Artigos de revistas sobre o tema "Wall impulse response"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Wall impulse response".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Xu, Qian. "Damage Index Analysis of Retaining Wall Structures Based on the Impulse Response Function and Virtual Impulse Response Function". Shock and Vibration 2021 (18 de outubro de 2021): 1–21. http://dx.doi.org/10.1155/2021/9741732.
Texto completo da fonteVadarevu, Sabarish B., Sean Symon, Simon J. Illingworth e Ivan Marusic. "Coherent structures in the linearized impulse response of turbulent channel flow". Journal of Fluid Mechanics 863 (30 de janeiro de 2019): 1190–203. http://dx.doi.org/10.1017/jfm.2019.15.
Texto completo da fonteAu, Eu Ving, Gregory MacRae, Didier Pettinga, Bruce Deam, Vinod Sadashiva e Hossein Soleimankhani. "Seismic response of torsionally irregular single story structures". Bulletin of the New Zealand Society for Earthquake Engineering 52, n.º 1 (31 de março de 2019): 44–53. http://dx.doi.org/10.5459/bnzsee.52.1.44-53.
Texto completo da fonteWei, Xue Ying, Tuo Huang e Nan Li. "Numerical Derivation of Pressure-Impulse Diagrams for Unreinforced Brick Masonry Walls". Advanced Materials Research 368-373 (outubro de 2011): 1435–39. http://dx.doi.org/10.4028/www.scientific.net/amr.368-373.1435.
Texto completo da fonteJia, Zhenzhen, Qing Ye e He Li. "Damage Assessment of Roadway Wall Caused by Dynamic and Static Load Action of Gas Explosion". Processes 11, n.º 2 (14 de fevereiro de 2023): 580. http://dx.doi.org/10.3390/pr11020580.
Texto completo da fonteXu, Qian. "Damage Identification Investigation of Retaining Wall Structures Based on a Virtual Impulse Response Function". Shock and Vibration 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/1346939.
Texto completo da fonteWu, Di, Fangshuo Mo e Jianmin Ge. "Effects of coupling between loudspeaker and wall on impulse response measurement". Journal of the Acoustical Society of America 131, n.º 4 (abril de 2012): 3284. http://dx.doi.org/10.1121/1.4708279.
Texto completo da fonteLi, Wen Sheng, Hui Yang e Bo Zhang. "Dynamic Analysis on Explosion Resistance Performance of Reinforced Concrete Wall". Advanced Materials Research 1078 (dezembro de 2014): 162–65. http://dx.doi.org/10.4028/www.scientific.net/amr.1078.162.
Texto completo da fonteGaiser, James E., Terrance J. Fulp, Steve G. Petermann e Gary M. Karner. "Vertical seismic profile sonde coupling". GEOPHYSICS 53, n.º 2 (fevereiro de 1988): 206–14. http://dx.doi.org/10.1190/1.1442456.
Texto completo da fontePastor, J., B. Soria e C. Belmonte. "Properties of the nociceptive neurons of the leech segmental ganglion". Journal of Neurophysiology 75, n.º 6 (1 de junho de 1996): 2268–79. http://dx.doi.org/10.1152/jn.1996.75.6.2268.
Texto completo da fonteShi, Cheng, Zhi-Kang Ni, Jun Pan, Zhijie Zheng, Shengbo Ye e Guangyou Fang. "A Method for Reducing Timing Jitter’s Impact in Through-Wall Human Detection by Ultra-Wideband Impulse Radar". Remote Sensing 13, n.º 18 (8 de setembro de 2021): 3577. http://dx.doi.org/10.3390/rs13183577.
Texto completo da fonteXu, Qian. "Investigation of Stability Alarming for Retaining Wall Structures with Damage". Shock and Vibration 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/4691947.
Texto completo da fonteMiller, A. Jared, Scott D. Sommerfeldt, Jonathan D. Blotter e David C. Copley. "A hybrid method for creating auralizations of vibroacoustic systems". Noise Control Engineering Journal 70, n.º 6 (1 de novembro de 2022): 552–61. http://dx.doi.org/10.3397/1/377048.
