Literatura científica selecionada sobre o tema "Whole-Cell biotransformations"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Whole-Cell biotransformations".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Whole-Cell biotransformations"

1

Wackett, Lawrence P. "Biocatalysis and whole cell biotransformations". Microbial Biotechnology 2, n.º 6 (20 de outubro de 2009): 642–43. http://dx.doi.org/10.1111/j.1751-7915.2009.00156.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Allen, C. C. R., C. J. Boudet, C. Hardacre e M. E. Migaud. "Enhancement of whole cell dioxygenase biotransformations of haloarenes by toxic ionic liquids". RSC Adv. 4, n.º 38 (2014): 19916–24. http://dx.doi.org/10.1039/c4ra00640b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Salter, Gary J., e Douglas B. Kelt. "Solvent Selection for Whole Cell Biotransformations in Organic Media". Critical Reviews in Biotechnology 15, n.º 2 (janeiro de 1995): 139–77. http://dx.doi.org/10.3109/07388559509147404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Seo, Hyo-Seel, Na-Rae Lee, Eun-Hee Doo, Sunghoon Park e Jin-Byung Park. "Development of efficient whole-cell biocatalysts for oxidative biotransformations". Journal of Bioscience and Bioengineering 108 (novembro de 2009): S43. http://dx.doi.org/10.1016/j.jbiosc.2009.08.124.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Garikipati, S. V. B. Janardhan, Angela M. McIver e Tonya L. Peeples. "Whole-Cell Biocatalysis for 1-Naphthol Production in Liquid-Liquid Biphasic Systems". Applied and Environmental Microbiology 75, n.º 20 (21 de agosto de 2009): 6545–52. http://dx.doi.org/10.1128/aem.00434-09.

Texto completo da fonte
Resumo:
ABSTRACT Whole-cell biocatalysis to oxidize naphthalene to 1-naphthol in liquid-liquid biphasic systems was performed. Escherichia coli expressing TOM-Green, a variant of toluene ortho-monooxygenase (TOM), was used for this oxidation. Three different solvents, dodecane, dioctyl phthalate, and lauryl acetate, were screened for biotransformations in biphasic media. Of the solvents tested, lauryl acetate gave the best results, producing 0.72 ± 0.03 g/liter 1-naphthol with a productivity of 0.46 ± 0.02 g/g (dry weight) cells after 48 h. The effects of the organic phase ratio and the naphthalene concentration in the organic phase were investigated. The highest 1-naphthol concentration (1.43 g/liter) and the highest 1-naphthol productivity (0.55 g/g [dry weight] cells) were achieved by optimization of the organic phase. The ability to recycle both free cells and cells immobilized in calcium alginate was tested. Both free and immobilized cells lost more than ∼60% of their activity after the first run, which could be attributed to product toxicity. On a constant-volume basis, an eightfold improvement in 1-naphthol production was achieved using biphasic media compared to biotransformation in aqueous media.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Winder, Catherine L., Robert Cornmell, Stephanie Schuler, Roger M. Jarvis, Gill M. Stephens e Royston Goodacre. "Metabolic fingerprinting as a tool to monitor whole-cell biotransformations". Analytical and Bioanalytical Chemistry 399, n.º 1 (31 de outubro de 2010): 387–401. http://dx.doi.org/10.1007/s00216-010-4342-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Wu, Shuke, e Zhi Li. "Whole-Cell Cascade Biotransformations for One-Pot Multistep Organic Synthesis". ChemCatChem 10, n.º 10 (23 de fevereiro de 2018): 2164–78. http://dx.doi.org/10.1002/cctc.201701669.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Grigoriou, Stylianos, Pierre Kugler, Evelina Kulcinskaja, Frederik Walter, John King, Phil Hill, Volker F. Wendisch e Elaine O'Reilly. "Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions". Green Chemistry 22, n.º 13 (2020): 4128–32. http://dx.doi.org/10.1039/d0gc01432j.

Texto completo da fonte
Resumo:
The development and application of a self-sufficient whole-cell system for transaminase biotransformations is described. The system relies on an engineered strain of Corynebacterium glutamicum that produces smart amine donors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Biermann, Marc, Daniel Bakonyi, Werner Hummel e Harald Gröger. "Design of recombinant whole-cell catalysts for double reduction of CC and CO bonds in enals and application in the synthesis of Guerbet alcohols as industrial bulk chemicals for lubricants". Green Chemistry 19, n.º 2 (2017): 405–10. http://dx.doi.org/10.1039/c6gc01668e.

Texto completo da fonte
Resumo:
Whole-cell catalysts overexpressing two enzymes for a double reduction cascade in which aliphatic α-branched α,β-unsaturated aldehydes are converted into Guerbet alcohols as a highly demanded class of lubricants were constructed and applied in such biotransformations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Zia, Muhammad Farooq, Ágnes G. Vasko, Zsuzsanna Riedl, Christian Hametner, György Hajós, Kurt Mereiter e Marko D. Mihovilovic. "Biodihydroxylation of substituted quinolines and isoquinolines by recombinant whole-cell mediated biotransformations". Tetrahedron 72, n.º 46 (novembro de 2016): 7348–55. http://dx.doi.org/10.1016/j.tet.2016.06.077.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Whole-Cell biotransformations"

1

Jerrold, Avril Amanda. "Biotransformations of bicyclic ketones by whole-cell preparations of fungi". Thesis, University of Exeter, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361321.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Tan, Ai Wei Ivy. "Applications of whole cell biotransformations for the production of chiral alcohols". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98020030X.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Davey, Claire Louise. "Reductions of aromatic carboxylic acids and nitroarenes using whole cell biotransformations". Thesis, University of Exeter, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361337.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cardus, Gareth James. "Enzymatic deracemization of amino alcohols and their precursors using whole cell biotransformations". Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428217.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Erdem, Elif. "NADPH dependent oxyfunctionalization by Baeyer-Villiger monooxygenases in cyanobacteria". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0119.

Texto completo da fonte
Resumo:
Le poly-ɛ-caprolactone (PCL) est un polymère biodégradable d’intérêt, synthétisé par action de peracides, explosifs à large échelle, sur la cyclohexanone. Des Baeyer-Villiger monooxygénases (BVMO) catalysent cette oxydation dans des conditions douces mais nécessitent l'apport stœchiométrique de composés organiques auxiliaires pour le recyclage de cofacteurs. De plus, en cellules entières, l'approvisionnement en O2, limité par la vitesse de transfert et la respiration des cellules, plafonne la densité cellulaire utilisable et donc la productivité volumétrique. Récemment, des cyanobactéries recombinantes produisant une BVMO ont permis d’utiliser H2O comme donneur d'électrons et d’exploiter la production photosynthétique d’O2, mais avec une productivité faible. Nous décrivons ici un procédé alternatif reposant sur le clonage d'une nouvelle BVMO, issue de la bactérie Burkholderia xenovorans, dans Synechocystis PPC6803 et dans une souche modifiée de celle-ci, Synechocystis ∆flv1, pour laquelle la chaîne de transport d'électrons photosynthétiques (PETC) a été partiellement réorientée via la délétion de protéines de flavodiiron. Une activité spécifique de 25 U.gDCW-1 a ainsi été atteinte à haute densité cellulaire. Nous avons ainsi démontré le potentiel des cyanobactéries oxygéniques comme châssis pour l'oxydation enzymatique de cétones, améliorant l'économie d’atomes de la biocatalyse redox et fournissant du dioxygène pour les réactions d'oxy-fonctionnalisation. Le procédé décrit est un procédé soutenable, utilisant la lumière comme source d’énergie, l’eau et le gaz carbonique comme sources d’hydrogène, d’oxygène et de carbone, et qui répond aux exigences de la chimie verte
Poly-ɛ-caprolactone (PCL) is a biodegradable polymer of interest, synthesised by the action of peracetic acid, a large-scale explosive reagent, on cyclohexanone. Baeyer-Villiger monooxygenases (BVMOs) catalyse this oxidation under mild conditions but require the stoichiometric addition of organic auxiliary compounds for NADPH cofactor recycling. Furthermore, in whole-cell processes, the oxygen supply, often limited by the transfer rate and cell respiration, caps the usable cell density and thus the volumetric productivity. Recently, recombinant cyanobacteria producing BVMO made possible to use H2O as an electron donor and exploit photosynthetic O2 production, albeit with low productivity (by-product formation). Here, we described an alternative process based on the cloning of a new BVMO, from the bacterium Burkholderia xenovorans, in Synechocystis PPC6803 and in an engineered strain, Synechocystis ∆flv1, for which the photosynthetic electron transport chain (PETC) was partially redesigned via the deletion of flavodiiron proteins. Thus, high specific activities (25 U.gDCW-1) were achieved at high cell densities. We thus demonstrated the potential of oxygenic cyanobacteria as a chassis for the enzymatic oxidation of ketones, improving the atom economy of redox biocatalysis and providing oxygen for oxyfunctionalisation reactions. The process described is a sustainable process, using light as an energy source, water and carbon dioxide as sources of hydrogen, oxygen and carbon, and meets the requirements of green chemistry
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Heuser, Florian [Verfasser]. "Increasing the Productivity of Whole Cell Biotransformation by Enhancing the intracellular NAD(H) Concentration / Florian Heuser". München : GRIN Verlag, 2009. http://d-nb.info/1188018965/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Laurence, M. B. "Separation of insoluble biological material downstream from a two liquid (organic/aqueous) phase whole cell biotransformation reactor". Thesis, University College London (University of London), 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508462.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Brauner, Jarryd Finn [Verfasser]. "Hydroxylation of ectoine and synthetic ectoine derivatives via E. coli-mediated whole-cell biotransformation / Jarryd Finn Brauner". Bonn : Universitäts- und Landesbibliothek Bonn, 2021. http://d-nb.info/1239729634/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ayhan, Peruze. "Novel Bioconversion Reactions For The Syntheses Of A-hydroxy Ketones". Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610354/index.pdf.

