Literatura científica selecionada sobre o tema "Wave impact"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Wave impact".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Wave impact"
Takagi, Emiko, Yasuhiko Saito e Angelique W. M. Chan. "A Longitudinal Study of the Impact of Loneliness on Personal Mastery Among Older Adults in Singapore". Innovation in Aging 4, Supplement_1 (1 de dezembro de 2020): 318. http://dx.doi.org/10.1093/geroni/igaa057.1017.
Texto completo da fonteVerao Fernandez, Gael, Vasiliki Stratigaki, Panagiotis Vasarmidis, Philip Balitsky e Peter Troch. "Wake Effect Assessment in Long- and Short-Crested Seas of Heaving-Point Absorber and Oscillating Wave Surge WEC Arrays". Water 11, n.º 6 (29 de maio de 2019): 1126. http://dx.doi.org/10.3390/w11061126.
Texto completo da fonteGrilli, Stephan T., Jeffrey C. Harris, Fengyan Shi, James T. Kirby, Tayebeh S. Tajalli Bakhsh, Elise Estibals e Babak Tehranirad. "NUMERICAL MODELING OF COASTAL TSUNAMI IMPACT DISSIPATION AND IMPACT". Coastal Engineering Proceedings 1, n.º 33 (15 de dezembro de 2012): 9. http://dx.doi.org/10.9753/icce.v33.currents.9.
Texto completo da fonteLi, Zhisong, Kirti Ghia, Ye Li, Zhun Fan e Lian Shen. "Unsteady Reynolds-averaged Navier–Stokes investigation of free surface wave impact on tidal turbine wake". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, n.º 2246 (fevereiro de 2021): 20200703. http://dx.doi.org/10.1098/rspa.2020.0703.
Texto completo da fonteGonzalez-Santamaria, Raul, Qingping Zou, Shunqi Pan e Roberto Padilla-Hernandez. "MODELLING WAVE-TIDE INTERACTIONS AT A WAVE FARM". Coastal Engineering Proceedings 1, n.º 32 (27 de janeiro de 2011): 34. http://dx.doi.org/10.9753/icce.v32.waves.34.
Texto completo da fonteKerpen, Nils, Talia Schoonees e Torsten Schlurmann. "Wave Impact Pressures on Stepped Revetments". Journal of Marine Science and Engineering 6, n.º 4 (13 de dezembro de 2018): 156. http://dx.doi.org/10.3390/jmse6040156.
Texto completo da fonteRodriguez Gandara, Ruben, e John Harris. "NEARSHORE WAVE DAMPING DUE TO THE EFFECT ON WINDS IN RESPONSE TO OFFSHORE WIND FARMS". Coastal Engineering Proceedings 1, n.º 33 (25 de outubro de 2012): 55. http://dx.doi.org/10.9753/icce.v33.waves.55.
Texto completo da fonteShimura, Tomoya, Nobuhito Mori, Tomohiro Yasuda e Hajime Mase. "WAVE DYNAMICS AND ITS IMPACT TO WAVE CLIMATE PROJECTION". Coastal Engineering Proceedings 1, n.º 33 (25 de outubro de 2012): 24. http://dx.doi.org/10.9753/icce.v33.management.24.
Texto completo da fonteMu, Ping, Pingyi Wang, Linfeng Han, Meili Wang, Caixia Meng, Zhiyou Cheng e Haiyong Xu. "The Propagation of Landslide-Generated Impulse Waves and Their Impacts on the Moored Ships: An Experimental Investigation". Advances in Civil Engineering 2020 (12 de maio de 2020): 1–13. http://dx.doi.org/10.1155/2020/6396379.
Texto completo da fonteLindt, John W. van de, Rakesh Gupta, Daniel T. Cox e Jebediah S. Wilson. "Wave Impact Study on a Residential Building". Journal of Disaster Research 4, n.º 6 (1 de dezembro de 2009): 419–26. http://dx.doi.org/10.20965/jdr.2009.p0419.