Texto completo da fonteChrz, D., N. Maness, D. Chen e M. Stone. "MECHANICAL IMPULSE RESPONSE AS A MEASURE OF TOMATO FRUIT MATURITY". HortScience 29, n.º 7 (julho de 1994): 739g—739. http://dx.doi.org/10.21273/hortsci.29.7.739g.
Texto completo da fonteZhou, Zou, Guoli Zhang, Fei Zheng, Tuyang Wang, Longjie Chen e Nan Duan. "A Graph Optimization-Based Acoustic SLAM Edge Computing System Offering Centimeter-Level Mapping Services with Reflector Recognition Capability". Security and Communication Networks 2021 (3 de dezembro de 2021): 1–17. http://dx.doi.org/10.1155/2021/9126833.
Texto completo da fonteParlin, Nicholas J., William G. Davids, Edwin Nagy e Toney Cummins. "Dynamic response of lightweight wood-based flexible wall panels to blast and impulse loading". Construction and Building Materials 50 (janeiro de 2014): 237–45. http://dx.doi.org/10.1016/j.conbuildmat.2013.09.046.
Texto completo da fonteDai, H. L., e X. Wang. "Non-Linear Dynamic Response of a Single Wall Carbon Nanotube Subjected to Radial Impulse". Archive of Applied Mechanics 76, n.º 3-4 (28 de fevereiro de 2006): 145–58. http://dx.doi.org/10.1007/s00419-006-0011-2.
Texto completo da fonteXu, Qian. "Investigation of Damage Diagnosis of Retaining Wall Structures Based on the Hilbert Damage Feature Vector Spectrum". Shock and Vibration 2019 (7 de outubro de 2019): 1–22. http://dx.doi.org/10.1155/2019/3509470.
Texto completo da fonteZENIT, R., e M. L. HUNT. "The impulsive motion of a liquid resulting from a particle collision". Journal of Fluid Mechanics 375 (25 de novembro de 1998): 345–61. http://dx.doi.org/10.1017/s0022112098002596.
Texto completo da fonteSundaram, Prasannabalaji, Tapan K. Sengupta e Swagata Bhaumik. "The three-dimensional impulse response of a boundary layer to different types of wall excitation". Physics of Fluids 30, n.º 12 (dezembro de 2018): 124103. http://dx.doi.org/10.1063/1.5063700.
Texto completo da fonteŚwierc, Agata, Stanisław Świerc, Henryk Foit e Piotr Koper. "Applying the Exodus method to calculate the set of impulse response functions of a wall". Energy and Buildings 69 (fevereiro de 2014): 301–6. http://dx.doi.org/10.1016/j.enbuild.2013.11.019.
Texto completo da fonteFUKUI, Hirohisa, Hideo FUJITANI, Yoichi MUKAI, Mai ITO e Gilberto MOSQUEDA. "RESPONSE EVALUATION AND ANALYSIS USING IMPULSE OF BASE-ISOLATED BUILDINGS DURING A COLLISION WITH RETAINING WALL". Journal of Structural and Construction Engineering (Transactions of AIJ) 84, n.º 766 (2019): 1533–43. http://dx.doi.org/10.3130/aijs.84.1533.
Texto completo da fonteFukui, Hirohisa, Hideo Fujitani, Yoichi Mukai, Mai Ito e Gilberto Mosqueda. "Response evaluation and analysis using impulse of base‐isolated buildings during a collision with retaining wall". JAPAN ARCHITECTURAL REVIEW 4, n.º 1 (2 de dezembro de 2020): 88–104. http://dx.doi.org/10.1002/2475-8876.12205.
Texto completo da fonteProdeus, Arkadiy, e Maryna Didkovska. "Assessment of speech intelligibility in university lecture rooms of different sizes using objective and subjective methods". Eastern-European Journal of Enterprise Technologies 3, n.º 5 (111) (25 de junho de 2021): 47–56. http://dx.doi.org/10.15587/1729-4061.2021.228405.
