Siga este link para ver outros tipos de publicações sobre o tema: Wheat.

Artigos de revistas sobre o tema "Wheat"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Wheat".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Wheat, Thomas, Paul Rainville, Beth Gillece-Castro, Ziling Lu, Laetitia Cravello e Jeffrey Mazzeo. "Fast On-Line Desalting of Proteins for Determination of Structural Variation Using Exact Mass Spectroscopy". BioProcessing Journal 6, n.º 1 (12 de junho de 2007): 55–59. http://dx.doi.org/10.12665/j61.wheat.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Laml, P., e J. Pánek. "Winter wheat Federer". Czech Journal of Genetics and Plant Breeding 46, No. 2 (29 de junho de 2010): 97–98. http://dx.doi.org/10.17221/54/2010-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Horčička, P., O. Veškrna, T. Sedláček e J. Chrpová. "Winter wheat Secese". Czech Journal of Genetics and Plant Breeding 46, No. 2 (29 de junho de 2010): 99–101. http://dx.doi.org/10.17221/55/2010-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bobková, L., e M. Hromádko. "Winter wheat Bohemia". Czech Journal of Genetics and Plant Breeding 44, No. 3 (4 de novembro de 2008): 121–22. http://dx.doi.org/10.17221/60/2008-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ondrejčák, F., e D. Muchová. "Winter Wheat Markola". Czech Journal of Genetics and Plant Breeding 42, No. 1 (21 de novembro de 2011): 23–24. http://dx.doi.org/10.17221/6053-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Horčička, P., e A. Hanišová. "Spring Wheat Sirael". Czech Journal of Genetics and Plant Breeding 42, No. 1 (21 de novembro de 2011): 25–26. http://dx.doi.org/10.17221/6054-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rückschloss, L., A. Hanková e K. Mazúchová. "Winter Wheat Veldava". Czech Journal of Genetics and Plant Breeding 42, No. 1 (21 de novembro de 2011): 27–28. http://dx.doi.org/10.17221/6055-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Rückschloss, L., A. Hanková e K. Mazúchová. "Winter Wheat Pavla". Czech Journal of Genetics and Plant Breeding 42, No. 1 (21 de novembro de 2011): 29–30. http://dx.doi.org/10.17221/6056-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Horčička, P., e A. Hanišová. "Winter Wheat Simila". Czech Journal of Genetics and Plant Breeding 42, No. 2 (21 de novembro de 2011): 73–74. http://dx.doi.org/10.17221/6058-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Šíp, V., J. Chrpová e L. Bobková. "Winter Wheat Raduza". Czech Journal of Genetics and Plant Breeding 42, No. 4 (21 de novembro de 2011): 147–48. http://dx.doi.org/10.17221/6061-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ohnoutka, Z. "Winter Wheat Evelina". Czech Journal of Genetics and Plant Breeding 41, No. 1 (21 de novembro de 2011): 31–32. http://dx.doi.org/10.17221/6071-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ohnoutka, Z. "Winter Wheat Ines". Czech Journal of Genetics and Plant Breeding 41, No. 1 (21 de novembro de 2011): 33–34. http://dx.doi.org/10.17221/6072-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bobková, L. "Spring wheat Granny". Czech Journal of Genetics and Plant Breeding 40, No. 3 (23 de novembro de 2011): 109–10. http://dx.doi.org/10.17221/6092-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Bobková L et, al. "Winter wheat Meritto". Czech Journal of Genetics and Plant Breeding 39, No. 3 (23 de novembro de 2011): 97–98. http://dx.doi.org/10.17221/6102-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Hanišová, A., e P. Horčička. "Winter wheat Svitava". Czech Journal of Genetics and Plant Breeding 38, No. 2 (30 de julho de 2012): 87–88. http://dx.doi.org/10.17221/6117-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Bobková, L. "Winter wheat Mladka". Czech Journal of Genetics and Plant Breeding 38, No. 2 (30 de julho de 2012): 88–89. http://dx.doi.org/10.17221/6118-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bobková, L., V. Šíp e M. Škorpík. "Winter wheat Rheia". Czech Journal of Genetics and Plant Breeding 38, No. 2 (30 de julho de 2012): 90–91. http://dx.doi.org/10.17221/6119-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Laml, P. "Winter Wheat Banquet". Czech Journal of Genetics and Plant Breeding 38, No. 3-4 (1 de agosto de 2012): 137–38. http://dx.doi.org/10.17221/6251-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Laml, P., e J. Pánek. "Winter wheat Baletka". Czech Journal of Genetics and Plant Breeding 44, No. 4 (22 de janeiro de 2009): 167–68. http://dx.doi.org/10.17221/74/2008-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Laml, P., e J. Pánek. "Winter wheat Bakfis". Czech Journal of Genetics and Plant Breeding 44, No. 4 (22 de janeiro de 2009): 169–70. http://dx.doi.org/10.17221/75/2008-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Horčička, P., A. Hanišová e O. Veškrna. "Winter wheat Sultan". Czech Journal of Genetics and Plant Breeding 44, No. 2 (27 de junho de 2008): 81–82. http://dx.doi.org/10.17221/29/2008-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Horčička, P., O. Veškrna, T. Sedláček e J. Chrpová. "Winter wheat Matylda". Czech Journal of Genetics and Plant Breeding 47, No. 2 (2 de junho de 2011): 78–80. http://dx.doi.org/10.17221/46/2011-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Horčička, P., O. Veškrna, T. Sedláček, A. Hanzalová e V. Šíp. "Spring wheat Seance". Czech Journal of Genetics and Plant Breeding 47, No. 4 (15 de dezembro de 2011): 182–84. http://dx.doi.org/10.17221/163/2011-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Horčička, P., O. Veškrna, T. Sedláček e A. Hanzalová. "Spring wheat Dafne". Czech Journal of Genetics and Plant Breeding 48, No. 3 (17 de setembro de 2012): 144–45. http://dx.doi.org/10.17221/175/2012-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Horčička, P., A. Hanišová e J. Chrpová. "Winter wheat Sakura". Czech Journal of Genetics and Plant Breeding 43, No. 4 (7 de janeiro de 2008): 153–55. http://dx.doi.org/10.17221/1899-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Horčička, P., A. Hanišová, O. Veškrna e A. Hanzalová. "Spring wheat Septima". Czech Journal of Genetics and Plant Breeding 45, No. 4 (27 de dezembro de 2009): 175–77. http://dx.doi.org/10.17221/86/2009-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Horčička, P., O. Veškrna e T. Sedláček. "Winter wheat Seladon". Czech Journal of Genetics and Plant Breeding 46, No. 3 (14 de outubro de 2010): 142–44. http://dx.doi.org/10.17221/101/2010-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Horčička, P., O. Veškrna, T. Sedláček e J. Chrpová. "Winter wheat Elly". Czech Journal of Genetics and Plant Breeding 46, No. 4 (14 de dezembro de 2010): 183–85. http://dx.doi.org/10.17221/125/2010-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Dumalasová, V., e P. Bartoš. "Reaction of wheat, alternative wheat and triticale cultivars to common bunt". Czech Journal of Genetics and Plant Breeding 46, No. 1 (4 de março de 2010): 14–20. http://dx.doi.org/10.17221/73/2009-cjgpb.