Texto completo da fonteTeses / dissertações sobre o assunto "Wave impact"
Md, Noar Nor. "Wave impacts on rectangular structures". Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6609.
Texto completo da fonteKatsidoniotaki, Eirini. "Extreme wave conditions and the impact on wave energy converters". Licentiate thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441043.
Texto completo da fonteTopliss, Margaret E. "Water wave impact on structures". Thesis, University of Bristol, 1994. http://hdl.handle.net/1983/2fa7ba69-7867-4cd0-8b3a-de4de97f98db.
Texto completo da fonteWood, Deborah Jane. "Pressure-impulse impact problems and plunging wave jet impact". Thesis, University of Bristol, 1997. http://hdl.handle.net/1983/c3dbd4c5-5082-4c71-a16e-3daa969e22ee.
Texto completo da fonteCox, Simon John. "Pressure impulses caused by wave impact". Thesis, University of East Anglia, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266731.
Texto completo da fonteAbdolmaleki, Kourosh. "Modelling of wave impact on offshore structures". University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0055.
Texto completo da fonteAbraham, Aliza Opila. "Extreme wave impact on a flexible plate". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104117.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 99-102).
This thesis describes the use of a combination of various visual techniques to characterize the flow-structure interaction of a breaking wave impacting a flexible vertically mounted plate. Several experiments were conducted on a simulated dam break in which water was rapidly released from a reservoir to generate a wave, which impinged on a cantilevered stainless steel plate downstream. Two high speed cameras collected data on the water and the plate simultaneously. Manual tracking of the wave front and Particle Image Velocimetry (PIV) were used to gather water height, wave speed, crest speed, vorticity, and particle speed, which were used to determine the pressure exerted by the water on the plate. An algorithm was written to track the edge of the plate to find plate deflection over time. The dynamic beam bending equation was used to find the forces experienced by the plate, which were compared to the pressure results. A series of waves of different heights and breaking locations were tested, controlled by the ratio of the height of water initially in the tank and the height of water in the dam break reservoir, for two different plate locations. The properties of the wave varied depending on these parameters, as did the deflection of the plate. The plate deformed more and the recorded velocities in the wave were higher when the depth ratio decreased and when the plate was moved farther from the reservoir. These results shed light on the effect of breaking wave impacts on offshore structures and ship hulls, taking into account the elasticity of these structures. They also provide a test case for future numerical fluid-structure interaction simulation techniques.
by Aliza Opila Abraham.
S.M.
Schöpfer, Philipp. "Non-linear Wave Impact on Monopile Structures". Thesis, KTH, Lättkonstruktioner, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203342.
Texto completo da fonteRimal, Nischal. "Impact Localization Using Lamb Wave and Spiral FSAT". University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1388672483.
Texto completo da fonteBradshaw, Douglas Robert Saunders. "Linear wave propagation in traumatic brain injury". Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341646.
Texto completo da fonteLivros sobre o assunto "Wave impact"
Samra, J. S. Cold wave of 2002-03: Impact on agriculture. New Delhi: Natural Resource Management Division, Indian Council of Agricultural Research, 2003.
Encontre o texto completo da fonte1937-, Shen Jinwei, e Song Jingzheng 1945-, eds. Chuan bo bo lang zai he: Ship wave loads. Beijing: Guo fang gong ye chu ban she, 2007.
Encontre o texto completo da fonteT, Balasubramanian. Wave in bay: Impact of Tsunami on coastal resources. Parangipettai: Environmental Information System Centre, Centre of Advanced Study in Marine Biology, Annamalai University, 2005.
Encontre o texto completo da fonteCoops, Hugo. Helophyte zonation: Impact of water depth and wave exposure. Nijmegen: Katholieke Universiteit Nijmegen, 1996.
Encontre o texto completo da fonteJelliman, Carol. Wave climate change and its impact on UK coastal management. Wallingford: Hydraulics Research Limited, 1991.
Encontre o texto completo da fonteNarendra, Jain. The wave of bliss: Impact of Chitrabhanu on the Western world. Ahmedabad: Swadhyay Mandir Charitable Trust, 1995.
Encontre o texto completo da fonteInternational Symposium on Explosion, Shock Wave & High-Energy Reaction Phenomena (3rd 2010 Seoul, Korea). Explosion, shock wave and high energy reaction phenomena: Selected, peer reviewed papers from International Symposium on Explosion, Shock wave & High-energy reaction Phenomena 2010 (3rd ESHP Symposium), 1-3 September 2010, Seoul National University, Seoul, Korea. Stafa-Zurich, Switzerland: Trans Tech Publications, 2011.
Encontre o texto completo da fonteDaidola, John C. Hydrodynamic impact on displacement ship hulls: An assessment of the state of the art. Washington, D.C: Ship Structure Committee, 1995.
Encontre o texto completo da fonteFawcett, Jo. Foot and Mouth disease: Business impact tracking survey Scotland September 2001 Third wave. Edinburgh: Stationary Office, 2001.
Encontre o texto completo da fonteAllnutt, J. E. Satellite-to-ground radiowave propagation: Theory, practice, and system impact at frequencies above 1GHz. London, U.K: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1989.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Wave impact"
Sperhake, Ulrich. "Gravitational Recoil and Astrophysical Impact". In Gravitational Wave Astrophysics, 185–202. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_16.
Texto completo da fonteRein, Martin. "Wave Phenomena During Droplet Impact". In IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase Systems, 171–90. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0057-1_14.
Texto completo da fonteMardan, Ali H., Stefan A. Loening e David M. Lubaroff. "Impact of Extracorporeal Shock Wave Treatment on Dunning Prostate Tumors". In Shock Wave Lithotripsy, 333–39. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-1977-2_69.
Texto completo da fonteEtienne, Zachariah B., Vasileios Paschalidis e Stuart L. Shapiro. "Advanced Models of Black Hole–Neutron Star Binaries and Their Astrophysical Impact". In Gravitational Wave Astrophysics, 59–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_6.
Texto completo da fonteSkews, B. W. "Shock Wave Impact on Porous Materials". In Shock Waves @ Marseille III, 11–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78835-2_2.
Texto completo da fonteHartmann, C. S. "Systems Impact of Modern Rayleigh Wave Technology". In Springer Series on Wave Phenomena, 238–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82621-4_17.
Texto completo da fonteCollins, Gareth S., Kevin R. Housen, Martin Jutzi e Akiko M. Nakamura. "Planetary Impact Processes in Porous Materials". In Shock Wave and High Pressure Phenomena, 103–36. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23002-9_4.
Texto completo da fonteHu, B., P. Eberhard e W. Schiehlen. "Solving wave propagation problems symbolically using computer algebra". In Dynamics of Vibro-Impact Systems, 231–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60114-9_26.
Texto completo da fonteHieronymus, Hartmut. "Single Bubble Ignition After Shock Wave Impact". In The Micro-World Observed by Ultra High-Speed Cameras, 303–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61491-5_14.
Texto completo da fonteChen, H., M. V. Barnhart, Y. Y. Chen e G. L. Huang. "Elastic Metamaterials for Blast Wave Impact Mitigation". In Blast Mitigation Strategies in Marine Composite and Sandwich Structures, 357–75. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7170-6_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Wave impact"
Stansberg, Carl Trygve. "A Wave Impact Parameter". In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57801.
Texto completo da fonteBanton, Rohan, Thuvan Piehler, Nicole Zander, Richard Benjamin, Josh Duckworth e Oren Petel. "Investigating Pressure Wave Impact on a Surrogate Head Model Using Numerical Simulation Techniques". In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-113.
Texto completo da fonteTian, Zhigang. "An Evaluation of Wave Impact Indicators". In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79732.
Texto completo da fonteSchellin, Thomas E., e Ould El Moctar. "Numerical Prediction of Impact-Related Wave Loads on Ships". In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92133.
Texto completo da fonteScharnke, Jule, Rene Lindeboom e Bulent Duz. "Wave-in-Deck Impact Loads in Relation With Wave Kinematics". In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61406.
Texto completo da fonteGuo, Yinghao, Longfei Xiao, Handi Wei, Lei Li e Yanfei Deng. "Wave Impact Load and Corresponding Nonlinear Response of a Semi-Submersible". In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95693.
Texto completo da fontePeng, Zhong, Tim Raaijmakers e Peter Wellens. "Nonlinear Wave Group Impact on a Cylindrical Monopile". In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-10838.
Texto completo da fonteLi, K. C., Jay C. Y. Huang, J. L. Ku e Synger Lee. "Investigate the Performance of SnCuNi (SCN) Alloy for Wave Soldering". In Circuits Technology Conference (IMPACT). IEEE, 2008. http://dx.doi.org/10.1109/impact.2008.4783821.
Texto completo da fonteThomas, Sarah A., Robert S. Hixson, M. Cameron Hawkins e Oliver T. Strand. "Wave speeds in single-crystal and polycrystalline copper". In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-007.
Texto completo da fonteKalogirou, A., e O. Bokhove. "Mathematical and Numerical Modelling of Wave Impact on Wave-Energy Buoys". In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54937.
Texto completo da fonteRelatórios de organizações sobre o assunto "Wave impact"
Fullerton, Anne M., Ann Marie Powers, Don C. Walker e Susan Brewton. The Distribution of Breaking and Non-Breaking Wave Impact Forces. Fort Belvoir, VA: Defense Technical Information Center, março de 2009. http://dx.doi.org/10.21236/ada495574.
Texto completo da fonteMcElroy, Michael B., e Hans R. Schneider. The impact of tropospheric planetary wave variability on stratospheric ozone. Office of Scientific and Technical Information (OSTI), junho de 2002. http://dx.doi.org/10.2172/809126.
Texto completo da fonteFullerton, Anne M., David Drazen, Don Walker e Eric Terrill. Full Scale Measurements of Wave Impact on a Flat Plate. Fort Belvoir, VA: Defense Technical Information Center, maio de 2013. http://dx.doi.org/10.21236/ada585475.
Texto completo da fonteDing, J. L., e Y. M. Gupta. Layering Concept for Wave Shaping and Lateral Distribution of Stresses During Impact. Fort Belvoir, VA: Defense Technical Information Center, maio de 2001. http://dx.doi.org/10.21236/ada394098.
Texto completo da fonteRiley, Michael R., e Timothy W. Coats. Quantifying Mitigation Characteristics of Shock Isolation Seats in a Wave Impact Environment. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2015. http://dx.doi.org/10.21236/ada622526.
Texto completo da fonteKrall, J., e C. M. Tang. The Impact of the Three-Wave Instability on the Spiral Line Induction Accelerator. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1990. http://dx.doi.org/10.21236/ada229758.
Texto completo da fonteRiley, Michael R., Timothy W. Coats e Heidi Murphy. Acceleration Response Mode Decomposition for Quantifying Wave Impact Load in High-Speed Planing Craft. Fort Belvoir, VA: Defense Technical Information Center, abril de 2014. http://dx.doi.org/10.21236/ada621230.
Texto completo da fonteStrassburger, Elmar. High-Speed Photographic Study of Wave Propagation and Impact Damage in Transparent Aluminum Oxynitride (AION). Fort Belvoir, VA: Defense Technical Information Center, setembro de 2006. http://dx.doi.org/10.21236/ada457205.
Texto completo da fonteWang, Shouping. High-Resolution Coupled Ocean-Wave-Atmosphere Prediction of Typhoons and Their Impact on the Upper Ocean. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2012. http://dx.doi.org/10.21236/ada590344.
Texto completo da fonteBhatt, Mihir R., Shilpi Srivastava, Megan Schmidt-Sane e Lyla Mehta. Key Considerations: India's Deadly Second COVID-19 Wave: Addressing Impacts and Building Preparedness Against Future Waves. Institute of Development Studies (IDS), junho de 2021. http://dx.doi.org/10.19088/sshap.2021.031.
Texto completo da fonte