Texto completo da fonteLimarchenko, O., O. Nefedov e O. Sirenko. "VERIFICATION OF THE CONTROL ALGORITHM FOR RESERVOIRS WITH LIQUID BASED ON THE COMPENSATION OF THE FORCE RESPONSE IN DIFFERENT RANGES OF MANIFESTATION OF NONLINEARITIES". Bulletin Taras Shevchenko National University of Kyiv. Mathematics Mechanics, n.º 1 (41) (2020): 51–56. http://dx.doi.org/10.17721/1684-1565.2020.01-41.12.51-56.
Texto completo da fonteXu, Qian. "Damage Identification of Wind-Break Wall Structures based on the Further Updated Wavelet Packet Frequency Bands Energy Ratio Spectrum". Shock and Vibration 2022 (19 de julho de 2022): 1–15. http://dx.doi.org/10.1155/2022/8200199.
Texto completo da fonteWang, Lei, Xiyue Ma, Rong Li e Xiangyang Zeng. "Impact of Structural Parameters on the Auditory Perception of Musical Sounds in Closed Spaces: An Experimental Study". Applied Sciences 9, n.º 7 (4 de abril de 2019): 1416. http://dx.doi.org/10.3390/app9071416.
Texto completo da fonteSuo, Lisheng, e E. B. Wylie. "Complex Wavespeed and Hydraulic Transients in Viscoelastic Pipes". Journal of Fluids Engineering 112, n.º 4 (1 de dezembro de 1990): 496–500. http://dx.doi.org/10.1115/1.2909434.
Texto completo da fonteLi, Xin, Shiqiang Li, Zhihua Wang, Jinglei Yang e Guiying Wu. "Response of aluminum corrugated sandwich panels under foam projectile impact – Experiment and numerical simulation". Journal of Sandwich Structures & Materials 19, n.º 5 (6 de fevereiro de 2016): 595–615. http://dx.doi.org/10.1177/1099636216630503.
Texto completo da fonteSoheyli, Mohamad Reza, A. H. Akhaveissy e S. M. Mirhosseini. "Large-Scale Experimental and Numerical Study of Blast Acceleration Created by Close-In Buried Explosion on Underground Tunnel Lining". Shock and Vibration 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/8918050.
Texto completo da fonteSumala, M., B. Murali Krishna e T. P. Tezeswi. "Structural Performance of EPS Core Based Cementitious Sandwich Panel under Various Loading Conditions". Journal of Physics: Conference Series 2779, n.º 1 (1 de junho de 2024): 012073. http://dx.doi.org/10.1088/1742-6596/2779/1/012073.
Texto completo da fonteZhao, Futian, Jun Liu, Zhimin Xiao, Mingqing Liu, Yue Wang, Chen Ou e Mengyang Zhen. "A Simplified Analytical Solution of Mechanical Responses of Soil Subjected to Repeated Impact Loading". Mathematical Problems in Engineering 2020 (4 de novembro de 2020): 1–10. http://dx.doi.org/10.1155/2020/6920535.
Texto completo da fonteDebski, E. A., e W. O. Friesen. "Role of central interneurons in habituation of swimming activity in the medicinal leech". Journal of Neurophysiology 55, n.º 5 (1 de maio de 1986): 977–94. http://dx.doi.org/10.1152/jn.1986.55.5.977.
Texto completo da fonteŽaliaduonytė-Pekšienė, Diana, Tomas Kazakevičius, Vytautas Zabiela, Vytautas Šileikis, Remigijus Vaičiulis, Martynas Virketis e Aras Puodžiukynas. "Changes of electrophysiological parameters in patients with atrial flutter". Medicina 43, n.º 8 (8 de agosto de 2007): 614. http://dx.doi.org/10.3390/medicina43080078.
Texto completo da fontevan der Harten, Arthur W., e Matthew Azevedo. "Calibrating geometrical acoustics models of non-diffuse rooms". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A210. http://dx.doi.org/10.1121/10.0016037.
Texto completo da fonteZhang, Peiwen, Xin Li, Tao Jin, Zhihua Wang e Longmao Zhao. "Dynamic response of circular metallic sandwich panels under projectile impact". Journal of Sandwich Structures & Materials 19, n.º 5 (11 de janeiro de 2016): 572–94. http://dx.doi.org/10.1177/1099636215626596.
Texto completo da fonteKienzler, R. "Non-linear dynamic response of a single wall carbon nonotube subjected to radial impulse (by H.L. Dai; X. Wang)". Archive of Applied Mechanics 78, n.º 5 (1 de fevereiro de 2008): 409. http://dx.doi.org/10.1007/s00419-007-0199-9.
Texto completo da fonteRusso, S., e P. Luchini. "The linear response of turbulent flow to a volume force: comparison between eddy-viscosity model and DNS". Journal of Fluid Mechanics 790 (2 de fevereiro de 2016): 104–27. http://dx.doi.org/10.1017/jfm.2016.4.
Texto completo da fonteMander, Thomas J., e Zachery I. Smith. "Composite Steel Stud Blast Panel Design and Experimental Testing". Applied Mechanics and Materials 82 (julho de 2011): 479–84. http://dx.doi.org/10.4028/www.scientific.net/amm.82.479.
Texto completo da fonteKing, Richard, Wieslaw Woszczyk e Michail Oikonomidis. "Enhancement of virtual acoustics rendering using boundary mounted dipole loudspeakers". Journal of the Acoustical Society of America 155, n.º 3_Supplement (1 de março de 2024): A177. http://dx.doi.org/10.1121/10.0027228.
Texto completo da fonteSwerdlow, Andy. "A modern metric for acoustic clarity in critical listening environments". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A104. http://dx.doi.org/10.1121/10.0015690.
Texto completo da fonteEDVALDSSON, Garðar, e Achilleas XYDIS. "Latency-free real-time auralisation in hemi-anechoic chambers". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, n.º 3 (4 de outubro de 2024): 8120–27. http://dx.doi.org/10.3397/in_2024_4049.
Texto completo da fonteKiran, K. K., e JagadishG Kori. "Blast Mitigation of SDOF systems by using M.R.Damper and Base Isolations". Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, n.º 1 (19 de dezembro de 2022): 1095–100. http://dx.doi.org/10.38208/acp.v1.626.
Texto completo da fonteJacobi, I., e B. J. McKeon. "Dynamic roughness perturbation of a turbulent boundary layer". Journal of Fluid Mechanics 688 (27 de outubro de 2011): 258–96. http://dx.doi.org/10.1017/jfm.2011.375.
Texto completo da fonteEissa, Tahra L., Catherine A. Schevon, Ronald G. Emerson, Guy M. Mckhann, Robert R. Goodman e Wim Van Drongelen. "The Relationship Between Ictal Multi-Unit Activity and the Electrocorticogram". International Journal of Neural Systems 28, n.º 10 (dezembro de 2018): 1850027. http://dx.doi.org/10.1142/s0129065718500272.
Texto completo da fonteJACOBI, I., e B. J. McKEON. "New perspectives on the impulsive roughness-perturbation of a turbulent boundary layer". Journal of Fluid Mechanics 677 (26 de abril de 2011): 179–203. http://dx.doi.org/10.1017/jfm.2011.75.
Texto completo da fonteHuang, Ling, Dong Lei, Bowen Zheng, Guiping Chen, Huifeng An e Mingxuan Li. "Lightweight Multi-Domain Fusion Model for Through-Wall Human Activity Recognition Using IR-UWB Radar". Applied Sciences 14, n.º 20 (18 de outubro de 2024): 9522. http://dx.doi.org/10.3390/app14209522.
Texto completo da fonteChen, Suwen, Chen-Guang Zhu, Guo-Qiang Li e Yong Lu. "Blast test and numerical simulation of point-supported glazing". Advances in Structural Engineering 19, n.º 12 (28 de julho de 2016): 1841–54. http://dx.doi.org/10.1177/1369433216649387.
Texto completo da fontePetojević, Zorana, Radovan Gospavić e Goran Todorović. "Estimation of thermal impulse response of a multi-layer building wall through in-situ experimental measurements in a dynamic regime with applications". Applied Energy 228 (outubro de 2018): 468–86. http://dx.doi.org/10.1016/j.apenergy.2018.06.083.
Texto completo da fonteHOWE, M. S. "Edge, cavity and aperture tones at very low Mach numbers". Journal of Fluid Mechanics 330 (10 de janeiro de 1997): 61–84. http://dx.doi.org/10.1017/s0022112096003606.
Texto completo da fonte