Siga este link para ver outros tipos de publicações sobre o tema: Water storage.

Artigos de revistas sobre o tema "Water storage"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Water storage".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rizet, M., e J. J. Rook. "Evolution de la qualité de l'eau par storage". Journal français d’hydrologie 16, n.º 2 (1985): 123–45. http://dx.doi.org/10.1051/water/19851602123.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Šútor, J., M. Gomboš, M. Kutílek e M. Krejča. "Soil water regime estimated from the soil water storage monitored in time". Soil and Water Research 3, Special Issue No. 1 (30 de junho de 2008): S139—S146. http://dx.doi.org/10.17221/13/2008-swr.

Texto completo da fonte
Resumo:
During the vegetation season, the water storage in the soil aeration zone is influenced by meteorological phenomena and by the vegetated cover. If the groundwater table is in contact with the soil profile, its contribution to water storage must be considered. This impact can be either monitored directly or the mathematical model of the soil moisture regime can be used to simulate it. We present the results of monitoring soil water content in the aeration zone of the East Slovakian Lowland. The main problem is the evaluation of the soil water storage in seasons and in years in the soil profile. Until now, classification systems of the soil water regime evaluation have been mainly based upon climatological factors and soil morphology where the classification has been realized on the basis of indirect indicators. Here, a new classification system based upon quantified data sets is introduced and applied for the measured data. The system considers the degree of accessibility of soil water to plants, including the excess of soil water related to the duration for those characteristic periods. The time span is hierarchically arranged to differentiate between the dominant water storage periods and short-term fluctuations. The lowest taxonomic units characterize the vertical fluxes over time periods. The system allows the comparison of soil water regime taxons over several years and under different types of vegetative cover, or due to various types of land use. We monitored soil water content on two localities, one with a deep ground water level, one with a shallow ground water level. The profile with a shallow ground water level keeps a more uniform taxons and subtaxons of soil water regime due to the crop variation than the profile with a deep ground water level.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Konikow, Leonard F. "Overestimated water storage". Nature Geoscience 6, n.º 1 (21 de dezembro de 2012): 3. http://dx.doi.org/10.1038/ngeo1659.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ganguly, Sayantan. "Subsurface Storage of Water". Resonance 27, n.º 4 (abril de 2022): 561–78. http://dx.doi.org/10.1007/s12045-022-1349-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wuest, Stewart B. "Understanding soil water STORAGE". Crops & Soils 52, n.º 3 (maio de 2019): 8–12. http://dx.doi.org/10.2134/cs2019.52.0302.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Zienty, Dan. "They're Water Storage Tanks?" Opflow 28, n.º 11 (novembro de 2002): 1–12. http://dx.doi.org/10.1002/j.1551-8701.2002.tb01681.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Zhang, C., Y. Peng, J. Chu, C. A. Shoemaker e A. Zhang. "Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China". Hydrology and Earth System Sciences 16, n.º 11 (6 de novembro de 2012): 4033–47. http://dx.doi.org/10.5194/hess-16-4033-2012.

Texto completo da fonte
Resumo:
Abstract. Hydrological simulation in regions with a large number of water storages is difficult due to inaccurate water storage data. To address this issue, this paper presents an improved version of SWAT2005 (Soil and Water Assessment Tool, version 2005) using Landsat, a satellite-based dataset, an empirical storage classification method and some empirical relationships to estimate water storage and release from the various sizes of flow detention and regulation facilities. The SWAT2005 is enhanced by three features: (1) a realistic representation of the relationships between the surface area and volume of each type of water storages, ranging from small-sized flow detention ponds to medium- and large-sized reservoirs with the various flow regulation functions; (2) water balance and transport through a network combining both sequential and parallel streams and storage links; and (3) calibrations for both physical and human interference parameters. Through a real-world watershed case study, it is found that the improved SWAT2005 more accurately models small- and medium-sized storages than the original model in reproducing streamflows in the watershed. The improved SWAT2005 can be an effective tool to assess the impact of water storage on hydrologic processes, which has not been well addressed in the current modelling exercises.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Mironowicz, Marcin. "Brine – water heat pump with water storage". Journal of Civil Engineering, Environment and Architecture XXXII, n.º 1/2015 (março de 2015): 317–22. http://dx.doi.org/10.7862/rb.2015.21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Zhang, C., Y. Peng, J. Chu e C. A. Shoemaker. "Integrated hydrological modelling of small- and medium-sized water storages with application to the upper Fengman Reservoir Basin of China". Hydrology and Earth System Sciences Discussions 9, n.º 3 (28 de março de 2012): 4001–43. http://dx.doi.org/10.5194/hessd-9-4001-2012.

