Literatura científica selecionada sobre o tema "Viterbo conjecture"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Viterbo conjecture".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Viterbo conjecture"
Abbondandolo, Alberto, Barney Bramham, Umberto L. Hryniewicz e Pedro A. S. Salomão. "Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere". Compositio Mathematica 154, n.º 12 (6 de novembro de 2018): 2643–80. http://dx.doi.org/10.1112/s0010437x18007558.
Texto completo da fonteBalitskiy, Alexey. "Equality Cases in Viterbo’s Conjecture and Isoperimetric Billiard Inequalities". International Mathematics Research Notices 2020, n.º 7 (19 de abril de 2018): 1957–78. http://dx.doi.org/10.1093/imrn/rny076.
Texto completo da fonteKarasev, Roman, e Anastasia Sharipova. "Viterbo’s Conjecture for Certain Hamiltonians in Classical Mechanics". Arnold Mathematical Journal 5, n.º 4 (dezembro de 2019): 483–500. http://dx.doi.org/10.1007/s40598-019-00129-4.
Texto completo da fonteValverde-Albacete, Francisco J., e Carmen Peláez-Moreno. "The Rényi Entropies Operate in Positive Semifields". Entropy 21, n.º 8 (8 de agosto de 2019): 780. http://dx.doi.org/10.3390/e21080780.
Texto completo da fonteGutt, Jean, Michael Hutchings e Vinicius G. B. Ramos. "Examples around the strong Viterbo conjecture". Journal of Fixed Point Theory and Applications 24, n.º 2 (20 de abril de 2022). http://dx.doi.org/10.1007/s11784-022-00949-6.
Texto completo da fonteShelukhin, Egor. "Viterbo conjecture for Zoll symmetric spaces". Inventiones mathematicae, 7 de julho de 2022. http://dx.doi.org/10.1007/s00222-022-01124-x.
Texto completo da fonteShelukhin, Egor. "Symplectic cohomology and a conjecture of Viterbo". Geometric and Functional Analysis, 31 de outubro de 2022. http://dx.doi.org/10.1007/s00039-022-00619-2.
Texto completo da fonteEdtmair, O. "Disk-Like Surfaces of Section and Symplectic Capacities". Geometric and Functional Analysis, 16 de julho de 2024. http://dx.doi.org/10.1007/s00039-024-00689-4.
Texto completo da fonteAbbondandolo, Alberto, e Gabriele Benedetti. "On the local systolic optimality of Zoll contact forms". Geometric and Functional Analysis, 3 de fevereiro de 2023. http://dx.doi.org/10.1007/s00039-023-00624-z.
Texto completo da fonteRudolf, Daniel. "Viterbo’s conjecture as a worm problem". Monatshefte für Mathematik, 18 de dezembro de 2022. http://dx.doi.org/10.1007/s00605-022-01806-x.
Texto completo da fonteTeses / dissertações sobre o assunto "Viterbo conjecture"
Dardennes, Julien. "Non-convexité symplectique des domaines toriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES102.
Texto completo da fonteConvexity plays a special role in symplectic geometry, but it is not a notion that is invariant by symplectomorphism. In a seminal work, Hofer, Wysocki and Zehnder showed that any strongly convex domain is dynamically convex, a notion that is invariant by symplectomorphism. For more than twenty years, the existence or not of dynamically convex domains that are not symplectomorphic to a convex domain has remained an open question. Recently, Chaidez and Edtmair answered this question in dimension 4. They established a "quantitative" criterion of symplectic convexity and constructed dynamically convex domains that do not satisfy this criterion. In this thesis, we use this criterion to construct new examples of such domains in dimension 4, which have the additional property of being toric. Moreover, we estimate the constants involved in this criterion. This work in collaboration with Jean Gutt and Jun Zhang was later used by Chaidez and Edtmair to solve the initial question in all dimensions. Furthermore, in collaboration with Jean Gutt, Vinicius G.B.Ramos and Jun Zhang, we study the distance from dynamically convex domains to symplectically convex domains. We show that in dimension 4, this distance is arbitrarily large with respect to a symplectic analogue of the Banach-Mazur distance. Additionally, we independently reprove the existence of dynamically convex domains that are not symplectically convex in dimension 4
Capítulos de livros sobre o assunto "Viterbo conjecture"
Hofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder e Felix Schlenk. "Examples around the strong Viterbo conjecture". In Symplectic Geometry, 677–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4_22.
Texto completo da fonteEkeland, Ivar. "Viterbo’s Proof of Weinstein’s Conjecture in R 2n". In Periodic Solutions of Hamiltonian Systems and Related Topics, 131–37. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3933-2_11.
Texto completo da fonte