Texto completo da fonte
Resumo:
 Seventeen winter wheat cultivars registered in the Czech Republic were tested for reaction to common bunt in 2–3 year field trials. Bunt infection of resistant checks Globus and Bill varied between 4.1% and 10.6%; the highest infection in cv. Pitbull reached 85.9%. Of the recently registered cultivars Nikol has a relatively low bunt incidence (26.9%). In addition to bread wheat seventeen triticale, seven durum wheat cultivars, two spelt wheat cultivars and one emmer wheat cultivar were tested in the field and some of them also in the greenhouse. Bunt infection of durum wheats was lower than that of bread wheat cultivars. All seventeen tested triticale cultivars were resistant. The reaction of emmer wheat cultivar and spelt wheat cultivars to common bunt was lower than that of susceptible bread wheat checks.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Mugera, Amin W., Reece Curwen e Ben White. "Deregulation of the Australian Wheat Export Market: What Happened to Wheat Prices?" Journal of International Food & Agribusiness Marketing 28, n.º 1 (2 de janeiro de 2016): 18–34. http://dx.doi.org/10.1080/08974438.2014.940125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

LAWLOR, DAVID W. "Wheat and Wheat Improvement". Soil Science 146, n.º 4 (outubro de 1988): 292–93. http://dx.doi.org/10.1097/00010694-198810000-00010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Savchenko, K. G., L. M. Carris, J. Demers, D. S. Manamgoda e L. A. Castlebury. "What causes flag smut of wheat?" Plant Pathology 66, n.º 7 (13 de fevereiro de 2017): 1139–48. http://dx.doi.org/10.1111/ppa.12657.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ni, J., B. Feng, Z. Xu e T. Wang. "Dynamic changes of wheat quality during grain filling in waxy wheat WX12". Czech Journal of Genetics and Plant Breeding 47, Special Issue (20 de outubro de 2011): S182—S185. http://dx.doi.org/10.17221/3277-cjgpb.

Texto completo da fonte
Resumo:
Changes of quality traits such as grain sugar, starch, and protein content in full waxy and normal wheat in field grown samples was studied during grain filling. Compared to the normal line, the soluble sugar, sucrose and pentosan contents were higher in the waxy isoline. The highest pentosan content in waxy wheat was 22&ndash;27 days after flowering (DAF), while the highest fructan content was 7&ndash;12 DAF. In addition, the quality dynamic changes of two wheat lines were similar except for starch content during grain filling, the V<sub>max</sub> of starch synthesis were highest at 17&ndash;22 DAF in the waxy line, while this was at 22&ndash;27 DAF in the normal line. The results indicated that according to the different dynamic changes between waxy and common wheat, the quality of waxy wheat may be improved by optimum cultivation measures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Han, J. H., e B. Ahn. "Multiple-regime price transmission between wheat and wheat flour prices in Korea". Agricultural Economics (Zemědělská ekonomika) 61, No. 12 (6 de junho de 2016): 552–63. http://dx.doi.org/10.17221/47/2015-agricecon.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Leszczyńska, J., A. Diowksz, A. LĄcka, K. Wolska e A. Bartos. "Evaluation of immunore activity of wheat bread made from fermented wheat flour". Czech Journal of Food Sciences 30, No. 4 (13 de junho de 2012): 336–42. http://dx.doi.org/10.17221/137/2011-cjfs.

Texto completo da fonte
Resumo:
Combined culture of lactic acid bacteria (Lactobacillus brevis, L. plantarum i L. sanfranciscencis) and baker&rsquo;s yeasts was used in order to reduce immunoreactivity of gluten from wheat. Flour and dough samples were analysed in terms of lactic acid fermentation and thermal processing. Their immunoreactivity was determined with ELISA method using both anti-gliadin antibodies from patients suffering from coeliac disease and rabbit anti-QQQPP peptide (main epitope of flour allergen) antibodies. Also, immunoreactivity was measured in the final products after simulated digestion. The obtained total effectiveness of the fermentation and digestion processes amounted to less than 30% relative to immunoreactivity of human anti-gliadin antibodies and less than 10% relative to immunoreactivity of anti-QQQPP peptide antibodies as compared to the baking made with non-fermented flour. &nbsp;
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Hanišová, A., e P. Horčička. "Spring wheat variety Zuzana". Czech Journal of Genetics and Plant Breeding 39, No. 1 (23 de novembro de 2011): 25–26. http://dx.doi.org/10.17221/6097-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Švec, I., e M. Hrušková. "Wheat flour fermentation study". Czech Journal of Food Sciences 22, No. 1 (16 de novembro de 2011): 17–23. http://dx.doi.org/10.17221/3402-cjfs.