Texto completo da fonte
Resumo:
Abstract. Hydrological simulation in regions with a large number of water storages is difficult due to the inaccurate water storage data, including both topologic parameters and operational rules. To address this issue, this paper presents an improved version of SWAT2005 (Soil and Water Assessment Tool, version 2005) using the satellite-based dataset Landsat, an empirical storage classification method, and some empirical relationships to estimate water storage and release from the various levels of flow regulation facilities. The improved SWAT2005 is characterised by three features: (1) a realistic representation of the relationships between the water surface area and volume of each type of water storage, ranging from small-sized ponds for water flow regulation to large-sized and medium-sized reservoirs for water supply and hydropower generation; (2) water balance and transport through a network combining both sequential and parallel streams and storage links; and (3) calibrations for the physical parameters and the human interference parameters. Both the original and improved SWAT2005 are applied to the upper Fengman Reservoir Basin, and the results of these applications are compared. The improved SWAT2005 accurately models small- and medium-sized storages, indicating a significantly improved performance from that of the original model in reproducing streamflows.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

He, Wei, e Jihong Wang. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage". Applied Energy 185 (janeiro de 2017): 872–84. http://dx.doi.org/10.1016/j.apenergy.2016.10.077.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Nienborg, Björn, Tobias Helling, Dominik Fröhlich, Rafael Horn, Gunther Munz e Peter Schossig. "Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels". Energies 11, n.º 12 (6 de dezembro de 2018): 3421. http://dx.doi.org/10.3390/en11123421.

Texto completo da fonte
Resumo:
Closed adsorption storages have been investigated in several projects for heat storage in building applications with focus on energy density and performance. This study complements this research with the assessment of the environmental impacts over the life cycle. Global warming potential (GWP) was chosen as the assessment criterion. Selected sorption materials in combination with water as the refrigerant were analyzed first by themselves and then embedded in a generic storage configuration. Sensible storage in water served as the reference benchmark. Results on material and component level showed that the relative storage capacity compared to water under realistic operating conditions reached values of below 4 and 2.5, respectively, in the best cases. Since the effort for producing the sorbents as well as the auxiliary material demand for assembling storage components was significantly higher than in the reference case, the specific environmental impact per storage capacity also turned out to be ~2.5 to ~100 times higher. We therefore suggest focusing sorption storage research on applications that (a) maximize the utilization of the uptake of sorbents, (b) do not compete with water storages, and (c) require minimal auxiliary parts.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Margeta, Jure. "Water storage as energy storage in green power system". Sustainable Energy Technologies and Assessments 5 (março de 2014): 75–83. http://dx.doi.org/10.1016/j.seta.2013.12.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Shaw, T. L. "Hydroelectric power without water storage". Proceedings of the Institution of Civil Engineers - Engineering Sustainability 159, n.º 4 (dezembro de 2006): 139–43. http://dx.doi.org/10.1680/ensu.2006.159.4.139.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Lerner, D. "Large Byzantine water storage cisterns". Quarterly Journal of Engineering Geology and Hydrogeology 22, n.º 3 (agosto de 1989): 173–74. http://dx.doi.org/10.1144/gsl.qjeg.1989.022.03.01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Pokhrel, Yadu N., Naota Hanasaki, Pat J. F. Yeh, Tomohito J. Yamada, Shinjiro Kanae e Taikan Oki. "Reply to 'Overestimated water storage'". Nature Geoscience 6, n.º 1 (21 de dezembro de 2012): 3–4. http://dx.doi.org/10.1038/ngeo1688.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Ahrens, Thomas J. "Water storage in the mantle". Nature 342, n.º 6246 (novembro de 1989): 122–23. http://dx.doi.org/10.1038/342122a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Wright, Cynthia, Katelin Atkin, Stacey Juntenen e Kim Weaver. "Potability of Household Water Storage". Journal of Nutrition Education and Behavior 41, n.º 4 (julho de 2009): S41. http://dx.doi.org/10.1016/j.jneb.2009.03.009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Yevjevich, Vujica, e Jayantha T. B. Obeysekera. "Relationships Among Water Storage Variables". Journal of Water Resources Planning and Management 113, n.º 3 (julho de 1987): 353–67. http://dx.doi.org/10.1061/(asce)0733-9496(1987)113:3(353).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