Texto completo da fonte
Resumo:
The objective of the study presented here was to develop either enzymatic or whole cell mediated green procedures for the syntheses of a-hydroxy ketones. Production of optically active synthons is crucial for the preparation of fine chemicals. Enzymes and whole-cell biocatalysts have proven to be excellent vehicles with their chiral nature for the biotransformations. Under the light of this discussion, firstly benzaldehyde lyase [BAL, (EC 4.1.2.38)] was used in novel C-C bond formation reactions to obtain interesting and biologically important precursors
2-Hydroxy-1-arylethan-1-ones and functionalized aliphatic acyloin derivatives. All the compounds were obtained with high yields and in the case of aliphatic acyloin derivatives with high enantiomeric excesses (ee&rsquo
s). Another strategy was to use whole cell biocatalysis. A.flavus 200120 was found to be a promising biocatalyst with the ability to catalyze a broad range of reactions
reduction, hydrolysis and deracemization, while another fungus
A. oryzae 5048 was utilized in bioreduction reactions of benzil and its derivatives. Each reaction was investigated, optimized and thus enhanced via medium design. Products were obtained with high yields and ee&rsquo
s. To sum up, in this study novel efficient green procedures were developed to synthesize various ahydroxy ketones with high yield and stereoselectivity. These newly established methods present promising alternatives to classical chemical methodologies.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tan, Ai Wei Ivy [Verfasser]. "Applications of whole cell biotransformations for the production of chiral alcohols / by Ai Wei Ivy Tan". 2006. http://d-nb.info/98020030X/34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Whole-Cell biotransformations"

1

M, Roberts Stanley, Wiggins K e Casy G, eds. Preparative biotransformations: Whole cell and isolated enzymes in organic systems. Chichester: J. Wiley, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Roberts, S. Preparative Biotransformations - Whole Cell & Isolated Enzymes Organic Synthesis (Sample Copy). John Wiley and Sons Ltd, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

(Editor), Stanley M. Roberts, Karen Wiggins (Editor) e G. Casy (Editor), eds. Preparative Biotransformations: Whole Cell and Isolated Enzymes in Organic Systems. John Wiley & Sons Inc, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Biotransformations in Preparative Organic Chemistry: The Use of Isolated Enzymes and Whole Cell Systems in Synthesis (Best Synthetic Methods). Academic Press, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Whole-Cell biotransformations"

1

Dennewald, Danielle, e Dirk Weuster-Botz. "Ionic Liquids and Whole-Cell-Catalyzed Processes". In Ionic Liquids in Biotransformations and Organocatalysis, 261–314. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118158753.ch7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sahu, Nidhi, Augustine Omoniyi Ayeni, Deepika Soni e B. Chandrashekhar. "Microbial Consortia: A Mixed Cell Catalyst for Biotransformation of Biomass into Biofuels and Chemicals". In Whole-Cell Biocatalysis, 269–307. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003413134-11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Mishra, Mohit, Bhairav Prasad, Arunima Sur Karkun, Arpita Srivastava, Aditya Kate, Sharda Dhadse e Akanksha Choubey. "Role of Downstream Processing for Production and Purification of Fermentation-Based Products Produced via Whole-Cell Biotransformation". In Whole-Cell Biocatalysis, 555–84. New York: Apple Academic Press, 2024. http://dx.doi.org/10.1201/9781003413134-23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Leak, David J., Xudong Feng e Emma A. C. Emanuelsson. "Enzyme Biotransformations and Reactors". In Chemical Processes for a Sustainable Future, 320–46. The Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/bk9781849739757-00320.

Texto completo da fonte
Resumo:
Enzyme-catalysed biotransformations, either using whole cells or free enzymes, are increasingly being exploited in industrial chemistry. They can offer remarkable reaction, stereo- and regio-selectivity, and work in benign aqueous systems. Some enzymes are remarkably robust, while others are relatively fragile, but may be stabilized by immobilization or used in whole cell systems. The use of purified (or partially purified) enzymes avoids the possibility of side reactions (of substrate or product), but incurs the additional cost of purification. This is why, historically, some of the most commonly used enzymes (e.g. lipases, proteases and glycoside hydrolases) are naturally extracellular. However, advances in molecular biology and protein engineering mean that production of any enzyme can be engineered into commonly used hosts (e.g. yeast or Escherichia coli). Methods are available to modify substrate recognition and reaction selectivity, allowing tuning of an enzyme to a novel substrate. Together with improvements in immobilization technology and enzyme reactor design, this is opening up new possibilities for single and multi-step biocatalytic processes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hirschmann, Roland, Waldemar Reule, Thomas Oppenländer, Frank Baganz e Volker C. Hass. "Integrating Whole Cell Biotransformation of Aroma Compounds into a Novel Biorefinery Concept". In Biorefinery Concepts, Energy and Products. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88158.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Arya, Prashant Satishbhai, Shivani Maheshkumar Yagnik, Rakeshkumar Ramanlal Panchal, Kiransinh Narendrasinh Rajput e Vikram Hiren Raval. "Industrial Applications of Enzymes From Extremophiles". In Physiology, Genomics, and Biotechnological Applications of Extremophiles, 207–32. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9144-4.ch010.

Texto completo da fonte
Resumo:
Extremophilic microorganisms have developed a variety of molecular tactics to exist in extreme environments. Researchers are fascinated by extremophiles and unearth various enzymes from these fascinating microbes. Extremozymes are astonishing biocatalysts with distinctive properties of catalysis and stability under a multitude of daunting conditions of salt, pH, organic solvents, and temperature, which open up new possibilities for biocatalysis and biotransformation and outcompetes mesophilic counterparts. Biotechnological implications include simple, immobilized, as well as whole-cell applications. Stability in organic solvents adds to the asymmetric catalysis and thereby exemplifies the applicability of extremozymes and in fostering biobased economies. Marine, cold-adapted enzymes, and those that help in the removal of a toxic hazardous substance from the environment are obvious choices for food industries and bioremediation. The major area of application and research emphasis includes textile, detergents, food, dairy, agriculture, and environmental remediation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Nikolova, P., e O. P. Ward. "Biotransformation of Benzaldehyde to Benzyl Alcohol by Whole Cells and Cell Extracts of Baker's Yeast in Two-Phase Systems". In Progress in Biotechnology, 667–73. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-444-89046-7.50096-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Whole-Cell biotransformations"

1

Huber, R., L. Marcourt, S. Schnee, E. Michellod, J.-L. Wolfender, K. Gindro e E. Ferreira Queiroz. "Short Lecture “High-throughput whole-cell biotransformation approach for fast and efficient chemodiversification of natural products”". In GA – 70th Annual Meeting 2022. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1758938.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia