vivès e Charlotte Mayer. "Development Of An Invar Strengthened By Ni3Nb-Gamma'' Phase Precipitation Suitable For Additive Manufacturing". In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235749781.
Texto completo da fonteHasebe, Y., M. Yoshida, E. Maeda e S. Ohsaki. "Effects of Phosphorus Addition on the Creep Behavior and Microstructure of Wrought γ′-Strengthened Ni-Based Superalloys". In AM-EPRI 2019, editado por J. Shingledecker e M. Takeyama. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.am-epri-2019p0479.
Texto completo da fonte