Literatura científica selecionada sobre o tema "Water safety"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Water safety".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Water safety"
Omoruyi, Emma A. "Water Safety". Pediatrics in Review 40, n.º 4 (abril de 2019): 205–6. http://dx.doi.org/10.1542/pir.2017-0240.
Texto completo da fonteLassman, Janet. "Water safety". Journal of Emergency Nursing 28, n.º 3 (junho de 2002): 241–43. http://dx.doi.org/10.1067/men.2002.122762.
Texto completo da fonteReid, J. A. "Water safety". Journal of Public Health 8, n.º 3 (agosto de 1986): 254–55. http://dx.doi.org/10.1093/oxfordjournals.pubmed.a043866.
Texto completo da fonteMitka, Mike. "Water Safety". JAMA 306, n.º 10 (14 de setembro de 2011): 1073. http://dx.doi.org/10.1001/jama.2011.1252.
Texto completo da fonteKim, Jin-Keun. "Introduction of Water Safety Plan in Korea". Journal of Korean Society of Water and Wastewater 26, n.º 4 (15 de agosto de 2012): 535–45. http://dx.doi.org/10.11001/jksww.2012.26.4.535.
Texto completo da fonteWalker, D. "National Water Safety Forum - 'working together for water safety'". Injury Prevention 16, Supplement 1 (1 de setembro de 2010): A281. http://dx.doi.org/10.1136/ip.2010.029215.999.
Texto completo da fonteFawcett, Paul. "Water Safety Education". Strategies 12, n.º 1 (setembro de 1998): 25–28. http://dx.doi.org/10.1080/08924562.1998.10591368.
Texto completo da fonteMitka, Mike. "Bottled Water Safety". JAMA 302, n.º 6 (12 de agosto de 2009): 619. http://dx.doi.org/10.1001/jama.2009.1125.
Texto completo da fonteEslami, Akbar, Mohtasham Ghafari, Valiallah Sohbatloo e Farzane Fanaei. "Safety Assessment of Zanjan Drinking Water System Using Water Safety Plan". Journal of Human, Environment, and Health Promotion 2, n.º 3 (1 de junho de 2017): 138–46. http://dx.doi.org/10.29252/jhehp.2.3.138.
Texto completo da fonteWalker, Richard. "THE WATER SAFETY CONTINUUM". Water e-Journal 1, n.º 1 (2016): 1–6. http://dx.doi.org/10.21139/wej.2016.008.
Texto completo da fonteTeses / dissertações sobre o assunto "Water safety"
Hylin, Frida Douglass. "Drinking Water Safety in African Countries". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for produktutvikling og materialer, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18508.
Texto completo da fontePam, Eugene Dung. "Risk-based framework for ballast water safety management". Thesis, Liverpool John Moores University, 2010. http://researchonline.ljmu.ac.uk/5986/.
Texto completo da fonteRich, Kyle. "Bridging Troubled Waters: Examining Culture in the Canadian Red Cross' Swimming and Water Safety Program". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24278.
Texto completo da fonteKilanko-Oluwasanya, Grace Olutope. "Better safe than sorry : towards appropriate water safety plans for urban self supply systems". Thesis, Cranfield University, 2009. http://dspace.lib.cranfield.ac.uk/handle/1826/4453.
Texto completo da fonteOrru, Kati. "Europeanising risk regulation : drinking water safety in Estonia and Lithuania". Thesis, King's College London (University of London), 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580327.
Texto completo da fonteLee, Youho. "Safety of light water reactor fuel with silicon carbide cladding". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/86866.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 303-314).
Structural aspects of the performance of light water reactor (LWR) fuel rod with triplex silicon carbide (SiC) cladding - an emerging option to replace the zirconium alloy cladding - are assessed. Its behavior under accident conditions is examined with an integrated approach of experiments, modeling, and simulation. High temperature (1100°C~1500°C) steam oxidation experiments demonstrated that the oxidation of monolithic SiC is about three orders of magnitude slower than that of zirconium alloys, and with a weaker impact on mechanical strength. This, along with the presence of the environmental barrier coating around the load carrying intermediate layer of SiC fiber composite, diminishes the importance of oxidation for cladding failure mechanisms. Thermal shock experiments showed strength retention for both [alpha]-SiC and [beta]-SiC, as well as A1₂O₃ samples quenched from temperatures up to 1260°C in saturated water. The initial heat transfer upon the solid - fluid contact in the quenching transient is found to be a controlling factor in the potential for brittle fracture. This implies that SiC would not fail by thermal shock induced fracture during the reflood phase of a loss of coolant accident, which includes fuel-cladding quenching by emergency coolant at saturation conditions. A thermo-mechanical model for stress distribution and Weibull statistical fracture of laminated SiC cladding during normal and accident conditions is developed. It is coupled to fuel rod performance code FRAPCON-3.4 (modified here for SiC) and RELAP-5 (to determine coolant conditions). It is concluded that a PWR fuel rod with SiC cladding can extend the fuel residence time in the core, while keeping the internal pressure level within the safety assurance limit during steady-state and loss of coolant accidents. Peak burnup of 93 MWD/kgU (10% central void in fuel pellets) at 74 months of in-core residence time is found achievable with conventional PWR fuel rod design, but with an extended plenum length (70 cm). An easier to manufacture, 30% larger SiC cladding thickness requires an improved thermal conductivity of the composite layer to reduce thermal stress levels under steady-state operation to avoid failure at the same burnup. A larger Weibull modulus of the SiC cladding improves chances of avoiding brittle failure.
by Youho Lee.
Ph. D.
Cheng, Zhiyuan S. M. Massachusetts Institute of Technology. "Safety analysis of a compact integral small light water reactor". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127303.
Texto completo da fonteCataloged from the official PDF of thesis.
Includes bibliographical references (pages 110-112).
Small modular reactors (SMRs) hold great promise in meeting a diverse market while reducing the risk of delays during nuclear construction compared to large gigawatt-sized reactors. However, due to lack of economy of scale, their capital cost needs to be reduced. Increasing the compactness or power density of the nuclear island is one way to reduce capital cost. This work first assesses the transient analysis of a compact integral small light water reactor to examine its safety performance. Subsequently, a parametric optimization study with the goal of increasing its power density (i.e. improve its market competitiveness) while maintaining safety is performed. A model of the reactor is established using RELAP5/3.3gl, with reference to the features of Nuward SMR. Nuward is a compact 170 MWe Pressurized Water Reactor, whose key features include the use of Compact Steam Generators and a large water tank in which the containment submerges for passive heat removal.
A transient analysis of the reference reactor after Loss of Flow Accident, Station Blackout, and Loss of Coolant Accident is carried out. Following all three accidents, the integrity of the fuel and the reactor is maintained. The passive cooling system is estimated to provide 12 - 13 days of grace period. The parametric optimization study indicates that the size of the tank can be reduced to half and still maintain sufficient margin to both short-term and long-term safety goals after all three transients with an estimated grace period of 7 - 8 days. In addition, the configuration of the passive safety system can be rearranged to reduce the size of the containment to 76% of the reference design without affecting its safety performance. By increasing the coolant enthalpy change, which also results in a higher thermal efficiency, the electrical output of the reference design can be enhanced by 44% without major design changes.
If the number of pumps in the vessel are increased by 2, the electrical output can be enhanced by 102% while satisfying all safety criteria. The uprated power that satisfies a 72-hour grace period requires a tank size that is 32.5% of the reference design. Such compact and simplified nuclear steam supply system can partially address the lack of economy of scale for the reference SMR and improve its market competitiveness.
by Zhiyuan Cheng.
S.M.
S.M. Massachusetts Institute of Technology, Department of Nuclear Science and Engineering
Guillermo, Díez Fernández. "Safety aspects of Cermic Fully Encapsulated fuel for Light Water Reactors". Thesis, KTH, Fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101992.
Texto completo da fontePerez, Huertas Daniel. "Cyber-Security and Safety Analysis of Interconnected Water Tank Control Systems". Thesis, KTH, Reglerteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-55972.
Texto completo da fonteSummerill, Corinna. "Improved water safety planning : insights into the role of organisational culture". Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5443.
Texto completo da fonteLivros sobre o assunto "Water safety"
Water safety. New York: Marshall Cavendish Benchmark, 2010.
Encontre o texto completo da fonteLoewen, Nancy. Water safety. [Plymouth, MN]: Child's World, 1997.
Encontre o texto completo da fonteWater safety. Chicago, Ill: Heinemann Library, 2008.
Encontre o texto completo da fonteNavigations, Birmingham Canal. Water safety pack. Birmingham: British Waterways Board, 1990.
Encontre o texto completo da fonteill, Andersen Gregg, ed. Safety around water. New York: Crabtree Pub. o., 2009.
Encontre o texto completo da fonteSanitation, hot water safety and water efficiency: Sanitation, hot water safety and water efficiency. 2a ed. [Place of publication not identified]: RIBA, 2015.
Encontre o texto completo da fonteCarter, Kyle. In water. Vero Beach, Fla: Rourke Press, 1994.
Encontre o texto completo da fonteSanders, Pete. Near water. New York: Gloucester Press, 1989.
Encontre o texto completo da fonteLight water reactor safety. Oxford, England: Pergamon Press, 1989.
Encontre o texto completo da fonteAMERICAN RED CROSS. Swimming and water safety. Yardley, PA: Stay Well, 2004.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Water safety"
O’Hara, Glen. "Water Safety". In The Politics of Water in Post-War Britain, 149–81. London: Palgrave Macmillan UK, 2017. http://dx.doi.org/10.1057/978-1-137-44640-4_6.
Texto completo da fonteOka, Yoshiaki, Seiichi Koshizuka, Yuki Ishiwatari e Akifumi Yamaji. "Safety". In Super Light Water Reactors and Super Fast Reactors, 349–439. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6035-1_6.
Texto completo da fonteHoutzager, Louise. "Food and Water Safety". In Nutrition and HIV, 360–82. West Sussex, UK: John Wiley & Sons Ltd., 2013. http://dx.doi.org/10.1002/9781118786529.ch17.
Texto completo da fonteDrevenkar, Vlasta, Sanja Fingler e Zlatko Fröbe. "Some Organochlorine Pollutants in the Water Environment and Their Influence on Drinking Water Quality". In Chemical Safety, 297–310. Weinheim, Germany: VCH Verlagsgesellschaft mbH, 2007. http://dx.doi.org/10.1002/9783527616039.ch20.
Texto completo da fonteKhojamamedov, Aga Mamedovich, e Khoja Nepesovich Evzhanov. "Management of Halide Mineral Water Discharges". In Chemical Safety, 383–92. Weinheim, Germany: VCH Verlagsgesellschaft mbH, 2007. http://dx.doi.org/10.1002/9783527616039.ch25.
Texto completo da fonteWang, Xiaochang C., Chongmiao Zhang, Xiaoyan Ma e Li Luo. "Safety Control of Reclaimed Water Use". In Water Cycle Management, 29–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45821-1_3.
Texto completo da fonteDryden, Gordon McL. "Water." In Fundamentals of applied animal nutrition, 13–18. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781786394453.0002.
Texto completo da fonteWard, Richard A., e James E. Tattersall. "Water Treatment and Safety Requirements". In Hemodiafiltration, 41–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23332-1_3.
Texto completo da fonteLiu, Donghong, e Ruiling Lv. "Safety Evaluation of Electrolyzed Water". In Electrolyzed Water in Food: Fundamentals and Applications, 261–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3807-6_11.
Texto completo da fonteKadar, Mihaly. "Microbiological Safety of Water Supplies". In Security of Public Water Supplies, 185–95. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4241-0_15.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Water safety"
Stump, Jr., D. E. "Coal Mine Impoundment Safety". In World Water and Environmental Resources Congress 2004. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40737(2004)351.
Texto completo da fonteStanley, Teresa, e Kevin Moran. "50 Adult reality gaps of water competence and drowning risk in open water". In 14th World Conference on Injury Prevention and Safety Promotion (Safety 2022) abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/injuryprev-2022-safety2022.18.
Texto completo da fonteEllefsen, Atle. "Dnv Air Quality and Water Systems Assessment (Aqwa)". In Passenger Ship Safety. RINA, 2003. http://dx.doi.org/10.3940/rina.pass.2003.09.
Texto completo da fonteZhang, Haitao, Xinmin Xie e Junsan Hou. "Water pollution accident control and urban safety water supply". In 2011 2nd IEEE International Conference on Emergency Management and Management Sciences (ICEMMS). IEEE, 2011. http://dx.doi.org/10.1109/icemms.2011.6015613.
Texto completo da fonteTchórzewska-Cieślak, B., D. Papciak, P. Koszelnik, J. Kaleta, A. Puszkarewicz e M. Kida. "Safety analysis of water supply to water treatment plant". In The Fifth National Congress of Environmental Engineering. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315281971-2.
Texto completo da fonteBeddoes, D. W., e C. A. Booth. "Property level flood protection: technical insights of a new safety flood door". In URBAN WATER 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/uw160261.
Texto completo da fonteOrlins, Joseph J., Katharyn Gallagher, Clint Oman, Lisa Petronis e Sarah Ross. "Creative Solutions to Dam Safety Issues". In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)48.
Texto completo da fonteMehra, Anil. "High-Pressure Water Jet Injuries". In SPE International Health, Safety & Environment Conference. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/98592-ms.
Texto completo da fonteМарков, Владимир Петрович. "ECONOMIC ASPECTS OF WATER TRANSPORT SAFETY". In Национальная безопасность России: актуальные аспекты: сборник избранных статей Всероссийской научно-практической конференции (Санкт-Петербург, Июль 2020). Crossref, 2020. http://dx.doi.org/10.37539/nb186.2020.45.74.006.
Texto completo da fonteVaseashta, Ashok, Eric Braman, Philip Susmann, Yuri Dekhtyar e Kristina Perovicha. "Sensors for water safety and security". In 2011 IEEE Sensors Applications Symposium (SAS). IEEE, 2011. http://dx.doi.org/10.1109/sas.2011.5739827.
Texto completo da fonteRelatórios de organizações sobre o assunto "Water safety"
Gintner, M. A. Condensation induced water hammer safety. Office of Scientific and Technical Information (OSTI), março de 1997. http://dx.doi.org/10.2172/16909.
Texto completo da fonteBoyer, Renee. Enhancing The Safety of Locally Grown Produce: Water Use. Blacksburg, VA: Virginia Cooperative Extension, agosto de 2019. http://dx.doi.org/10.21061/fst-38np_fst-335np.
Texto completo da fonteClinton, R. Safety evaluation for adding water to tank 101-SY. Office of Scientific and Technical Information (OSTI), dezembro de 1994. http://dx.doi.org/10.2172/10115662.
Texto completo da fonteDodd, E. N. Jr. Safety evaluation -- Spent water treatment system components inventory release. Office of Scientific and Technical Information (OSTI), janeiro de 1995. http://dx.doi.org/10.2172/10118619.
Texto completo da fonteWeiss, A. Transactions of the eighteenth water reactor safety information meeting. Office of Scientific and Technical Information (OSTI), outubro de 1990. http://dx.doi.org/10.2172/6802492.
Texto completo da fonteGillor, Osnat, Stefan Wuertz, Karen Shapiro, Nirit Bernstein, Woutrina Miller, Patricia Conrad e Moshe Herzberg. Science-Based Monitoring for Produce Safety: Comparing Indicators and Pathogens in Water, Soil, and Crops. United States Department of Agriculture, maio de 2013. http://dx.doi.org/10.32747/2013.7613884.bard.
Texto completo da fonteSEMMENS, L. S. K West integrated water treatment system subproject safety analysis document. Office of Scientific and Technical Information (OSTI), fevereiro de 1999. http://dx.doi.org/10.2172/781562.
Texto completo da fonteHEARD, F. J. Independent Review and Analysis of the Safety Class Helium Sys 30 LB Safety Relief Valve and Vent Path Tempered Water Sys and Process Water Conditioning. Office of Scientific and Technical Information (OSTI), novembro de 1999. http://dx.doi.org/10.2172/798694.
Texto completo da fonteLuketa, Anay. Guidance on Hazard and Safety Analyses of LPG Spills on Water. Office of Scientific and Technical Information (OSTI), setembro de 2018. http://dx.doi.org/10.2172/1472226.
Texto completo da fonteFINFROCK, S. H. Accident Analyses in Support of the Sludge Water System Safety Analysis. Office of Scientific and Technical Information (OSTI), agosto de 2002. http://dx.doi.org/10.2172/808224.
Texto completo da fonte