Literatura científica selecionada sobre o tema "Wet chemical syntheses"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Wet chemical syntheses".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Wet chemical syntheses"
Gilroy, Kyle D., Hsin-Chieh Peng, Xuan Yang, Aleksey Ruditskiy e Younan Xia. "Symmetry breaking during nanocrystal growth". Chemical Communications 53, n.º 33 (2017): 4530–41. http://dx.doi.org/10.1039/c7cc01121k.
Texto completo da fonteWang, Bingzhe, Verena Engelhardt, Alexandra Roth, Rüdiger Faust e Dirk M. Guldi. "n- versus p-doping of graphite: what drives its wet-chemical exfoliation?" Nanoscale 9, n.º 32 (2017): 11632–39. http://dx.doi.org/10.1039/c7nr03379f.
Texto completo da fontePalmero, Paola. "Microstructural Tailoring of YAG and YAG-Containing Nanoceramics through Advanced Synthesis Routes". Advances in Science and Technology 62 (outubro de 2010): 34–43. http://dx.doi.org/10.4028/www.scientific.net/ast.62.34.
Texto completo da fonteGuldi, Dirk Michael. "(Invited) Towards Understanding the Competition of Electron and Energy Transfer in “Molecular” Nanographenes on the Example of Hexa-Peri-Hexabenzocoronene". ECS Meeting Abstracts MA2024-01, n.º 7 (9 de agosto de 2024): 795. http://dx.doi.org/10.1149/ma2024-017795mtgabs.
Texto completo da fonteWang, Yumeng, e Zhenxing Yin. "Review of Wet Chemical Syntheses of Copper Nanowires and Their Recent Applications". Applied Science and Convergence Technology 28, n.º 6 (30 de novembro de 2019): 186–93. http://dx.doi.org/10.5757/asct.2019.28.6.186.
Texto completo da fonteBecker, Sidney, Jonas Feldmann, Stefan Wiedemann, Hidenori Okamura, Christina Schneider, Katharina Iwan, Antony Crisp, Martin Rossa, Tynchtyk Amatov e Thomas Carell. "Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides". Science 366, n.º 6461 (3 de outubro de 2019): 76–82. http://dx.doi.org/10.1126/science.aax2747.
Texto completo da fontePadmini, P., e T. R. Narayanan Kutty. "Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion". Journal of Materials Chemistry 4, n.º 12 (1994): 1875. http://dx.doi.org/10.1039/jm9940401875.
Texto completo da fonteIsobe, T. "Low-temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization". physica status solidi (a) 203, n.º 11 (setembro de 2006): 2686–93. http://dx.doi.org/10.1002/pssa.200669630.
Texto completo da fonteSportelli, Maria, Margherita Izzi, Annalisa Volpe, Maurizio Clemente, Rosaria Picca, Antonio Ancona, Pietro Lugarà, Gerardo Palazzo e Nicola Cioffi. "The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials". Antibiotics 7, n.º 3 (28 de julho de 2018): 67. http://dx.doi.org/10.3390/antibiotics7030067.
Texto completo da fonteCorreya, Adrine Antony, V. P. N. Nampoori e A. Mujeeb. "Microwave assisted synthesis of bismuth titanate nanosheets and its photocatalytic effects". PeerJ Materials Science 5 (7 de março de 2023): e26. http://dx.doi.org/10.7717/peerj-matsci.26.
Texto completo da fonteTeses / dissertações sobre o assunto "Wet chemical syntheses"
Qin, Jiadong. "Novel Wet Chemical Syntheses of Graphene Oxide and Vanadium Oxide for Energy Storage Applications". Thesis, Griffith University, 2020. http://hdl.handle.net/10072/393192.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Poirier, Romain. "Synthèse en solution de sulfures divisés pour les électrolytes de batteries lithium-ion tout solide". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10212.
Texto completo da fonteSolid electrolytes are now considered to be the key to the development of new generations of batteries. Two types of solid electrolyte have mainly been studied, polymers and inorganics, but their performance remains limited. One promising way of obtaining high-performance electrolytes is to use inorganic particles incorporated into a polymer matrix to form a hybrid electrolyte. Among the possible inorganic materials, the sulfide family (Li3PS4, Li6PS5X with X= Cl, Br, I) has very high ionic conductivities. However, these materials are generally obtained by the solid route, leading to aggregated micrometric particles. Furthermore, although solution syntheses have recently been demonstrated, the potential to control their size, morphology and prevent aggregation has not been exploited. The aim of this thesis is to develop a methodology for the synthesis of sulfides that enables the size, morphology and aggregation of particles to be controlled so that they can be incorporated into a polymer phase. Several solution synthesis routes were developed in order to overcome the kinetic limitations of conventional synthesis. These different synthesis methods have produced a wide range of particles with different morphologies and aggregation rates. The impact of particle size and morphology on the electrochemical performance of the electrolytes was studied. The best performing electrolytes were tested in hybrid formulations as well as in complete all-solid state electrochemical cells with a Li/In anode
Sortland, Øyvind Sunde. "Wet Chemical Synthesis of Materials for Intermediate Band Solar Cells". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16327.