McDonnell, J. J., J. Evaristo, K. D. Bladon, J. Buttle, I. F. Creed, S. F. Dymond, G. Grant et al. "Water sustainability and watershed storage". Nature Sustainability 1, n.º 8 (agosto de 2018): 378–79. http://dx.doi.org/10.1038/s41893-018-0099-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Chen, S. L., e J. S. Yue. "Water thermal storage with solidification". Heat Recovery Systems and CHP 11, n.º 1 (janeiro de 1991): 79–90. http://dx.doi.org/10.1016/0890-4332(91)90190-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Hernandez, José N., e Ira M. Gabin. "Policies Protect Water Storage Tanks". Opflow 32, n.º 3 (março de 2006): 1–5. http://dx.doi.org/10.1002/j.1551-8701.2006.tb01850.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Jia, Yu Jing, Da Yu Zhang, Guang Zhen Cheng e Ying Jun Dai. "Water Storage Bucket Chain Convey-Cleaning Machine for Cleaning Up Coal Mine Water Storage". Applied Mechanics and Materials 164 (abril de 2012): 497–500. http://dx.doi.org/10.4028/www.scientific.net/amm.164.497.

Texto completo da fonte
Resumo:
This Paper introduced a water storage bucket chain conveyor cleaning machine used in coal mine to clean up the underground water storage, which was mainly made up of the mechanical structure and electrical control system. The mechanical structure consists of walking flatbed, walking drives, chain bucket conveyor. Here focuses on the special structure, the working principle, the work process, the electrical control system, the working condition, the main features and the purpose of the chain bucket convey-cleaning machine. The machine structure was reasonable, the stress was even, the vibration was small, the movement was steady. It can not only adapted to a large water content of coal slime, but also adapted to dry coal slime. It overcomes the low efficiency of spiral roller clearance dealing with the large water content of the slime and the weakness when vacuum suction-type pneumatic conveyor is to clean the dry slime.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Xie, H., L. Longuevergne, C. Ringler e B. R. Scanlon. "Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data". Hydrology and Earth System Sciences 16, n.º 9 (3 de setembro de 2012): 3083–99. http://dx.doi.org/10.5194/hess-16-3083-2012.

Texto completo da fonte
Resumo:
Abstract. Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability in water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrologic model based on the Soil and Water Assessment Tool (SWAT) code for basins in Sub-Saharan Africa using seven-year (July 2002–April 2009) 10-day GRACE data and multi-site river discharge data. The analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimising model parameters with respect to two non-commensurable criteria defined for two fluxes, SWAT was found to perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, water storage variations in soil, vadose zone and groundwater are dominant. The study also showed that the simulated total water storage variations tend to have less agreement with GRACE data in arid and equatorial humid regions, and model-based partitioning of total water storage variations into different water storage compartments may be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Gooroochurn, Mahendra, e Ashwan Visram. "Maximization of Solar Hot Water Production Using a Secondary Storage Tank". Journal of Clean Energy Technologies 7, n.º 1 (janeiro de 2019): 1–6. http://dx.doi.org/10.18178/jocet.2019.7.1.500.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hua, Ye, Amanda Godin e F. Handan Tezel. "Water Vapor Adsorption In Silica Gel For Thermal Energy Storage Application". Advanced Materials Letters 10, n.º 2 (19 de dezembro de 2018): 124–27. http://dx.doi.org/10.5185/amlett.2019.2181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Xie, H., L. Longuevergne, C. Ringler e B. Scanlon. "Calibration and evaluation of a semi-distributed watershed model of sub-Saharan Africa using GRACE data". Hydrology and Earth System Sciences Discussions 9, n.º 2 (17 de fevereiro de 2012): 2071–120. http://dx.doi.org/10.5194/hessd-9-2071-2012.