Texto completo da fonte
Resumo:
Fermentograph and baking properties of 98 wheat flour samples (two sets of commercial and one set of variety) were evaluated in the form of fermented dough. Analytical traits (ash and protein contents, wet gluten, Falling Number, Zeleny sedimentation value), fermentograph parameters (gases volume, the volume of dough and the time of its max. increase), and the laboratory baking test were used for the characterisation of flours and doughs. Differences found between the two commercial flour sets were small and were influenced by the year of harvest. Significant differences were found between commercial and variety flours both in the fermentograph behaviour and in the baking test results. Lower dough volumes and lower bread specific volumes for variety flours in comparison with commercial ones were caused by a worse quality of proteins. Statistical analysis on significance level 99% showed correlations between the gases volume and the dough volume &lt;i&gt;r&lt;/i&gt; = 0.5264), between the gases volume and the time of dough maximum (&lt;i&gt;r&lt;/i&gt; = &ndash;0.7689), and between the dough volume and the specific volume of bread (&lt;i&gt;r&lt;/i&gt;&nbsp;=&nbsp;0.5452). &nbsp;
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Ren, Z., Z. Li, L. Shi, X. Wang, L. Zhu, X. Li e D. Liu. "Molecular identification of wheat leaf rust resistance genes in sixty Chinese wheat cultivars". Czech Journal of Genetics and Plant Breeding 54, No. 1 (20 de março de 2018): 1–8. http://dx.doi.org/10.17221/6/2016-cjgpb.

Texto completo da fonte
Resumo:
Common wheat (Triticum aestivum L.) is the major crop cultivated in Xinjiang and Anhui provinces of China. The climate in these two provinces is favourable for wheat leaf rust (Puccinia triticina) (Pt) infection. Here, we demonstrate a detailed investigation on the leaf rust resistance of 60 major wheat cultivars cultivated in these two regions. A mixture of high virulent Pt races (THTT, THTS, THTQ and PHPS) were used to phenotype all the collected wheat cultivars at an adult plant stage. Phenotypic disease severity (FDS) and the area under the disease progress curve (AUDPC) for each of these wheat cultivars were calculated. Among all the tested wheat cultivars, three cultivars (Xindong20, Xindong 29 and 99AR142-1) with the lowest FDS and AUDPC may carry major resistance genes. Twenty-seven cultivars (45% of the total tested ones) showed a relatively lower resistance with an average of 12.52% FDS and 126.3 AUDPC. Minor resistance or slow rusting genes may be present in this group of cultivars. Molecular markers for leaf rust resistance genes Lr1, Lr9, Lr19, Lr24, Lr26 and Lr34 were further used for the genotypic screening. Lr1, Lr19, Lr26 and Lr34 were detected in 19 (31.7%), 1 (1.7%), 12 (20%) and 6 (10%) wheat cultivars, respectively. Neither Lr9 nor Lr24 could be detected in any of the tested cultivars. These results will greatly improve wheat molecular breeding for leaf rust resistance in these areas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bartoš, P., V. Šíp, A. Hanzalová, L. Kučera, J. Ovesná, J. Valkoun, J. Chrpová et al. "Utilization of wild relatives and primitive forms of wheat in Czech wheat breeding". Czech Journal of Genetics and Plant Breeding 41, Special Issue (31 de julho de 2012): 284–87. http://dx.doi.org/10.17221/6192-cjgpb.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Cejnar, Pavel, Ludmila Ohnoutková, Jan Ripl e Jiban Kumar Kundu. "Wheat dwarf virus infectious clones allow to infect wheat and Triticum monococcum plants". Plant Protection Science 55, No. 2 (17 de fevereiro de 2019): 81–89. http://dx.doi.org/10.17221/42/2018-pps.

