Artigos de revistas sobre o tema "Wood displacement"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Wood displacement".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kajikawa, Shohei, Takashi Iizuka e Keisuke Yamaishi. "Displacement Behavior of Wood in Boss Forming Using Open-Die Wood Forging". Key Engineering Materials 504-506 (fevereiro de 2012): 1261–66. http://dx.doi.org/10.4028/www.scientific.net/kem.504-506.1261.
Texto completo da fonteZemljic, Borut. "Abomasal displacement in cattle". Veterinarski glasnik 57, n.º 5-6 (2003): 335–48. http://dx.doi.org/10.2298/vetgl0306335z.
Texto completo da fontePereira, Rodrigo Allan, Francisco Carlos Gomes, Roberto Alves Braga Júnior e Fernando Pujaico Rivera. "DISPLACEMENT MEASUREMENT IN SAWN WOOD AND WOOD PANEL BEAMS USING PARTICLE IMAGE VELOCIMETRY". CERNE 25, n.º 1 (março de 2019): 110–18. http://dx.doi.org/10.1590/01047760201925012619.
Texto completo da fonteJones, Michael T., e Paul R. Sievert. "Effects of Stochastic Flood Disturbance on Adult Wood Turtles, Glyptemys insculpta, in Massachusetts". Canadian Field-Naturalist 123, n.º 4 (1 de outubro de 2009): 313. http://dx.doi.org/10.22621/cfn.v123i4.1000.
Texto completo da fonteLee, M. C., Y. L. Tsai, R. Z. Wang e M. L. Lin. "Finding the displacement of wood structure in heritage building by 3D laser scanner". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W3 (11 de agosto de 2015): 165–69. http://dx.doi.org/10.5194/isprsannals-ii-5-w3-165-2015.
Texto completo da fonteSadiyo, Sucahyo, Imam Wahyudi, Fengky Satria Yoresta, Nurhasanah e Muhammad Sholihin. "ANALISIS KEKUATAN SAMBUNGAN GESER GANDA ENAM JENIS KAYU PADA BERBAGAI SESARAN MENURUT DIAMETER DAN JUMLAH BAUT". PERENNIAL 8, n.º 2 (1 de outubro de 2012): 52. http://dx.doi.org/10.24259/perennial.v8i2.215.
Texto completo da fonteSilva, Filipe G. A., Jose Xavier, Fábio A. M. Pereira, José J. L. Morais, Nuno Dourado e Marcelo F. S. F. Moura. "Determination of cohesive laws in wood bonded joints under mode I loading using the DCB test". Holzforschung 67, n.º 8 (1 de dezembro de 2013): 913–22. http://dx.doi.org/10.1515/hf-2013-0012.
Texto completo da fonteSebera, Václav, Miguel Redón-Santafé, Martin Brabec, David Děcký, Petr Čermák, Jan Tippner e Jaromír Milch. "Thermally modified (TM) beech wood: compression properties, fracture toughness and cohesive law in mode II obtained from the three-point end-notched flexure (3ENF) test". Holzforschung 73, n.º 7 (26 de junho de 2019): 663–72. http://dx.doi.org/10.1515/hf-2018-0188.
Texto completo da fonteİşleyen, Ümmü K., Rahim Ghoroubi, Ömer Mercimek, Özgür Anil e Recep Tuğrul Erdem. "Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading". Journal of Reinforced Plastics and Composites 40, n.º 17-18 (9 de abril de 2021): 665–85. http://dx.doi.org/10.1177/0731684421997924.
Texto completo da fonteAbdullah, Nur Dalila, Ummi Raba'ah Hashim, Sabrina Ahmad e Lizawati Salahuddin. "Analysis of texture features for wood defect classification". Bulletin of Electrical Engineering and Informatics 9, n.º 1 (1 de fevereiro de 2020): 121–28. http://dx.doi.org/10.11591/eei.v9i1.1553.
Texto completo da fonteShenton III, Harry W., David W. Dinehart e Timothy E. Elliott. "Stiffness and energy degradation of wood frame shear walls". Canadian Journal of Civil Engineering 25, n.º 3 (1 de junho de 1998): 412–23. http://dx.doi.org/10.1139/l97-108.
Texto completo da fonteTukiainen, Pekka, e Mark Hughes. "The fracture behavior of birch and spruce in the radial-tangential crack propagation direction at the scale of the growth ring". Holzforschung 67, n.º 6 (1 de agosto de 2013): 673–81. http://dx.doi.org/10.1515/hf-2012-0139.
Texto completo da fonteNilsson, Christer, e Gunnel Grelsson. "The effects of litter displacement on riverbank vegetation". Canadian Journal of Botany 68, n.º 4 (1 de abril de 1990): 735–41. http://dx.doi.org/10.1139/b90-097.
Texto completo da fonteLoss, Cristiano, Maurizio Piazza e Daniele Zonta. "A New Method to Assess the Seismic Vulnerability of Existing Wood Frame Buildings". Advanced Materials Research 778 (setembro de 2013): 486–94. http://dx.doi.org/10.4028/www.scientific.net/amr.778.486.
Texto completo da fonteLanglois, Jeffrey D., Rakesh Gupta e Thomas H. Miller. "Effects of Reference Displacement and Damage Accumulation in Wood Shear Walls". Journal of Structural Engineering 130, n.º 3 (março de 2004): 470–79. http://dx.doi.org/10.1061/(asce)0733-9445(2004)130:3(470).
Texto completo da fonteSathre, Roger, e Jennifer O’Connor. "Meta-analysis of greenhouse gas displacement factors of wood product substitution". Environmental Science & Policy 13, n.º 2 (abril de 2010): 104–14. http://dx.doi.org/10.1016/j.envsci.2009.12.005.
Texto completo da fonteCao, Jun, Ming Bao Li, Xiu Mei Zhang, Jia Wei Zhang e Na Zhang. "Modeling Growth Ring Mechanical Properties of Coniferous Wood Based on FEM". Advanced Materials Research 426 (janeiro de 2012): 106–11. http://dx.doi.org/10.4028/www.scientific.net/amr.426.106.
Texto completo da fonteMajano-Majano, Almudena, Antonio Lara-Bocanegra, José Xavier e José Morais. "Measuring the Cohesive Law in Mode I Loading of Eucalyptus globulus". Materials 12, n.º 1 (21 de dezembro de 2018): 23. http://dx.doi.org/10.3390/ma12010023.
Texto completo da fontePaltanea, Gheorghe, Veronica Paltanea, Dorina Popovici, George Papanicolaou e Mihael Sultan. "A Combined Model for the Stress State Evaluation in Single Overlap Joints Using Piezo-Ceramic Actuators". Materials Science Forum 792 (agosto de 2014): 127–32. http://dx.doi.org/10.4028/www.scientific.net/msf.792.127.
Texto completo da fonteHlavata, Vera, Pavel Kuklik e Martin Hataj. "Coefficients of Transverse Contraction of the Wood Cell Constituents and their Effect on the Cell Behavior". Key Engineering Materials 714 (setembro de 2016): 20–24. http://dx.doi.org/10.4028/www.scientific.net/kem.714.20.
Texto completo da fonteMikulová, P., e D. Frynta. "Test of character displacement in urban populations of Apodemus sylvaticus". Canadian Journal of Zoology 79, n.º 5 (1 de maio de 2001): 794–801. http://dx.doi.org/10.1139/z01-035.
Texto completo da fonteLi, Jingkui, Ruoying Wang, He Tian, Yanan Wang e Dawei Qi. "Research on the Gradual Process of the Metallization Structures and Mechanical Properties of Wood Veneer". Symmetry 10, n.º 11 (26 de outubro de 2018): 550. http://dx.doi.org/10.3390/sym10110550.
Texto completo da fontePriyono, Dwi Joko, Surjono Surjokusumo, Yusuf S. Hadi e Naresworo Nugroho. "Equations of the Sum of Shear Connector on the Double Shear Connection Strength using Different Connector Materials". Wood Research Journal 4, n.º 1 (19 de abril de 2017): 81–86. http://dx.doi.org/10.51850/wrj.2012.3.2.81-86.
Texto completo da fonteISODA, Hiroshi, e Shinya NAKAMURA. "SEISMIC PERFORMANCE EVALUATION OF WOOD SHEAR WALLS COMBINED VARIOUS LOAD-DISPLACEMENT RELATIONSHIPS". Journal of Structural and Construction Engineering (Transactions of AIJ) 73, n.º 627 (2008): 781–86. http://dx.doi.org/10.3130/aijs.73.781.
Texto completo da fonteWang, Yue, David V. Rosowsky e Weichiang Pang. "Performance-Based Procedure for Direct Displacement Design of Engineered Wood-Frame Structures". Journal of Structural Engineering 136, n.º 8 (agosto de 2010): 978–88. http://dx.doi.org/10.1061/(asce)st.1943-541x.0000188.
Texto completo da fonteHajdarević, Seid, Murčo Obućina, Elmedin Mešić e Sandra Martinović. "Stress and Strain Analysis of Plywood Seat Shell". Drvna industrija 70, n.º 1 (26 de março de 2019): 51–59. http://dx.doi.org/10.5552/drvind.2019.1825.
Texto completo da fonteSeppälä, Jyri, Tero Heinonen, Timo Pukkala, Antti Kilpeläinen, Tuomas Mattila, Tanja Myllyviita, Antti Asikainen e Heli Peltola. "Effect of increased wood harvesting and utilization on required greenhouse gas displacement factors of wood-based products and fuels". Journal of Environmental Management 247 (outubro de 2019): 580–87. http://dx.doi.org/10.1016/j.jenvman.2019.06.031.
Texto completo da fonteNaghdi, R., I. Bagheri, M. Lotfalian e B. Setodeh. "Rutting and soil displacement caused by 450C Timber Jack wheeled skidder (Asalem forest northern Iran)". Journal of Forest Science 55, No. 4 (25 de março de 2009): 177–83. http://dx.doi.org/10.17221/102/2008-jfs.
Texto completo da fonteCraciun, Eduard Marius, Tomasz Sadowski, Liviu Marsavina e Adrian Rabaea. "Mathematical Aspects Regarding Cracks Behaviour in Wood Composites". Key Engineering Materials 601 (março de 2014): 108–11. http://dx.doi.org/10.4028/www.scientific.net/kem.601.108.
Texto completo da fonteParameswaran, V. R. "Adfreezing strength of ice to model piles". Canadian Geotechnical Journal 24, n.º 3 (1 de agosto de 1987): 446–52. http://dx.doi.org/10.1139/t87-055.
Texto completo da fonteCraciun, Eduard Marius, e Tomasz Sadowski. "Mathematical Modelling of the Crack Propagation in Wood Materials". Key Engineering Materials 399 (outubro de 2008): 177–82. http://dx.doi.org/10.4028/www.scientific.net/kem.399.177.
Texto completo da fontePoltorak, Benjamin J., Eric R. Labelle e Dirk Jaeger. "Soil displacement during ground-based mechanized forest operations using mixed-wood brush mats". Soil and Tillage Research 179 (junho de 2018): 96–104. http://dx.doi.org/10.1016/j.still.2018.02.005.
Texto completo da fonteVrtiska, Mark P., Richard M. Kaminski, Harold H. Prince e John D. Thompson. "Geographical displacement and timing of molt of the remiges in male Wood Ducks". Canadian Journal of Zoology 75, n.º 9 (1 de setembro de 1997): 1545–48. http://dx.doi.org/10.1139/z97-780.
Texto completo da fontePoirier, N. A., W. J. M. Douglas e R. H. Crotogino. "Axial dispersion models for displacement washing of packed beds of wood pulp fibres". Canadian Journal of Chemical Engineering 66, n.º 6 (dezembro de 1988): 936–44. http://dx.doi.org/10.1002/cjce.5450660607.
Texto completo da fonteSandak, Jakub, e Chiaki Tanaka. "Evaluation of surface smoothness by laser displacement sensor 1: effect of wood species". Journal of Wood Science 49, n.º 4 (agosto de 2003): 305–11. http://dx.doi.org/10.1007/s10086-002-0486-6.
Texto completo da fonteChen, C. Y., F. A. Boudreault, A. E. Branston e C. A. Rogers. "Behaviour of light-gauge steel-frame – wood structural panel shear walls". Canadian Journal of Civil Engineering 33, n.º 5 (1 de maio de 2006): 573–87. http://dx.doi.org/10.1139/l06-015.
Texto completo da fonteOliveira, Jorge, José Xavier, Fábio Pereira, José Morais e Marcelo de Moura. "Direct Evaluation of Mixed Mode I+II Cohesive Laws of Wood by Coupling MMB Test with DIC". Materials 14, n.º 2 (14 de janeiro de 2021): 374. http://dx.doi.org/10.3390/ma14020374.
Texto completo da fonteSadiyo, Sucahyo, e Emma Yusrina Wulandari. "PENGARUH DIAMETER DAN JUMLAH PAKU TERHADAP KEKUATAN SAMBUNGAN GESER GANDA BALOK KAYU NANGKA (Artocarpus heterophyllus) dan RASAMALA (Altingia excelsa Noronha) DENGAN PELAT BAJA". PERENNIAL 8, n.º 1 (1 de abril de 2012): 36. http://dx.doi.org/10.24259/perennial.v8i1.213.
Texto completo da fontePersi, Elisabetta, Gabriella Petaccia, Stefano Sibilla, Roberto Bentivoglio e Aronne Armanini. "A One-Way Coupled Hydrodynamic Advection-Diffusion Model to Simulate Congested Large Wood Transport". Hydrology 8, n.º 1 (27 de janeiro de 2021): 21. http://dx.doi.org/10.3390/hydrology8010021.
Texto completo da fonteSebera, Václav, e Jan Tippner. "Possible use of the hyperelastic material models in numerical analysis of the wood-strand mat compression". Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 57, n.º 4 (2009): 83–94. http://dx.doi.org/10.11118/actaun200957040083.
Texto completo da fonteRittenhouse, Tracy A. G., e Raymond D. Semlitsch. "Behavioral response of migrating wood frogs to experimental timber harvest surrounding wetlands". Canadian Journal of Zoology 87, n.º 7 (julho de 2009): 618–25. http://dx.doi.org/10.1139/z09-049.
Texto completo da fonteFajdiga, Gorazd, Denis Rajh, Branko Nečemer, Srečko Glodež e Matjaž Šraml. "Experimental and Numerical Determination of the Mechanical Properties of Spruce Wood". Forests 10, n.º 12 (13 de dezembro de 2019): 1140. http://dx.doi.org/10.3390/f10121140.
Texto completo da fonteHuang, Yi Hui, e Meng Ting Tsai. "Amplification Factor for Wood-Concrete Hybrid Structures Based on Dynamic Numerical Simulation". Key Engineering Materials 873 (janeiro de 2021): 65–69. http://dx.doi.org/10.4028/www.scientific.net/kem.873.65.
Texto completo da fontePearson, Hamish, Sigurdur Ormarsson e Brian Gabbitas. "Nonlinear tensile creep behavior of radiata pine at elevated temperatures and different moisture contents". Holzforschung 69, n.º 7 (1 de setembro de 2015): 915–23. http://dx.doi.org/10.1515/hf-2014-0240.
Texto completo da fonteNtenga, Richard, Serges Lahe, Jean Atangana Ateba e Tibi Beda. "Numerical Simulations of Azobé/Urea Formaldehyde Wood Plastic Composite Behaviors under Charpy Impact and Low-Velocity Drop Weight Tests". Journal of Composites Science 2, n.º 4 (17 de outubro de 2018): 60. http://dx.doi.org/10.3390/jcs2040060.
Texto completo da fonteWolf, Christian, Daniel Klein, Klaus Richter e Gabriele Weber-Blaschke. "Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems". Science of The Total Environment 569-570 (novembro de 2016): 395–403. http://dx.doi.org/10.1016/j.scitotenv.2016.06.021.
Texto completo da fonteLi, Chao, Xilong Wang e Yizhuo Zhang. "Structural design and mechanical properties analysis of bamboo-wood cross-laminated timber". BioResources 15, n.º 3 (27 de maio de 2020): 5417–32. http://dx.doi.org/10.15376/biores.15.3.5417-5432.
Texto completo da fonteISODA, Hiroshi. "VERIFICATION OF HYSTERESIS MODEL OF WOOD SHEAR WALL CONSIDERING OF LARGE DISPLACEMENT UNDER EARTHQUAKES". Journal of Structural and Construction Engineering (Transactions of AIJ) 76, n.º 659 (2011): 113–20. http://dx.doi.org/10.3130/aijs.76.113.
Texto completo da fontePang, Wei Chiang, e David V. Rosowsky. "Direct Displacement Procedure for Performance-Based Seismic Design of Mid-Rise Wood-Framed Structures". Earthquake Spectra 25, n.º 3 (agosto de 2009): 583–605. http://dx.doi.org/10.1193/1.3158932.
Texto completo da fonteRossi, Simone, Ivan Giongo, Daniele Casagrande, Roberto Tomasi e Maurizio Piazza. "Evaluation of the displacement ductility for the seismic design of light-frame wood buildings". Bulletin of Earthquake Engineering 17, n.º 9 (8 de junho de 2019): 5313–38. http://dx.doi.org/10.1007/s10518-019-00659-4.
Texto completo da fonte