Texto completo da fonteTucić, Aleksandar. "Wet chemical synthesis and characterization of organic/TiO 2 multilayers". [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-34138.
Texto completo da fonteTucić, Aleksandar [Verfasser]. "Wet chemical synthesis and characterization of organic, TiO2 multilayers / vorgelegt von Aleksandar Tucić". Stuttgart : Max-Planck-Inst. für Metallforschung, 2008. http://d-nb.info/995389497/34.
Texto completo da fonteBorton, Peter Thomas. "Preparation and Characterization of Manganese Fulleride". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354556594.
Texto completo da fonteKlein, Thomas [Verfasser]. "Wet chemical synthesis of nano and submicron Al particles for the preparation of Ni and Ru aluminides / Thomas Klein". Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1231792027/34.
Texto completo da fonteKennedy, Steven Roger 1971. "Synthesis, characterization and use of peroxotungstic ethoxide as a precursor to wet-chemically derived tungsten oxide thin films". Thesis, The University of Arizona, 1996. http://hdl.handle.net/10150/278554.
Texto completo da fonteRostek, Alexander [Verfasser], e Matthias [Akademischer Betreuer] Epple. "Wet-chemical synthesis of mono- and bimetallic nanoparticles of group VIII to XI metals and their detailed characterisation / Alexander Rostek ; Betreuer: Matthias Epple". Duisburg, 2019. http://d-nb.info/1191691055/34.
Texto completo da fonteHagelin, Alexander. "ZnO nanoparticles : synthesis of Ga-doped ZnO, oxygen gas sensing and quantum chemical investigation". Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-64730.
Texto completo da fonteLivros sobre o assunto "Wet chemical syntheses"
Rottenberg, Jonathan. Depression. Oxford University Press, 2021. http://dx.doi.org/10.1093/wentk/9780190083151.001.0001.
Texto completo da fonteNorwood, F. Bailey, Michelle S. Calvo-Lorenzo, Sarah Lancaster e Pascal A. Oltenacu. Agricultural and Food Controversies. Oxford University Press, 2015. http://dx.doi.org/10.1093/wentk/9780199368433.001.0001.
Texto completo da fonteWertz, Julie, Jonathan Faiers, Willow Mullins, Beverly Lemire, Susan Carden e Fiona Anderson. Turkey Red. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350217249.
Texto completo da fonteCapítulos de livros sobre o assunto "Wet chemical syntheses"
Majid, Abdul, e Maryam Bibi. "Wet Chemical Synthesis Methods". In Cadmium based II-VI Semiconducting Nanomaterials, 43–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68753-7_3.
Texto completo da fonteNagabhushana, K. S., e H. Bönnemann. "Wet Chemical Synthesis of Nanoparticles". In Nanotechnology in Catalysis, 51–82. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9048-8_4.
Texto completo da fonteJadhav, Abhijit. "Wet Chemical Methods for Nanop article Synthesis". In Chemical Methods for Processing Nanomaterials, 49–58. First edition. | Boca Raton : CRC Press, Taylor & Francis Group, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429023187-3.
Texto completo da fonteZhang, Fan. "“Wet” Chemical Synthesis and Manipulation of Upconversion Nanoparticles". In Photon Upconversion Nanomaterials, 21–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45597-5_2.
Texto completo da fonteSingh, Vartika S., e S. V. Moharil. "Simple Wet-Chemical Synthesis of Ce3+ Doped γ-BaAlF5". In Springer Proceedings in Physics, 557–62. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_53.
Texto completo da fonteMurase, Hideaki, Shoichiro Shio e Atsushi Nakahira. "Synthesis and Evaluation of Hollow-Tubular ZnO by Wet Chemical Method". In Solid State Phenomena, 571–74. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.571.
Texto completo da fonteShrivastava, Navadeep, e Surender Kumar Sharma. "Controlled Wet Chemical Synthesis of Multifunctional Nanomaterials: Current Status and Future Possibility". In Nanohybrids in Environmental & Biomedical Applications, 3–28. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781351256841-1.
Texto completo da fonteAsamoah, R. B., A. Yaya, E. Annan, P. Nbelayim, F. Y. H. Kutsanedzie, P. K. Nyanor e I. Asempah. "Novel Cost-Effective Synthesis of Copper Oxide Nanostructures by The Influence of pH in the Wet Chemical Synthesis". In Sustainable Education and Development – Sustainable Industrialization and Innovation, 522–29. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25998-2_40.
Texto completo da fonteJeon, Seung Yup, Eun Ju Chae, Won Ki Lee, Gun Dae Lee, Seong Soo Hong, Seog Young Yoon e Seong Soo Park. "A Study for Synthesis of Nanobelt and Nanowire Nickel Powders by Wet Chemical Method". In Materials Science Forum, 83–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.83.
Texto completo da fonteKasinath, Rajendra K., Michael Klem e Robert Usselman. "Citrate Mediated Wet Chemical Synthesis of Fe Doped Nanoapatites: A Model for Singly Doped Multifunctional Nanostructures". In Supplemental Proceedings, 11–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118357002.ch2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Wet chemical syntheses"
Tumram, Priya V., Pranay R. Kautkar e S. V. Moharil. "Wet chemical synthesis of KCaI3:Eu2+ phosphor". In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098612.
Texto completo da fonteTumram, Priya V., S. P. Wankhede e S. V. Moharil. "Wet chemical synthesis of KSr2I5:Eu2+ phosphor". In INTERNATIONAL CONFERENCE ON “MULTIDIMENSIONAL ROLE OF BASIC SCIENCE IN ADVANCED TECHNOLOGY” ICMBAT 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5100391.
Texto completo da fonteZhang, Can-ying, Hai-tao Zhu e Da-xiong Wu. "Controllable Synthesis of Nanofluids With Wet Chemical Method". In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18163.
Texto completo da fonteCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto e Ana Lilia Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ecbo.2015.95371h.
Texto completo da fonteSamanta, P. K., A. K. Mandal, S. Mishra e A. Saha. "Wet-chemical synthesis and optical properties of CuO nanoparticles". In 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech). IEEE, 2017. http://dx.doi.org/10.1109/iementech.2017.8076941.
Texto completo da fonteKlochko, N. P., V. R. Kopach, G. S. Khrypunov, V. E. Korsun, V. M. Lyubov, O. N. Otchenashko, D. O. Zhadan et al. "Nanostructured thermoelectric thin films obtained by wet chemical synthesis". In 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190362.
Texto completo da fonteCepeda-Pérez, E. I., T. López-Luke, L. Pérez-Mayen, Alberto Hidalgo, E. de la Rosa, Alejandro Torres-Castro, Andrea Ceja-Fdez, Juan Vivero-Escoto e Ana L. Gonzalez-Yebra. "Wet chemical synthesis of quantum dots for medical applications". In European Conferences on Biomedical Optics, editado por J. Quincy Brown e Volker Deckert. SPIE, 2015. http://dx.doi.org/10.1117/12.2183183.
Texto completo da fonteCepeda-Pérez, E. I., M. A. Cueto-Bastida, F. Durán-Robles, L. Pérez-Mayen, T. López-Luke e E. de la Rosa. "Cell Imaging Technique Using Quantum Dots by Wet Chemical Synthesis". In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/laop.2014.lth4a.25.
Texto completo da fontePark, H. Y., K. M. Lee, Y. H. Ahn, Soonil Lee, Ken Ha Koh, K. H. Park e D. R. Suh. "Cathodoluminescence Characterization of ZnO Nanorods Grown by Wet Chemical Synthesis". In 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391340.
Texto completo da fonteSugan, S., e R. Dhanasekaran. "Wet chemical synthesis and characterization of AgGaSe[sub 2] nanoparticles". In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810128.
Texto completo da fonteRelatórios de organizações sobre o assunto "Wet chemical syntheses"
Landolt, Peter, Ezra Dunkelblum, Robert R. Heath e Moshe Kehat. Host Plant Chemical Mediation of Heliothis Reproductive Behavior. United States Department of Agriculture, outubro de 1992. http://dx.doi.org/10.32747/1992.7568753.bard.
Texto completo da fonteDinger, Eric, e Eric Dinger. Analysis of stream types in Klamath Network parks based on physical habitat and chemical characters. National Park Service, 2024. http://dx.doi.org/10.36967/2306085.
Texto completo da fonteSela, Shlomo, e Michael McClelland. Desiccation Tolerance in Salmonella and its Implications. United States Department of Agriculture, maio de 2013. http://dx.doi.org/10.32747/2013.7594389.bard.
Texto completo da fonteSchaffer, Arthur A., e Jocelyn Rose. Understanding Cuticle Development in Tomato through the Study of Novel Germplasm with Malformed Cuticles. United States Department of Agriculture, junho de 2013. http://dx.doi.org/10.32747/2013.7593401.bard.
Texto completo da fonte