Texto completo da fonte
Resumo:
Abstract. Irrigation development is rapidly expanding in mostly rainfed Sub-Saharan Africa. This expansion underscores the need for a more comprehensive understanding of water resources beyond surface water. Gravity Recovery and Climate Experiment (GRACE) satellites provide valuable information on spatio-temporal variability of water storage. The objective of this study was to calibrate and evaluate a semi-distributed regional-scale hydrological model, or a large-scale application of the Soil and Water Assessment Tool (SWAT) model, for basins in Sub-Saharan Africa using seven-year (2002–2009) 10-day GRACE data. Multi-site river discharge data were used as well, and the analysis was conducted in a multi-criteria framework. In spite of the uncertainty arising from the tradeoff in optimizing model parameters with respect to two non-commensurable criteria defined for two fluxes, it is concluded that SWAT can perform well in simulating total water storage variability in most areas of Sub-Saharan Africa, which have semi-arid and sub-humid climates, and that among various water storages represented in SWAT, the water storage variations from soil, the vadose zone, and groundwater are dominant. On the other hand, the study also showed that the simulated total water storage variations tend to have less agreement with the GRACE data in arid and equatorial humid regions, and the model-based partition of total water storage variations into different water storage compartments could be highly uncertain. Thus, future work will be needed for model enhancement in these areas with inferior model fit and for uncertainty reduction in component-wise estimation of water storage variations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Lacey, Steven, Ramon Lopez, Charles Frangos e Amid Khodadoust. "Water Quality Degradation after Water Storage at Household Level in a Piped Water System in Rural Guatemala". International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship 6, n.º 1 (7 de maio de 2011): 118–29. http://dx.doi.org/10.24908/ijsle.v6i1.3210.

Texto completo da fonte
Resumo:
In response to a rural community’s concern regarding diarrheal disease, particularly among children, a field assessment was performed to determine the concentration of 4 classes of indicator bacteria: aerobic bacteria, total coliform, fecal coliform and Escherichia coli. Matched supply tap and storage container samples were taken from 28 households; two additional samples were taken at the main storage tank. Total and free chlorine concentration was also determined for each sample. While nearly all samples taken from household taps were near or below limits of detection, samples from storage containers all showed high densities of indicator bacteria and one was positive for Salmonella. All chlorine measurements indicated concentrations of < 0.5 ppm. These data suggest that while the source well water shows indicator bacteria concentrations at or below limits of detection, drinking water becomes significantly more hazardous while in storage containers at the household level, and this reflects insufficient chlorination. An uninterrupted and adequately chlorinated water supply system is planned to eliminate the need for drinking water storage at the household level.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Skelton, Robert. "Of Storage and Stems: Examining the Role of Stem Water Storage in Plant Water Balance". Plant Physiology 179, n.º 4 (abril de 2019): 1433–34. http://dx.doi.org/10.1104/pp.19.00057.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Kumar, Rakesh, e Marc A. Rosen. "Integrated collector-storage solar water heater with extended storage unit". Applied Thermal Engineering 31, n.º 2-3 (fevereiro de 2011): 348–54. http://dx.doi.org/10.1016/j.applthermaleng.2010.09.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Gonzalez, Carlos I., John Erickson, Karina A. Chavarría, Kara L. Nelson e Amador Goodridge. "Household stored water quality in an intermittent water supply network in Panama". Journal of Water, Sanitation and Hygiene for Development 10, n.º 2 (8 de abril de 2020): 298–308. http://dx.doi.org/10.2166/washdev.2020.156.