Texto completo da fonte
Resumo:
We constructed Wheat dwarf virus (WDV) infectious clones in the bacterial plasmids pUC18 and pIPKb002 and tested their ability to inoculate plants using Bio-Rad Helios Gene Gun biolistic inoculation method and Agrobacterium tumefaciens agroinoculation method, and we then compared them with the natural inoculation method via viruliferous P. alienus. Infected plants were generated using both infectious clones, whereas the agroinoculation method was able to produce strong systemic infection in all three tested cultivars of wheat and Triticum monococcum, comparable to plants inoculated by viruliferous P. alienus. Infection was confirmed by DAS-ELISA, and WDV titres were quantified using qPCR. The levels of remaining bacterial plasmid DNA were also confirmed to be zero.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Širlová, L., J. Vacke e M. Chaloupková. "Reaction of selected winter wheat varieties to autumnal infection with Wheat dwarf virus". Plant Protection Science 41, No. 1 (8 de fevereiro de 2010): 1–7. http://dx.doi.org/10.17221/2732-pps.

Texto completo da fonte
Resumo:
The response of 25 registered winter wheat varieties to autumnal infection with Wheat dwarf virus (WDV) was studied in small plot trials in two years. The materials were infected by vectors, leafhopper Psammotettix alienus Dahlbom, 1851 from three-leaf stage to tillering. The symptoms expression was monitored in spring and plant height, weight of above ground biomass and grain yield were observed in summer. All tested varieties were evaluated as susceptible and divided into three groups: varieties Banquet and Svitava with 87.3–93.1% grain yield reduction as moderately susceptible, varieties Clever, Drifter, Niagara and Rialto with 95.6–97.68% grain yield reduction as susceptible and varieties Apache, Batis, Bill, Complet, Contra, Corsaire, Ludwig, Mladka, Nela, Record, Rheia, Semper, Sepstra, Solara, Sulamit, Tower, Trend, Vlasta and Winsdor with 99.7–100% grain yield reduction as very susceptible. Statistically significant differences were observed between moderately susceptible and susceptible varieties as well as very susceptible ones in absorbency values by means of DAS-ELISA.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Manne, Vignan, e Kris V. Kowdley. "You are what you wheat: effects of a whole-wheat diet compared with a refined-wheat diet on hepatic steatosis". American Journal of Clinical Nutrition 108, n.º 6 (1 de dezembro de 2018): 1162–63. http://dx.doi.org/10.1093/ajcn/nqy300.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Mason, MG, e IC Rowland. "Nitrogen fertiliser response of wheat in lupin-wheat, subterranean clover-wheat and continuous wheat rotations". Australian Journal of Experimental Agriculture 30, n.º 2 (1990): 231. http://dx.doi.org/10.1071/ea9900231.

Texto completo da fonte
Resumo:
Response of wheat to 7 rates of nitrogen (N) fertiliser was compared in clover-wheat (CW), lupin-wheat (LW) and continuous wheat (WW) rotations, in 4 alternate years on a grey gravelly sand over ironstone gravel at Badgingarra, during the period 1980-87. Nitrogen fertilisers significantly increased wheat grain yields in all assessment years (1981, 1983, 1985 and 1987). There were significant (P<0.05) interactions between rotation and N fertiliser in all years except 1983, with response to N fertiliser on wheat least in the LW rotation. The apparent average increases in N available in wheat dry matter, without added N, were 10.9 kg/ha from clover and 13 kg/ha from lupins. The contributions from clover and lupins in grain N were 10 and 12.3 kg/ha respectively. Organic carbon and total N levels in the soil were similar in the LW and WW rotations but were less than in the CW rotation. The levels of organic carbon in the LW and WW rotations decreased with time. Despite the difference in soil organic carbon and total N, grain yields were similar for the CW and LW rotations in the absence of N fertiliser but were higher than in the WW rotation. It was concluded that a LW rotation (in this environment) would be as effective, at least over a 6-year period, as a CW rotation in maintaining wheat yields due to the contribution of N from readily decomposible residues from the lupin crop. However, highest yields overall where obtained when N fertiliser was added to the CW rotation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Mastrangelo, Anna M., e Luigi Cattivelli. "What Makes Bread and Durum Wheat Different?" Trends in Plant Science 26, n.º 7 (julho de 2021): 677–84. http://dx.doi.org/10.1016/j.tplants.2021.01.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Yoshimura, Hirofumi. "What? Wheat Flour can become a Lubricant?" Materia Japan 39, n.º 2 (2000): 164–65. http://dx.doi.org/10.2320/materia.39.164.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Kerby, K., e J. Kuspira. "The phylogeny of the polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat)". Genome 29, n.º 5 (1 de outubro de 1987): 722–37. http://dx.doi.org/10.1139/g87-124.

Texto completo da fonte
Resumo:
The phylogeny of the polyploid wheats has been the subject of intense research and speculation during the past 70 years. Various experimental approaches have been employed to ascertain the diploid progenitors of these wheats. The species having donated the D genome to Triticum aestivum has been unequivocally identified as Aegilops squarrosa. On the basis of evidence from many studies, Triticum monococcum has been implicated as the source of the A genome in both Triticum turgidum and Triticum aestivum. However, numerous studies since 1968 have shown that Triticum urartu is very closely related to Triticum monococcum and that it also carries the A genome. These studies have prompted the speculation that Triticum urartu may be the donor of this chromosome set to the polyploid wheats. The donor of the B genome to Triticum turgidum and Triticum aestivum remains equivocal and controversial. Six different diploid species have been implicated as putative B genome donors: Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Aegilops speltoides, and Triticum urartu. Until recently, evidence presented by different researchers had not permitted an unequivocal identification of the progenitor of the B genome in polyploid wheats. Recent studies, involving all diploid and polyploid wheats and putative B genome donors, lead to the conclusion that Aegilops speltoides and Triticum urartu can be excluded as B genome donors and that Aegilops searsii is the most likely source of this chromosome set. The possibility of the B genome having arisen from an AAAA autotetraploid or having a polyphyletic origin is discussed. Key words: phylogeny; Triticum aestivum; Triticum turgidum; A, B, and D genomes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Diekmann, Florian. "Wheat". Journal of Agricultural & Food Information 10, n.º 4 (26 de outubro de 2009): 289–99. http://dx.doi.org/10.1080/10496500903245404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Steen, Bill. "Wheat". Journal of the Southwest 54, n.º 4 (2012): 621–33. http://dx.doi.org/10.1353/jsw.2012.0028.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Shewry, P. R. "Wheat". Journal of Experimental Botany 60, n.º 6 (1 de abril de 2009): 1537–53. http://dx.doi.org/10.1093/jxb/erp058.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

De Bustos, A., R. Pérez, A. Cuadrado e N. Jouve. "The MRN complex of wheat". Czech Journal of Genetics and Plant Breeding 47, Special Issue (20 de outubro de 2011): S35—S38. http://dx.doi.org/10.17221/3251-cjgpb.

Texto completo da fonte
Resumo:
The MRN complex is formed by the interaction of the products of the Mre11, Rad50 and Nbs1 genes. This complex plays a central role on repair of double-strand breaks (DSBs) and acts in a great number of cellular processes. In this study we have performed the analysis of the MRN complex in diploid and polyploid species of wheat. The molecular characterization was carried out in the diploid T. monococcum (genome A) and Ae.&nbsp;tauschii (genome D) and in the tetraploid T. turgidum (genomes A and B). The results obtained showed that in all cases the genes presented the main characteristics previously described in other species. A modified FISH protocol was used to locate the Rad50, Mre11 and the Nbs1 genes on the homoeologous chromosomes 5, 2 and 1, respectively. Analysis of expression showed that the hexaploid T. aestivum was the species with the higher level of expression whereas the rest of the species analysed showed no relation with its ploidy. Also, quantification of the expression of each homoeologous gene in the polyploid species evidenced in some cases a process of silencing after polyploidization. The study of the interaction between the proteins demonstrated that the interaction of proteins was not restricted to each genome, detecting interaction between proteins belonging to different genomes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia