Artigos de revistas sobre o tema "Wave based models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Wave based models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Firdaus, Nurman, Baharuddin Ali, Mochammad Nasir e M. Muryadin. "The Wave Heights Distribution of Random Wave Based on Ocean Basin". Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 17, n.º 3 (1 de outubro de 2020): 114–22. http://dx.doi.org/10.14710/kapal.v17i3.31021.
Texto completo da fonteJialei, Lv, Shi Jian, Zhang Wenjing, Xia Jingmin e Wang Qianhui. "Numerical simulations on waves in the Northwest Pacific Ocean based on SWAN models". Journal of Physics: Conference Series 2486, n.º 1 (1 de maio de 2023): 012034. http://dx.doi.org/10.1088/1742-6596/2486/1/012034.
Texto completo da fonteZhang, Huichen, e Markus Brühl. "GENERATION OF EXTREME TRANSIENT WAVES IN EXPERIMENTAL MODELS". Coastal Engineering Proceedings, n.º 36 (30 de dezembro de 2018): 51. http://dx.doi.org/10.9753/icce.v36.waves.51.
Texto completo da fonteBAL, GUILLAUME, e OLIVIER PINAUD. "IMAGING USING TRANSPORT MODELS FOR WAVE–WAVE CORRELATIONS". Mathematical Models and Methods in Applied Sciences 21, n.º 05 (maio de 2011): 1071–93. http://dx.doi.org/10.1142/s0218202511005258.
Texto completo da fontePruser, H. H., H. Schaper e W. Zielke. "IRREGULAR WAVE TRANSFORMATION IN A BOUSSINESO WAVE MODEL". Coastal Engineering Proceedings 1, n.º 20 (29 de janeiro de 1986): 205. http://dx.doi.org/10.9753/icce.v20.205.
Texto completo da fonteMori, Nobuhito, Joao Morim, Mark Hemer, Xiaolan L. Wang e COWCLIP Project. "ENSEMBLE WAVE CLIMATE PROJECTIONS BASED ON CMIP5 MODELS". Coastal Engineering Proceedings, n.º 36v (28 de dezembro de 2020): 23. http://dx.doi.org/10.9753/icce.v36v.waves.23.
Texto completo da fonteHernandez-Duenas, Gerardo, Leslie M. Smith e Samuel N. Stechmann. "Investigation of Boussinesq dynamics using intermediate models based on wave–vortical interactions". Journal of Fluid Mechanics 747 (15 de abril de 2014): 247–87. http://dx.doi.org/10.1017/jfm.2014.138.
Texto completo da fonteGogin, Aleksandr G., e Izmail G. Kantarzhi. "Numerical simulation of sea-wave diffraction with random phases on breakwaters". Vestnik MGSU, n.º 4 (abril de 2023): 615–26. http://dx.doi.org/10.22227/1997-0935.2023.4.615-626.
Texto completo da fonteSU, MING, GARY G. YEN e R. R. RHINEHART. "GA-BASED TIME SERIES MODELS WITH THRESHOLD IN TWO DOMAINS". Journal of Circuits, Systems and Computers 18, n.º 04 (junho de 2009): 801–23. http://dx.doi.org/10.1142/s021812660900537x.
Texto completo da fonteZhang, Jun. "Hybrid Wave Models and Their Applications for Steep Ocean Waves". Marine Technology Society Journal 33, n.º 3 (1 de janeiro de 1999): 15–26. http://dx.doi.org/10.4031/mtsj.33.3.3.
Texto completo da fonteLondhe, S. N., e Vijay Panchang. "One-Day Wave Forecasts Based on Artificial Neural Networks". Journal of Atmospheric and Oceanic Technology 23, n.º 11 (1 de novembro de 2006): 1593–603. http://dx.doi.org/10.1175/jtech1932.1.
Texto completo da fonteKyaw, Thit Oo, Tomoya Shibayama, Yoko Shibutani e Yasuo Kotake. "DEVELOPMENT OF A DEEP-LEARNING BASED WAVE FORECASTING MODEL USING LSTM NETWORK". Coastal Engineering Proceedings, n.º 36v (28 de dezembro de 2020): 31. http://dx.doi.org/10.9753/icce.v36v.waves.31.
Texto completo da fonteVogel, J. A., A. C. Radder e J. H. De Reus. "VERIFICATION OF NUMERICAL WAVE PROPAGATION MODELS IN TIDAL INLETS". Coastal Engineering Proceedings 1, n.º 21 (29 de janeiro de 1988): 30. http://dx.doi.org/10.9753/icce.v21.30.
Texto completo da fontePenalba, Markel, e John V. Ringwood. "Linearisation-based nonlinearity measures for wave-to-wire models in wave energy". Ocean Engineering 171 (janeiro de 2019): 496–504. http://dx.doi.org/10.1016/j.oceaneng.2018.11.033.
Texto completo da fonteSaprykina, Yana, Burak Aydogan e Berna Ayat. "MODELLING OF SPILLING AND PLUNGING BREAKING WAVES IN SPECTRAL MODELS". Coastal Engineering Proceedings, n.º 37 (1 de setembro de 2023): 15. http://dx.doi.org/10.9753/icce.v37.papers.15.
Texto completo da fonteErn, Manfred, Quang Thai Trinh, Peter Preusse, John C. Gille, Martin G. Mlynczak, James M. Russell III e Martin Riese. "GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings". Earth System Science Data 10, n.º 2 (27 de abril de 2018): 857–92. http://dx.doi.org/10.5194/essd-10-857-2018.
Texto completo da fonteKhoirunnisa, H., G. R. Pasma e G. Gumbira. "Numerical modeling of return period waves based on non-linear Boussinesq wave models to support tidal flood studies in the Kedungsepur area". IOP Conference Series: Earth and Environmental Science 1224, n.º 1 (1 de agosto de 2023): 012020. http://dx.doi.org/10.1088/1755-1315/1224/1/012020.
Texto completo da fonteSidler, Rolf. "A porosity-based Biot model for acoustic waves in snow". Journal of Glaciology 61, n.º 228 (2015): 789–98. http://dx.doi.org/10.3189/2015jog15j040.
Texto completo da fonteLuo, Feng, Yao Feng, Guisheng Liao e Linrang Zhang. "The Dynamic Sea Clutter Simulation of Shore-Based Radar Based on Stokes Waves". Remote Sensing 14, n.º 16 (12 de agosto de 2022): 3915. http://dx.doi.org/10.3390/rs14163915.
Texto completo da fonteGuérin, Charles-Antoine, Nicolas Desmars, Stéphan T. Grilli, Guillaume Ducrozet, Yves Perignon e Pierre Ferrant. "An improved Lagrangian model for the time evolution of nonlinear surface waves". Journal of Fluid Mechanics 876 (1 de agosto de 2019): 527–52. http://dx.doi.org/10.1017/jfm.2019.519.
Texto completo da fonteSmit, P. B., T. T. Janssen e T. H. C. Herbers. "Stochastic Modeling of Coherent Wave Fields over Variable Depth". Journal of Physical Oceanography 45, n.º 4 (abril de 2015): 1139–54. http://dx.doi.org/10.1175/jpo-d-14-0219.1.
Texto completo da fontePierson, Willard J., e Azed Jean-Pierre. "Monte Carlo Simulations of Nonlinear Ocean Wave Records with Implications for Models of Breaking Waves". Journal of Ship Research 43, n.º 02 (1 de junho de 1999): 121–34. http://dx.doi.org/10.5957/jsr.1999.43.2.121.
Texto completo da fonteDiaz Loaiza, Manuel Andres, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe e Sebastiaan N. Jonkman. "Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations". Natural Hazards and Earth System Sciences 22, n.º 2 (8 de fevereiro de 2022): 345–60. http://dx.doi.org/10.5194/nhess-22-345-2022.
Texto completo da fonteGagarina, E., J. van der Vegt e O. Bokhove. "Horizontal circulation and jumps in Hamiltonian wave models". Nonlinear Processes in Geophysics 20, n.º 4 (12 de julho de 2013): 483–500. http://dx.doi.org/10.5194/npg-20-483-2013.
Texto completo da fonteFollett, R. K., A. Colaïtis, D. Turnbull, D. H. Froula e J. P. Palastro. "Validation of ray-based cross-beam energy transfer models". Physics of Plasmas 29, n.º 11 (novembro de 2022): 113902. http://dx.doi.org/10.1063/5.0123462.
Texto completo da fonteHolman, Kathleen D., David J. Lorenz e Michael Notaro. "Influence of the Background State on Rossby Wave Propagation into the Great Lakes Region Based on Observations and Model Simulations*". Journal of Climate 27, n.º 24 (10 de dezembro de 2014): 9302–22. http://dx.doi.org/10.1175/jcli-d-13-00758.1.
Texto completo da fonteShi, Jiao, Tianyun Su, Xinfang Li, Fuwei Wang, Jingjing Cui, Zhendong Liu e Jie Wang. "A Machine-Learning Approach Based on Attention Mechanism for Significant Wave Height Forecasting". Journal of Marine Science and Engineering 11, n.º 9 (19 de setembro de 2023): 1821. http://dx.doi.org/10.3390/jmse11091821.
Texto completo da fonteStephan, Claudia, M. Joan Alexander e Jadwiga H. Richter. "Characteristics of Gravity Waves from Convection and Implications for Their Parameterization in Global Circulation Models". Journal of the Atmospheric Sciences 73, n.º 7 (24 de junho de 2016): 2729–42. http://dx.doi.org/10.1175/jas-d-15-0303.1.
Texto completo da fonteStosic, Biljana. "Wave-based digital models of different branch-line couplers". Serbian Journal of Electrical Engineering 17, n.º 2 (2020): 149–69. http://dx.doi.org/10.2298/sjee2002149s.
Texto completo da fonteDrzewiecki, Marcin. "The Propagation of the Waves in the CTO S.A. Towing Tank". Polish Maritime Research 25, s1 (1 de maio de 2018): 22–28. http://dx.doi.org/10.2478/pomr-2018-0018.
Texto completo da fonteMohapatra, Sarat Chandra, Hafizul Islam, Thiago S. Hallak e C. Guedes Soares. "Solitary Wave Interaction with a Floating Pontoon Based on Boussinesq Model and CFD-Based Simulations". Journal of Marine Science and Engineering 10, n.º 9 (5 de setembro de 2022): 1251. http://dx.doi.org/10.3390/jmse10091251.
Texto completo da fonteWeymouth, Gabriel D., e Dick K. P. Yue. "Physics-Based Learning Models for Ship Hydrodynamics". Journal of Ship Research 57, n.º 01 (1 de março de 2013): 1–12. http://dx.doi.org/10.5957/jsr.2013.57.1.1.
Texto completo da fonteUday A. Alturfi e Abdul-Hassan K. Shukur. "Investigation of Energy Dissipation for Different Breakwater Based on Computational Fluid Dynamic Model". CFD Letters 16, n.º 1 (29 de novembro de 2023): 22–42. http://dx.doi.org/10.37934/cfdl.16.1.2242.
Texto completo da fonteBabanin, Alexander V., e AndréJ van der Westhuysen. "Physics of “Saturation-Based” Dissipation Functions Proposed for Wave Forecast Models". Journal of Physical Oceanography 38, n.º 8 (1 de agosto de 2008): 1831–41. http://dx.doi.org/10.1175/2007jpo3874.1.
Texto completo da fonteCova, Raul, David Henley e Kristopher A. Innanen. "Computing near-surface velocity models for S-wave static corrections using raypath interferometry". GEOPHYSICS 83, n.º 3 (1 de maio de 2018): U23—U34. http://dx.doi.org/10.1190/geo2017-0340.1.
Texto completo da fonteVan Duin, Cornelis A. "Rapid-distortion turbulence models in the theory of surface-wave generation". Journal of Fluid Mechanics 329 (25 de dezembro de 1996): 147–53. http://dx.doi.org/10.1017/s0022112096008877.
Texto completo da fonteYANG, DI, e LIAN SHEN. "Direct-simulation-based study of turbulent flow over various waving boundaries". Journal of Fluid Mechanics 650 (24 de março de 2010): 131–80. http://dx.doi.org/10.1017/s0022112009993557.
Texto completo da fonteNguyen, Thao Danh, e Duy The Nguyen. "SIMULATION OF WAVE PRESSURE ON A VERTICAL WALL BASED ON 2-D NAVIER-STOKES EQUATIONS". Science and Technology Development Journal 12, n.º 18 (15 de dezembro de 2009): 59–68. http://dx.doi.org/10.32508/stdj.v12i18.2384.
Texto completo da fontePawlak, Dawid, e Jan M. Kelner. "Directional link attenuation in millimeter-wave range based on empirical model modification". Bulletin of the Military University of Technology 71, n.º 3 (30 de setembro de 2022): 69–92. http://dx.doi.org/10.5604/01.3001.0053.6745.
Texto completo da fonteBennetts, L. G., e T. D. Williams. "Water wave transmission by an array of floating discs". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, n.º 2173 (janeiro de 2015): 20140698. http://dx.doi.org/10.1098/rspa.2014.0698.
Texto completo da fonteWei, Chih-Chiang, e Hao-Chun Chang. "Forecasting of Typhoon-Induced Wind-Wave by Using Convolutional Deep Learning on Fused Data of Remote Sensing and Ground Measurements". Sensors 21, n.º 15 (2 de agosto de 2021): 5234. http://dx.doi.org/10.3390/s21155234.
Texto completo da fonteLowe, Ryan J., Corrado Altomare, Mark Buckley, Renan da Silva, Jeff Hansen e Dirk Rijnsdorp, Jose Dominguez, Alejandro Crespo. "NONHYDROSTATIC AND MESH-FREE COMPUTATIONAL FLUID DYNAMICS MODEL COMPARISONS OF SURF ZONE HYDRODYNAMICS BY PLUNGING IRREGULAR WAVES". Coastal Engineering Proceedings, n.º 37 (1 de setembro de 2023): 11. http://dx.doi.org/10.9753/icce.v37.currents.11.
Texto completo da fontePoghosyan, Ruben, e Yuan Luo. "Random Convolutional Kernels for Space-Detector Based Gravitational Wave Signals". Electronics 12, n.º 20 (20 de outubro de 2023): 4360. http://dx.doi.org/10.3390/electronics12204360.
Texto completo da fonteSansón, L. Zavala. "Simple Models of Coastal-Trapped Waves Based on the Shape of the Bottom Topography". Journal of Physical Oceanography 42, n.º 3 (1 de março de 2012): 420–29. http://dx.doi.org/10.1175/jpo-d-11-053.1.
Texto completo da fonteProtsenko, S. V. "Modelling Turbulent Flows near Coastal Structures Using Various Turbulence Models". Computational Mathematics and Information Technologies 8, n.º 1 (2 de abril de 2024): 55–62. http://dx.doi.org/10.23947/2587-8999-2024-8-1-55-62.
Texto completo da fonteFrüh, W. G. "Low-order models of wave interactions in the transition to baroclinic chaos". Nonlinear Processes in Geophysics 3, n.º 3 (30 de setembro de 1996): 150–65. http://dx.doi.org/10.5194/npg-3-150-1996.
Texto completo da fonteChen, Qin, Ling Zhu, Fengyan Shi e Steve Brandt. "BOUSSINESQ MODELING OF COMBINED STORM SURGE AND WAVES OVER WETLANDS FORCED BY WIND". Coastal Engineering Proceedings, n.º 36v (28 de dezembro de 2020): 6. http://dx.doi.org/10.9753/icce.v36v.waves.6.
Texto completo da fonteRhee, Shin Hyung, e Fred Stern. "RANS Model for Spilling Breaking Waves". Journal of Fluids Engineering 124, n.º 2 (28 de maio de 2002): 424–32. http://dx.doi.org/10.1115/1.1467078.
Texto completo da fonteNose, Takehiko, Takuji Waseda, Tsubasa Kodaira e Jun Inoue. "Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones". Cryosphere 14, n.º 6 (24 de junho de 2020): 2029–52. http://dx.doi.org/10.5194/tc-14-2029-2020.
Texto completo da fonteGuinot, Vincent, Sandra Soares-Frazão e Carole Delenne. "Experimental validation of transient source term in porosity-based shallow water models". E3S Web of Conferences 40 (2018): 06033. http://dx.doi.org/10.1051/e3sconf/20184006033.
Texto completo da fonte