Texto completo da fonte
Resumo:
Abstract Safe water storage is critical to preserve water quality, especially when intermittent piped drinking water supply creates a need for household storage. This study characterized household storage practices and stored water quality in 94 households (N = 94) among four peri-urban neighborhoods in Arraiján, Panama with varying degrees of supply intermittency. We found that 18 (19.1%) households stored drinking water in unsafe containers. Forty-four (47%) samples of household stored drinking water had residual chlorine levels &lt;0.2 mg/L. While 33 (35.1%) samples were positive for total coliform bacteria, only 23 (24.4%) had &gt;10 most probable number (MPN)/100 mL total coliform bacteria. Eight (44%) samples were positive for Escherichia coli, whereas only one (1.3%) sample from the safe containers was positive. Twenty-nine (30.9%) samples had &gt;500 MPN/mL heterotrophic plate count bacteria. These findings suggest that longer supply interruptions were associated with longer storage times and lower chlorine residual, which were associated with higher concentrations of indicator bacteria. This is one of the first studies in the Central-American region to show an association between the lack of turnover (replacement with fresh water) and greater contamination during household water storage. Thus, when drinking water supply is not completely continuous and household storage is required, decreasing the time between supply periods can facilitate safer water storage. Public awareness and education are also recommended to increase hygiene practices during water collection and storage.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Martel, Katherine D., Gregory J. Kirmeyer, Brian M. Murphy, Paul F. Noran, Lynn Kirby, Theodore W. Lund, Jerry L. Anderson, Richard Medhurst e Michael Caprara. "Preventing Water Quality deterioration in Finished Water Storage Facilities". Journal - American Water Works Association 94, n.º 4 (abril de 2002): 139–48. http://dx.doi.org/10.1002/j.1551-8833.2002.tb09458.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Birkel, Christian, Chris Soulsby e Doerthe Tetzlaff. "Modelling catchment-scale water storage dynamics: reconciling dynamic storage with tracer-inferred passive storage". Hydrological Processes 25, n.º 25 (13 de julho de 2011): 3924–36. http://dx.doi.org/10.1002/hyp.8201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Mauseth, James D. "Collapsible Water-Storage Cells in Cacti". Bulletin of the Torrey Botanical Club 122, n.º 2 (abril de 1995): 145. http://dx.doi.org/10.2307/2996453.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ostling, Michael, e Roger Leb Hooke. "Water Storage in Storglaciaren, Kebnekaise, Sweden". Geografiska Annaler. Series A, Physical Geography 68, n.º 4 (1986): 279. http://dx.doi.org/10.2307/521521.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Fairley, Jerry P. "Geologic Water Storage in Precolumbian Peru". Latin American Antiquity 14, n.º 2 (junho de 2003): 193–206. http://dx.doi.org/10.2307/3557595.

Texto completo da fonte
Resumo:
AbstractAgriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the “elaborated springs” found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system “geologic water storage” because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipón) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Östling, Michael, e Roger Leb Hooke. "Water Storage in Storglaciären, Kebnekaise, Sweden". Geografiska Annaler: Series A, Physical Geography 68, n.º 4 (dezembro de 1986): 279–90. http://dx.doi.org/10.1080/04353676.1986.11880180.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

S˙liwka-Kaszyńska, Magdalena, Agata Kot-Wasik e Jacek Namieśnik. "Preservation and Storage of Water Samples". Critical Reviews in Environmental Science and Technology 33, n.º 1 (janeiro de 2003): 31–44. http://dx.doi.org/10.1080/10643380390814442.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Crown, Patricia L. "Water Storage in the Prehistoric Southwest". KIVA 52, n.º 3 (janeiro de 1987): 209–28. http://dx.doi.org/10.1080/00231940.1987.11758074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Thomas, Alan G. "Unvented domestic hot water storage systems". Structural Survey 7, n.º 1 (janeiro de 1989): 51–54. http://dx.doi.org/10.1108/eb006303.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Martin, Viktoria, Bo He e Fredrik Setterwall. "Direct contact PCM–water cold storage". Applied Energy 87, n.º 8 (agosto de 2010): 2652–59. http://dx.doi.org/10.1016/j.apenergy.2010.01.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

OKANO, Toshiaki, e Yujiro YAMAMOTO. "Water Thermal Storage Type Solar Greenhouse". Journal of Agricultural Meteorology 42, n.º 1 (1986): 19–27. http://dx.doi.org/10.2480/agrmet.42.19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

OKANO, Toshiaki, e Yujiro YAMAMOTO. "Water Thermal Storage Type Solar Greenhouse". Journal of Agricultural Meteorology 42, n.º 2 (1986): 95–101. http://dx.doi.org/10.2480/agrmet.42.95.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Kuehne, John, e Clark R. Wilson. "Terrestrial water storage and polar motion". Journal of Geophysical Research: Solid Earth 96, B3 (10 de março de 1991): 4337–45. http://dx.doi.org/10.1029/90jb02573.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Staudinger, Maria, Michael Stoelzle, Stefan Seeger, Jan Seibert, Markus Weiler e Kerstin Stahl. "Catchment water storage variation with elevation". Hydrological Processes 31, n.º 11 (24 de abril de 2017): 2000–2015. http://dx.doi.org/10.1002/hyp.11158.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Smyth, M., P. C. Eames e B. Norton. "Integrated collector storage solar water heaters". Renewable and Sustainable Energy Reviews 10, n.º 6 (dezembro de 2006): 503–38. http://dx.doi.org/10.1016/j.rser.2004.11.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Egolf, P. W., e H. Manz. "Latent storage heater for water systems". Fuel and Energy Abstracts 37, n.º 3 (maio de 1996): 200. http://dx.doi.org/10.1016/0140-6701(96)88781-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Gibson, Sharla. "Managing Water Storage in Extreme Conditions". Opflow 44, n.º 6 (junho de 2018): 8–9. http://dx.doi.org/10.1002/opfl.1018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Calkins, Donald C., e Phyllis C. Ahlers. "Rehabilitation Techniques for Water Storage Tanks". Opflow 11, n.º 10 (outubro de 1985): 3–5. http://dx.doi.org/10.1002/j.1551-8701.1985.tb00420.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Reddy, Dr T. Babji. "Indigenous Knowledge on Nomenclature of water Storage structures in Tirumala foothill villages". Indian Journal of Applied Research 3, n.º 12 (1 de outubro de 2011): 27–28. http://dx.doi.org/10.15373/2249555x/dec2013/8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Dandadzi, Pardon, Zvikomborero Hoko e Tamuka Nhiwatiwa. "Investigating the quality of stored drinking water from the Harare water distribution system, Zimbabwe". Journal of Water, Sanitation and Hygiene for Development 9, n.º 1 (27 de dezembro de 2018): 90–101. http://dx.doi.org/10.2166/washdev.2018.107.

Texto completo da fonte
Resumo:
Abstract This study investigated the effects of different storage conditions (refrigerator, cupboard and sunlight) on the quality of drinking water collected from the distribution system. The study was carried out in the period June–July 2017 and focussed on selected suburbs of Harare. Sampling sites on the distribution system were grouped into three zones (1, 2 and 3) depending on the proximity to the treatment plant, whether there was further chlorination or not and the water flow path. Three water samples were collected in opaque 5 L containers from one site (tap) in each zone and stored under the three storage conditions and periodically analysed for pH, free residual chlorine, temperature and chlorophyll-a. The pH of stored water increased with storage time for all storage conditions and in all zones. The residual chlorine decreased with time in all zones and under all storage conditions. The chlorophyll-a levels also decreased with time under all storage conditions. Refrigerator samples showed the slowest deterioration of water quality and sunlight the highest. Although the pH of stored water increased with time, it remained within both SAZ and WHO guideline values. Household disinfection of stored water is recommended generally after 1 week of storage.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia