Literatura científica selecionada sobre o tema "Wheat Genetics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Wheat Genetics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Wheat Genetics"
Tyryshkin, L. G., e N. A. Tyryshkina-Shishelova. "Genetics of wheat somaclones resistance to Bipolaris sorokiniana Shoem." Plant Protection Science 38, SI 1 - 6th Conf EFPP 2002 (1 de janeiro de 2002): 186–88. http://dx.doi.org/10.17221/10352-pps.
Texto completo da fonteWingen, Luzie U., Claire West, Michelle Leverington-Waite, Sarah Collier, Simon Orford, Richard Goram, Cai-Yun Yang et al. "Wheat Landrace Genome Diversity". Genetics 205, n.º 4 (17 de fevereiro de 2017): 1657–76. http://dx.doi.org/10.1534/genetics.116.194688.
Texto completo da fonteFeldman, Moshe, Bao Liu, Gregorio Segal, Shahal Abbo, Avraham A. Levy e Juan M. Vega. "Rapid Elimination of Low-Copy DNA Sequences in Polyploid Wheat: A Possible Mechanism for Differentiation of Homoeologous Chromosomes". Genetics 147, n.º 3 (1 de novembro de 1997): 1381–87. http://dx.doi.org/10.1093/genetics/147.3.1381.
Texto completo da fonteStehno, Z., J. Bradová, L. Dotlačil e P. Konvalina. "Landraces and obsolete cultivars of minor wheat species in the czech collection of wheat genetic resources". Czech Journal of Genetics and Plant Breeding 46, Special Issue (31 de março de 2010): S100—S105. http://dx.doi.org/10.17221/2664-cjgpb.
Texto completo da fonteRöder, Marion S., Victor Korzun, Katja Wendehake, Jens Plaschke, Marie-Hélène Tixier, Philippe Leroy e Martin W. Ganal. "A Microsatellite Map of Wheat". Genetics 149, n.º 4 (1 de agosto de 1998): 2007–23. http://dx.doi.org/10.1093/genetics/149.4.2007.
Texto completo da fonteFlavell, Richard B., e John W. Snape. "Michael Denis Gale. 25 August 1943—18 July 2009". Biographical Memoirs of Fellows of the Royal Society 69 (26 de agosto de 2020): 203–23. http://dx.doi.org/10.1098/rsbm.2020.0011.
Texto completo da fonteOndrejčák, F., e D. Muchová. "Winter Wheat Markola". Czech Journal of Genetics and Plant Breeding 42, No. 1 (21 de novembro de 2011): 23–24. http://dx.doi.org/10.17221/6053-cjgpb.
Texto completo da fonteRückschloss, L., A. Hanková e K. Mazúchová. "Winter Wheat Veldava". Czech Journal of Genetics and Plant Breeding 42, No. 1 (21 de novembro de 2011): 27–28. http://dx.doi.org/10.17221/6055-cjgpb.
Texto completo da fonteBobková, L. "Spring wheat Granny". Czech Journal of Genetics and Plant Breeding 40, No. 3 (23 de novembro de 2011): 109–10. http://dx.doi.org/10.17221/6092-cjgpb.
Texto completo da fonteLaml, P. "Winter Wheat Banquet". Czech Journal of Genetics and Plant Breeding 38, No. 3-4 (1 de agosto de 2012): 137–38. http://dx.doi.org/10.17221/6251-cjgpb.
Texto completo da fonteTeses / dissertações sobre o assunto "Wheat Genetics"
Kapfuchira, Tawanda Alpha. "Genetics of biofortified wheat". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/15461.
Texto completo da fonteSharma, Sapna. "Genetics of Wheat Domestication and Septoria Nodorum Blotch Susceptibility in Wheat". Thesis, North Dakota State University, 2019. https://hdl.handle.net/10365/29767.
Texto completo da fonteZainuddin. "Genetic transformation of wheat (Triticum aestivum L.)". Title page, Contents and Abstract only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspz21.pdf.
Texto completo da fonteSingh, Nagendra Kumar. "The structure and genetic control of endosperm proteins in wheat and rye". Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phs6174.pdf.
Texto completo da fonteHorn, Marizanne. "Transfer of genetic resistance to the Russian wheat aphid from rye to wheat". Thesis, Stellenbosch : Stellenbosch University, 1997. http://hdl.handle.net/10019.1/55770.
Texto completo da fonteENGLISH ABSTRACT: An octoploid triticale was derived from the F1 of a Russian wheat aphid resistant rye, 'Turkey 77', and 'Chinese Spring' wheat. The alloploid was crossed (a) to common wheat, and (b) to the 'Imperial' rye to 'Chinese Spring' disomic addition lines. F2 progeny from these crosses were tested for Russian wheat aphid resistance and C-banded. Resistance was found to be associated with chromosome arm 1RS of the 'Turkey 77' rye genome. This initial work was done by MARAIS (1991) who made a RWA resistant, monotelosomic 1RS ('Turkey 77') addition plant available for the study. The F3 progeny of this monotelosomic addition plant was used to confirm the RWA resistance on chromosome 1RS. The monotelosomic addition plant was then crossed with the wheat cultivar 'Gamtoos', which has the 1BL.1 RS 'Veery' translocation. Unlike the 1RS segment in 'Gamtoos', the 'Turkey 77'- derived 1RS telosome did not express the rust resistance genes 5r31 and Lr26 which could then be used as markers. From the F1 a monotelosomic 1RS addition plant that was also heterozygous for the 1BL.1 RS translocation, was selected and testcrossed with an aphid susceptible common wheat, 'Inia 66'. Meiotic pairing between the .rye arms resulted in the recovery of five euploid, Russian wheat aphid resistant plants out of a progeny of 99 euploids. One recombinant also retained 5r31 and Lr26 and was allowed to self pollinate. With the aid of SOS-PAGE profiles, Russian wheat aphid resistant 1BL.1 RS translocation homozygotes were identified and it was possible to confirm that the Russian wheat aphid resistance gene was in fact transferred to the 1BL.1RS ('Veery') translocation. Two attempts were made to map the Russiar, wheat aphid locus or loci. (1) Telosomic mapping was attempted. For this purpose a plant with 2n = 40 + 1BL.1 RS + 1RS was obtained, and testcrossed with a Russian wheat aphid susceptible wheat. (2) A disomic, recombined 1BL.1 RS translocation line with Russian wheat aphid resistance but lacking the Lr26 and Sr31 alleles was crossed with 'Gamtoos' and the F1 testcrossed. The testcross in both strategies were done with 'Chinese Spring'. In the first experiment the Sr31 locus was located 10.42 map units from the Lr26 locus. The rust resistance data implied that the genetic distance estimates may be unreliable and therefore the laborious Russian wheat aphid resistance tests were not done. In the second experiment a Russian wheat aphid resistance gene was located 14.5 map units from the Lr26 locus. In the latter cross nonmendel ian segregation of the Russian wheat aphid resistance evidently occurred which implied that the estimated map distance may be inaccurate. It was also not possible to determine the number of genes involved from the data.
Digitized at 300 dpi Colour & b/W PDF format (OCR), using ,KODAK i 1220 PLUS scanner. Digitised, Ricardo Davids on request from ILL 25 April 2013
AFRIKAANSE OPSOMMING: 'n Oktaplo"lede triticale is gemaak vanaf die F1 van 'n kruising tussen 'n Russiese koringluis-weerstandbiedende rog, 'Turkey 77', en die koringkultivar 'Chinese Spring'. Die alloplo"led is gekruis met gewone broodkoring en met 'Imperial' rog/'Chinese Spring' disomiese addissielyne. Die F2 nageslag vanaf hierdie kruisings is getoets vir Russiese koringluisweerstandbiedendheid en C-bande is ook gedoen. Weerstand is gevind wat geassosieer is met die 1RS chromosoomarm van 'Turkey 77'. Hierdie oorspronklike werk is deur MARAIS (1991) gedoen en uit sy materiaal is 'n monotelosomiese 1RS ('Turkey 77') addissieplant beskikbaar gestel vir die huidige studie. Die F3 nageslag van hierdie monotelosomiese addissieplant is gebruik om die weerstand teen die Russiese koringluis op chromosoom 1RS te bevestig. Die monotelosomiese addissieplant is ook gekruis met die koringkultivar 'Gamtoos' wat die 1BL.1 RS-translokasie dra. Hoewel die 1RS segment van 'Gamtoos' die roesweerstandsgene, Sr31 en Lr26 uitdruk, is dit nie die geval met die 'Turkey 77' 1RS telosoom nie. Hierdie gene kon dus as merkergene gebruik word. Vanuit die F1 is 'n monotelosomiese 1RS addissieplant geselekteer wat ook heterosigoties was vir die 1BL.1 RStranslokasie. Hierdie plant is getoetskruis met 'n luisvatbare gewone broodkoring, 'Inia 66'. Meiotiese paring tussen die rogarms het daartoe gelei dat vyf euplo"lede Russiese koringluis-weerstandbiedende nageslag uit 99 euplo"lede nageslag geselekteer kon word. Een rekombinant het ook Sr31 en Lr26 behou en is toegelaat om self te bestuif. Met behulp van SDSPAGE profiele is Russiese koringluis-weerstandbiedende 1BL.1 RStranslokasie homosigote ge"ldentifiseer en kon bevestig word dat die weerstandsgeen vir die Russiese koringluis oorgedra is na die 1BL.1 RS ('Veery') -translokasie. Twee strategies is gevolg om die Russiese koringluislokus of -loci te karteer: (1) 'n Telosomiese analise is gedoen. 'n Plant met 2n = 40 + 1BL.1 RS + 1RS is verkry en met 'n luisvatbare koring bestuif. (2) 'n Gerekombineerde, disomiese plant met Russiese koringluis-weerstandbiedendheid maar sonder die Lr26 en Sr31 allele is gekruis met 'Gamtoos' en die F1 getoetskruis. Die toetskruisouer in beide die strategiee was 'Chinese Spring'. In die eerste eksperiment is die Sr31-lokus 10.42 kaarteenhede vanaf die Lr26-lokus gelokaliseer. Die raesdata het ge"impliseer dat onbetraubare genetiese kaarteenhede geskat sou word en daarom is die omslagtige Russiese koringluis weerstandsbepalings nie gedoen nie. In die tweede eksperiment is die Russiese koringluis-weerstandsgeen op 14.5 kaarteenhede vanaf die Lr26-lokus gelokaliseer. Nie-Mendeliese segregasie van die Russiese koringluis-weerstand in hierdie karteringseksperiment het ge'impliseer dat die berekende kaartafstand onakkuraat mag wees. Dit was ook nie moontlik om op grand van die data die aantal gene betrakke af te lei nie.
Zwart, Rebecca Susan. "Genetics of disease resistance in synthetic hexaploid wheat /". St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17369.pdf.
Texto completo da fonteWessels, Willem Gerhardus. "Mapping genes for stem rust and Russian wheat aphid resistance in bread wheat (Triticum aestivum)". Thesis, Stellenbosch : Stellenbosch University, 1997. http://hdl.handle.net/10019.1/55580.
Texto completo da fonteENGLISH ABSTRACT: Stem rust is considered the most damaging of the wheat rusts causing yield losses of more than 50% in epidemic years. Similarly, Russian wheat aphids (RWA) can be regarded as one ofthe most devastating insect pests of wheat. Yield losses due to R W A primarily result from a reduction in plant resources (sucking plant sap). Secondary losses are incurred by viruses transmitted during feeding. Mapping disease and insect resistance genes that are effective against prevailing pathotypes and biotypes of South Africa will optimize their utilization in breeding programmes. The wheat line, 87M66-2-l, is homozygous for a single dominant stem rust resistance gene located on chromosome lD. This stem rust resistance gene has been derived from Triticum tauschii accession RL5289 and is here referred to as Srtau. The aim of this study was to determine the chromosome arm involved. Following the chromosome arm allocation of Srtau, its possible linkage with the genes Rg2, Lr 21 , Sr X and Sr 33 was studied. A telosomic analysis has shown that Srtau is located on chromosome arm 1 DS and is linked to the centromere with a recombination frequency of 21 ± 3 .40%. Glume blotch and a heavy mildew infection of segregating families planted in the field in 1996 made the linkage study between Lr 21 (leaf rust resistance) and Rg2 (glume colour) impossible. However, estimated linkages of 9 ± 1.9 map units between Sr33 (stem rust resistance) and Srtau, ± 6 map units between Sr X (stem rust resistance) and Sr 3 3 and ± 1 0 map units between Sr X and Srtau suggested that SrX, Sr33 and Srtau are closely linked on I DS. Taking existing map data into consideration, it seems that the most likely order of the genes is: centromere - Srtau - Sr 3 3 - Sr X. A single dominant R W A resistance gene, Dn5, was identified in the T aestivum accession 'SA 463' and is located on chromosome 7D. The aim ofthis study was to determine the chromosome arm involved. The possible linkage of Dn5 with the endopeptidase locus, Ep-D1 b. and chlorina mutant gene, cn-D1, was then studied. Endopeptidase zymograms of 'SA 463' revealed two unknown polymorphisms. F 2 monosomic analyses involving the chromosomes 7 A, 7B and 7D were performed in an attempt to identify the loci associated with these polymorphisms. Dn5 was mapped on chromosome arm 7DL. A recombination frequency of60 ± 4.53% between Dn5 and the centromere suggested the absence of linkage. Linkage between Ep-Dl and cn-Dl could not be calculated as a result of similar isoelectric points of the 7DL encoded endopeptidases of the parental material studied. Recombination frequencies of32 ± 4.97% between Dn5 and EpDl and 37 ± 6.30% between Dn5 and cn-Dl were, however, encountered. The two novel endopeptidase alleles encountered in 'SA 463' were designated as Ep-Dle and Ep-Ald. A RWA resistance gene was transferred from the rye accession ' Turkey 77' to wheat and in the process the RWA resistant wheat lines 91M37-7 and 91M37-51 were derived. No rye chromatin could be detected in these plants following C-banding. The aim of this study was to determine (i) on which chromosome the gene(s) is located, and (ii) whether the resistance can be the result of a small intercalary translocation of rye chromatin. A monosomic analysis of the RWA resistance gene in 91M37-51 has shown that a single dominant resistance gene occurs on chromosome 7D. The use of rye-specific dispersed probes did not reveal any polymorphisms between the negative controls and RW A resistant lines 91M3 7- 7 and 91M37-51 which would suggest that it is unlikely that the resistance was derived from rye.
AFRIKAANSE OPSOMMING: Stamroes word as die mees vemietigende graanroessiekte beskou en het in epidemiese jare oesverliese van meer as 50% tot gevolg. Russiese koringluise is eweneens een van die emstigste insekplae van koring. Russiese koringluise veroorsaak oesverliese deurdat dit plantsap uitsuig en die plant van voedingstowwe beroof. Dit tree egter ook as 'n virusvektor op en kan so indirekte oesverliese veroorsaak. Kartering van siekte- en insekweerstandsgene wat effektief is teen die Suid-Afrikaanse patotipes en biotipes, sal hulle gebruik in teelprogramme optimiseer. Die koringlyn, 87M66-2-l , is homosigoties vir 'n dominante stamroes-weerstandsgeen wat op chromosoom ID voorkom. Hierdie weerstandsgeen is uit die Triticum tauschii aanwins, RL5289, afkomstig en word hiema verwys as Srtau. Daar is gepoog om te bepaal op watter chromosoomarm Srtau voorkom, waama sy koppeling met betrekking tot die gene Rg2, Lr21 , SrX en Sr33 bepaal is. 'n Telosoomanalise het getoon dat Srtau op chromosoom-arm 1 DS voorkom en gekoppel is aan die sentromeer met 'n rekombinasie-frekwensie van 21 ± 3.40%. Segregerende populasies wat in 1996 in die land geplant is, is hewig deur aarvlek en poeieragtige meeldou besmet en dit het die moontlike bepaling van koppeling tussen Lr21 (blaarroesweerstand) en Rg2 (aarkaffie kleur) belemmer. Koppelingsafstande van 9 ± 1. 9 kaart-eenhede tussen Sr 33 (stamroesweerstand) en Srt au, ± 6 kaart -eenhede tussen Sr X ( stamroesweerstand) en Sr 3 3 en ± 1 0 kaart -eenhede tussen SrX en Srtau is geraam en toon dat SrX, Sr33 en Srtau nou gekoppel is. Die waarskynlikste volgorde van die gene op lDS is: sentromeer- Srtau- Sr33- SrX. 'n Enkele dominante Russiese koringluis-weerstandsgeen, Dn5, is in dieT aestivum aanwins 'SA 463 ' ge"identifiseer en kom op chromosoom 7D voor. Die studie het ten doel gehad om te bepaal op watter chromosoom-arm Dn5 voorkom, asook wat die koppeling van Dn5 met die endopeptidase lokus, Ep-Dl, en die chlorina mutante geen, cn-Dl , is. Endopeptidase simograrnme van 'SA 463' het twee onbekende polimorfismes getoon. Die gene wat kodeer vir hierdie twee polimorfismes is met behulp van F2 monosoom-analises wat die chromosome 7 A, 7B en 7D betrek, gei:dentifiseer. Dn5 is op chromosoom 7DL gekarteer. 'n Rekombinasie-frekwensie van 60 ± 4.53% is gevind vir die sentromeer en Dn5 en dui op die afwesigheid van koppeling. Koppeling tussen Ep-Dl en cn-Dl kon nie bepaal word nie omdat die endopeptidase bande geproduseer deur die ouerlike materiaal wat in die studie gebruik is, nie met sekerheid in die nageslag onderskei kon word nie. Rekombinasie-frekwensies van 32 ± 4.97% tussen Dn5 en Ep-Dl en 37 ± 6.30% tussen Dn5 en cn-Dl is egter bereken. Dit word voorgestel dat daar na die twee onbekende endopeptidase-allele wat in 'SA 463 ' voorkom, verwys word as Ep-Dle en Ep-Ald. 'n Russiese koringluis-weerstandsgeen is uit die rog-aanwins, 'Turkey 77', oorgedra na koring en in die proses is die Russies koringluis weerstandbiedende lyne, 91M37-7 en 91M37-51 , geproduseer. Geen rog-chromatien kon egter met behulp van C-bande in hierdie lyne waargeneem word nie. Die doel van die studie was om te bepaal (i) op watter chromosoom die geen(e) voorkom, en (ii), of die Russiese koringluis weerstandsgeen die gevolg kan wees van 'n klein interkalere translokasie van rog- chromatien. 'n Monosoom-analise van die Russiese koringluis-weerstandsgeen in 91M37-51 het getoon dat 'n enkele dominante weerstandsgeen op chromosoom 7D voorkom. Rog-spesifieke herhalende peilers het geen polimorfismes tussen negatiewe kontroles en die Russiese koringluis weerstandbiedende lyne 91M37-7 en 91M37-51 getoon nie. Dit is dus onwaarskynlik dat die weerstand in die lyne uit rog verhaal is.
Khan, Imtiaz Ahmed. "Utilisation of molecular markers in the selection and characterisation of wheat-alien recombiant chromosomes". Title page, contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phk451.pdf.
Texto completo da fonteHarris, Nigel. "A transposable element of wheat". Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330215.
Texto completo da fonteGroenewald, Johannes Zacharias. "Tagging and mapping of prominent structural genes on chromosome arm 7DL of common wheat". Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52474.
Texto completo da fonteENGLISH ABSTRACT: Chromosome arm 7DL of common wheat carries genes for agronomically important traits such as leaf rust, stem rust, Russian wheat aphid and eye spot resistance. Some of these genes occur on introgressed foreign chromatin, which restricts their utility in breeding. The 7DL genetic maps are poorly resolved, which seriously hampers attempts to manipulate the genes and introgressed regions in breeding. This dissertation represents an attempt to improve our knowledge of the relative map positions of three resistance genes that have significant potential for use in local breeding programmes. The leaf rust resistance gene, Lr19, is located on a Thinopyrum ponticum-derived translocation which occupies a large part of the terminal end of 7DL. The translocation also carries genes for less favourable traits such as yellow flour colour. Attempts have been made to reduce the size of the translocation through allosyndetic pairing induction; the primary aims being to remove deleterious genes and to minimise the amount of foreign chromatin associated with Lr19 so it can be recombined with other useful 7DL genes. Twenty-nine 'Indis'-derived Lr 19 deletion mutants were previously produced by gamma irradiation and a physical map was constructed. In this study, the set of mutant lines were further analysed using 144 Sse8387I/Msei and 32 EcoRI/Msel amplified fragment length polymorphism (AFLP) primer combinations. The previous physical map, which was based on five restriction fragment length polymorphism (RFLP) markers and five structural gene loci, was extended and now includes 95 novel AFLP markers (86 Sse8387I/Msei and 9EcoRI!Msel markers), of which seven map close to Lr 19. Most of the deletions could be ordered according to size and the improved map has already been used to characterise shortened recombinant forms of the Lr 19 translocation. An unsuccessful attempt was made to convert one of the seven markers closest to Lr 19 into a sequence-specific marker. However, an AFLP marker located distally from Lr 19 was successfully converted into a sequence-specific marker in collaboration with other researchers. An attempt was also made to map and tag the Russian wheat aphid (RWA) resistance gene, Dn5. A doubled haploid mapping population consisting of 94 lines was created and typed for Dn5, four microsatellite loci and the endopeptidase locus, Ep-Dl. The Dn5 locus mapped 25.4 cM and 28.6 cM distally from Xg.vm111 and Xg.vm437, respectively, but was not linked to Xgwm428, Xgwm3 7 or Ep-Dl. Tagging of Dn5 was attempted by screening twelve homozygous resistant and seven homozygous susceptible F2 lines from a cross between 'Chinese Spring' and 'PI 294994' with 70 Sse8387IIi\1sei AFLP primer combinations. Only two potentially useful polymorphisms (one in coupling and one in repulsion phase) were identified. Conversion of the coupling phase marker to a sequence-specific marker was not successful. The eyespot resistance gene, Pchl , was derived from Triticum ventricosum and is present in the wheat VPM-1. Close association between Pchl and the endopeptidase Ep-Dlb allele has been reported previously. Pchl/Ep-Dl was tagged by screening ten wheat genotypes (each homozygous for the confirmed presence or absence of Pchl and/or Ep-Dl b) with 36 Sse83 87I/ Msei AFLP primer combinations. Three AFLP markers were closely associated with Pchl I Ep-D 1, one of which was targeted for conversion into a sequence-specific marker. The sequence-specific marker contained a microsatellite core motif and was found to be useful for tagging Pchl!Ep-Dl. A genetic distance of 2 cM was calculated between the novel microsatellite marker and Ep-Dl. The microsatellite marker was also polymorphic for the Lr 19 translocation and it was possible to map it between the Wsp-Dl and Sr25 loci. In this dissertation, mapping and/or tagging of three important resistance genes were achieved. Due to the fact that all markers used in these studies were not polymorphic between all of the targeted regions, it was not possible to fully integrate the data obtained for the three regions.
AFRIKAANSE OPSOMMING: Chromosoom arm 7DL van broodkoring dra gene vir agronomies-belangrike kenrnerke soos blaarroes, stamroes, Russiese koringluis en oogvlek weerstand. Sommige van hierdie gene kom voor in blokke spesie-verhaalde chromatien wat hul bruikbaarheid in teling beperk. Die genetiese kaarte van 7DL is swak ontwikkel en dit maak dit baie moeilik om hierdie gene en spesie-verhaalde streke tydens teling te manipuleer. Hierdie proefskrif verteenwoordig 'n paging om kennis van die relatiewe kaart liggings van drie weerstandsgene, met betekenisvolle potensiaal in plaaslike tee! programme, te verbreed. Die blaarroes weerstandsgeen, Lr 19, kom voor op 'n Thinopyrum ponticum-verhaalde translokasie wat 'n groot terminale gedeelte van 7DL beslaan. Die translokasie dra ook gene vir minder gewensde kenrnerke soos gee! meelkleur. Pogings is aangewend om die translokasie deur homoeoloe parings-induksie te verkort. Die doe! was om nadelige gene te verplaas en die hoeveelheid vreemde chromatien geassosieer met Lr 19 te minimiseer sodat dit met ander nuttige gene op 7DL gerekombineer kan word. Nege-en-twintig 'Indis'-verhaalde Lr 19 delesie mutante is vroeer met gamma bestraling geproduseer en gebruik om 'n fisiese kaart op te stel. Teenswoordig is die stel mutante verder ontleed met behulp van 144 Sse8387I!Msei en 32 EcoRII Msel amplifikasie-fragment-lengte-polimorfisme (AFLP) inleier kombinasies. Die bestaande fisiese kaart, wat gebaseer was op vyf restriksie-fragment-lengte-polimorfisme (RFLP) merkers en vyf strukturele geen loki, is uitgebrei en sluit nou 95 unieke AFLP merkers (86 Sse8387I/Msel en 9EcoRI/Msel merkers) in, waarvan sewe naby aan Lr19 karteer. Die meeste van die delesies kon op grond van hulle grootte gegroepeer word en die verbeterde fisiese kaart is alreeds gebruik om verkorte rekombinante vorms van die Lr 19 translokasie te karakteriseer. 'n Onsuksesvolle paging is aangewend om een van die sewe merkers naaste aan Lr 19 om te skakel na 'n volgorde-spesifieke merker. 'n AFLP merker wat distaal van Lr 19 karteer is egter wel suksesvol in samewerking met ander navorsers omgeskakel na 'n volgordespesifieke merker. 'n Paging is ook aangewend om die Russiese koringluis (RKL) weerstandsgeen, Dn5, te karteer en merkers gekoppel aan die geen te identifiseer. 'n Verdubbelde-haplo!ede karteringspopulasie van 94 lyne is geskep en getipeer vir Dn5, vier mikrosatelliet loki en die endopeptidase lokus, Ep-D1. Die Dn5 lokus karteer 25.4 cM en 28.6 cM distaal van Xgwml11 en Xgwm437, respektiewelik, maar was me gekoppel met Xgwm428, Xgwm37 of Ep-D1 me. Twaalf homosigoties weerstandbiedende en sewe homosigoties vatbare F2 lyne uit die kruising: 'Chinese Spring' I 'PI 294994' is met 70 Sse8387VMsel AFLP inleier kombinasies getoets in 'n poging om merkers vir Dn5 te identifiseer. Slegs twee moontlik bruikbare polimorfismes (een in koppelings- en een in repulsie fase ), is ge'identifiseer. Omskakeling van die koppelingsfase merker na 'n volgorde-spesifieke merker was onsuksesvol. Die oogvlek weerstandsgeen, Pch1, is uit Triticum ventricosum oorgedra en kom voor in die koringlyn, VPM-1. Noue koppeling van Pch1 en die endopeptidase alleel, Ep-D1 b, is vantevore gerapporteer. Merkers is vir P chl I Ep-D 1 gevind deur tien koring genoti pes ( elkeen homosigoties vir die bevestigde teenwoordigheid of afwesigheid van Pch1 en/of Ep-D1 b) te toets met 36 Sse83871/kfsel AFLP inleier kombinasies. Drie AFLP merkers is gevind wat nou koppel met Pchl!Ep-D1 , waarvan een gekies is vir omskakeling na 'n volgorde-spesifieke merker. Die volgorde-spesifieke merker het 'n mikrosatelliet kernmotief bevat en was nuttig as merker vir Pch1/Ep-D1. 'n Genetiese afstand van 2 cM is tussen die unieke mikrosatelliet merker en Ep-D1 bereken. Die mikrosatelliet merker was ook polimorfies vir die Lr 19 translokasie en dit is tussen die Wsp-D1 en Sr25 loki gekarteer. Kartering en/of identifikasie van merkers vir drie belangrike weerstandsgene was suksesvol in hierdie studie. Omdat al die merkers wat gebruik is, nie polimorf was tussen al die streke van belang nie, was dit nie moontlik om die data vir elk van die drie streke ten volle te integreer nie.
Livros sobre o assunto "Wheat Genetics"
Shumnyĭ, V. K. (Vladimir Konstantinovich), editor, ed. Sravnitelʹnai︠a︡ genetika pshenit︠s︡ i ikh sorodicheĭ: Comparative genetics of wheats and their related species. Novosibirsk: Akademicheskoe izd-vo "GEO", 2012.
Encontre o texto completo da fonteAlmeida, Maria T. Wheat: Genetics, crops and food production. New York: Nova Science Publishers, 2011.
Encontre o texto completo da fonteA, Kalashnik N., Ilʹin V. B e Dragavt͡s︡ev V. A, eds. Genetika priznakov pshenit͡s︡y na fonakh pitanii͡a︡. Novosibirsk: "Nauka," Sibirskoe otd-nie, 1988.
Encontre o texto completo da fonteGoncharov, N. P. Sravnitelʹnai︠a︡ genetika pshenit︠s︡ i ikh sorodicheĭ. Novosibirsk: Sibirskoe universitetskoe izd-vo, 2002.
Encontre o texto completo da fonteKonstantinovich, Shumnyĭ Vladimir, ed. Genetika agrokhimicheskikh priznakov pshenit͡s︡y. Novosibirsk: Gamzikova O.I., 1994.
Encontre o texto completo da fonteZemetra, Robert S. Jointed goatgrass genetics. [Pullman, Wash.]: Washington State University Extension, 2006.
Encontre o texto completo da fonteWatanabe, N. Wheat near-isogenic lines. Nagoya-shi, Japan: Sankeisha, 2003.
Encontre o texto completo da fonteWheat: Science and trade. Ames, Iowa: Wiley-Blackwell, 2009.
Encontre o texto completo da fonteI, Malet͡s︡kiĭ S., ed. Lokalizat͡s︡ii͡a︡ genov u mi͡a︡gkoĭ pshenit͡s︡y. Novosibirsk: Rossiĭskai͡a︡ akademii͡a︡ nauk, Sibirskoe otd-nie, In-t t͡s︡itologii i genetiki, 1992.
Encontre o texto completo da fonteInstitut biologii (Rossiĭskai︠a︡ akademii︠a︡ nauk. Ufimskiĭ nauchnyĭ t︠s︡entr), ed. Ėmbriologicheskie osnovy androklinii pshenit︠s︡y: Atlas. Moskva: Nauka, 2005.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Wheat Genetics"
Worland, A. J., M. D. Gale e C. N. Law. "Wheat genetics". In Wheat Breeding, 129–71. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3131-2_6.
Texto completo da fonteMaccaferri, Marco, Martina Bruschi e Roberto Tuberosa. "Sequence-Based Marker Assisted Selection in Wheat". In Wheat Improvement, 513–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_28.
Texto completo da fontePogna, N. E., R. Redaelli, T. Dachkevitch, A. Curioni e A. Dal Belin Peruffo. "Genetics of wheat quality and its improvement by conventional and biotechnological breeding". In Wheat, 205–24. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2672-8_14.
Texto completo da fonteSawhney, R. N. "Genetics of Wheat-Rust Interaction". In Plant Breeding Reviews, 293–343. Oxford, UK: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470650059.ch9.
Texto completo da fonteJordaan, J. P., S. A. Engelbrecht, J. H. Malan e H. A. Knobel. "Wheat and Heterosis". In Genetics and Exploitation of Heterosis in Crops, 411–21. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, 2015. http://dx.doi.org/10.2134/1999.geneticsandexploitation.c39.
Texto completo da fonteFoulkes, M. John, Gemma Molero, Simon Griffiths, Gustavo A. Slafer e Matthew P. Reynolds. "Yield Potential". In Wheat Improvement, 379–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_21.
Texto completo da fonteKnott, Douglas R. "The Wheat Rust Pathogens". In Monographs on Theoretical and Applied Genetics, 14–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83641-1_2.
Texto completo da fonteGill, Bikram S. "Wheat Chromosome Analysis". In Advances in Wheat Genetics: From Genome to Field, 65–72. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55675-6_7.
Texto completo da fonteKeller, B., N. Stein e C. Feuillet. "Comparative Genetics and Disease Resistance in Wheat". In Wheat in a Global Environment, 305–9. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-3674-9_38.
Texto completo da fonteArumuganathan, K., e Kulvinder S. Gill. "Sorting Individual Chromosomes of Corn and Wheat". In Stadler Genetics Symposia Series, 223–24. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_17.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Wheat Genetics"
"What we know about vernalization process in wheat". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-154.
Texto completo da fonte"Developmental pathways regulating wheat inflorescence architecture". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-045.
Texto completo da fonte"Genetic diversity of hexaploid wheat accessions conserved ex situ at the Japanese gene bank NBRP-Wheat". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-121.
Texto completo da fonte"Spring wheat varieties resistance to biotic stressors". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-202.
Texto completo da fonte"Patterns of durum wheat response to favorable environments". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-151.
Texto completo da fonte"Spring wheat varieties resistance to the common root rot". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-195.
Texto completo da fonte"Alloplasmic wheat lines, their photosynthetic activity and drought-tolerance". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-192.
Texto completo da fonte"Anatomo-morphological stem features of spring bread wheat varieties". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-008.
Texto completo da fonte"Modern biotechnologies for the targeted modification of wheat genome". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-116.
Texto completo da fonte"Breeding value of partial waxy wheat samples in Tatarstan". In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-014.
Texto completo da fonteRelatórios de organizações sobre o assunto "Wheat Genetics"
Blum, Abraham, Henry T. Nguyen e N. Y. Klueva. The Genetics of Heat Shock Proteins in Wheat in Relation to Heat Tolerance and Yield. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568105.bard.
Texto completo da fonteEyal, Zahir, Albert Scharen, Abraham Blum e Francis Gough. Genetic and Biological Control of Septoria Diseases of Wheat. United States Department of Agriculture, fevereiro de 1986. http://dx.doi.org/10.32747/1986.7593412.bard.
Texto completo da fontePawlowski, Wojtek P., e Avraham A. Levy. What shapes the crossover landscape in maize and wheat and how can we modify it. United States Department of Agriculture, janeiro de 2015. http://dx.doi.org/10.32747/2015.7600025.bard.
Texto completo da fonteResearch Institute (IFPRI), International Food Policy. Genetic resource policies what is diversity worth to farmers? Washington, DC: International Food Policy Research Institute, 2005. http://dx.doi.org/10.2499/ifpriragbriefs13-18.
Texto completo da fonteBlum, Abraham, e Charles Y. Sullivan. The Evaluation of Endemic Land-Races of Wheat as Genetic Resources for Wheat Breeding Towards Environmental and Biotic Stress Tolerance. United States Department of Agriculture, setembro de 1985. http://dx.doi.org/10.32747/1985.7566569.bard.
Texto completo da fonteResearch Institute (IFPRI), International Food Policy. Biotechnology and genetic resource policies: what is a genebank worth? Washington, DC: International Food Policy Research Institute, 2003. http://dx.doi.org/10.2499/ifpriragbriefs07-12.
Texto completo da fonteZhang, Hongbin B., David J. Bonfil e Shahal Abbo. Genomics Tools for Legume Agronomic Gene Mapping and Cloning, and Genome Analysis: Chickpea as a Model. United States Department of Agriculture, março de 2003. http://dx.doi.org/10.32747/2003.7586464.bard.
Texto completo da fonteFeldman, Moshe, Eitan Millet, Calvin O. Qualset e Patrick E. McGuire. Mapping and Tagging by DNA Markers of Wild Emmer Alleles that Improve Quantitative Traits in Common Wheat. United States Department of Agriculture, fevereiro de 2001. http://dx.doi.org/10.32747/2001.7573081.bard.
Texto completo da fonteBlum, Abraham, e Henry T. Nguyen. Molecular Tagging of Drought Resistance in Wheat: Osmotic Adjustment and Plant Productivity. United States Department of Agriculture, novembro de 2002. http://dx.doi.org/10.32747/2002.7580672.bard.
Texto completo da fontede Miguel Beriain, Iñigo, Aliuska Duardo Sánchez e José Antonio Castillo Parrilla. What Can We Do with the Data of Deceased People? A Normative Proposal. Universitätsbibliothek J. C. Senckenberg, Frankfurt am Main, 2021. http://dx.doi.org/10.21248/gups.64580.
Texto completo da fonte