Literatura científica selecionada sobre o tema "Visual learning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Visual learning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Visual learning"
Sze, Daniel Y. "Visual Learning". Journal of Vascular and Interventional Radiology 32, n.º 3 (março de 2021): 331. http://dx.doi.org/10.1016/j.jvir.2021.01.265.
Texto completo da fonteLiu, Yan, Yang Liu, Shenghua Zhong e Songtao Wu. "Implicit Visual Learning". ACM Transactions on Intelligent Systems and Technology 8, n.º 2 (18 de janeiro de 2017): 1–24. http://dx.doi.org/10.1145/2974024.
Texto completo da fonteCruz, Rodrigo Santa, Basura Fernando, Anoop Cherian e Stephen Gould. "Visual Permutation Learning". IEEE Transactions on Pattern Analysis and Machine Intelligence 41, n.º 12 (1 de dezembro de 2019): 3100–3114. http://dx.doi.org/10.1109/tpami.2018.2873701.
Texto completo da fonteJones, Rachel. "Visual learning visualized". Nature Reviews Neuroscience 4, n.º 1 (janeiro de 2003): 10. http://dx.doi.org/10.1038/nrn1014.
Texto completo da fonteLu, Zhong-Lin, Tianmiao Hua, Chang-Bing Huang, Yifeng Zhou e Barbara Anne Dosher. "Visual perceptual learning". Neurobiology of Learning and Memory 95, n.º 2 (fevereiro de 2011): 145–51. http://dx.doi.org/10.1016/j.nlm.2010.09.010.
Texto completo da fonteRichler, Jennifer J., e Thomas J. Palmeri. "Visual category learning". Wiley Interdisciplinary Reviews: Cognitive Science 5, n.º 1 (26 de novembro de 2013): 75–94. http://dx.doi.org/10.1002/wcs.1268.
Texto completo da fonteNida, Diini Fitrahtun, Muhyiatul Fadilah, Ardi Ardi e Suci Fajrina. "CHARACTERISTICS OF VISUAL LITERACY-BASED BIOLOGY LEARNING MODULE VALIDITY ON PHOTOSYNTHESIS LEARNING MATERIALS". JURNAL PAJAR (Pendidikan dan Pengajaran) 7, n.º 4 (29 de julho de 2023): 785. http://dx.doi.org/10.33578/pjr.v7i4.9575.
Texto completo da fonteGuinibert, Matthew. "Learn from your environment: A visual literacy learning model". Australasian Journal of Educational Technology 36, n.º 4 (28 de setembro de 2020): 173–88. http://dx.doi.org/10.14742/ajet.5200.
Texto completo da fonteTaga, Tadashi, Kazuhito Yoshizaki e Kimiko Kato. "Visual field difference in visual statistical learning." Proceedings of the Annual Convention of the Japanese Psychological Association 79 (22 de setembro de 2015): 2EV—074–2EV—074. http://dx.doi.org/10.4992/pacjpa.79.0_2ev-074.
Texto completo da fonteHolland, Keith. "Visual skills for learning". Set: Research Information for Teachers, n.º 2 (1 de agosto de 1996): 1–4. http://dx.doi.org/10.18296/set.0900.
Texto completo da fonteTeses / dissertações sobre o assunto "Visual learning"
Zhu, Fan. "Visual feature learning". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/8218/.
Texto completo da fonteGoh, Hanlin. "Learning deep visual representations". Paris 6, 2013. http://www.theses.fr/2013PA066356.
Texto completo da fonteRecent advancements in the areas of deep learning and visual information processing have presented an opportunity to unite both fields. These complementary fields combine to tackle the problem of classifying images into their semantic categories. Deep learning brings learning and representational capabilities to a visual processing model that is adapted for image classification. This thesis addresses problems that lead to the proposal of learning deep visual representations for image classification. The problem of deep learning is tackled on two fronts. The first aspect is the problem of unsupervised learning of latent representations from input data. The main focus is the integration of prior knowledge into the learning of restricted Boltzmann machines (RBM) through regularization. Regularizers are proposed to induce sparsity, selectivity and topographic organization in the coding to improve discrimination and invariance. The second direction introduces the notion of gradually transiting from unsupervised layer-wise learning to supervised deep learning. This is done through the integration of bottom-up information with top-down signals. Two novel implementations supporting this notion are explored. The first method uses top-down regularization to train a deep network of RBMs. The second method combines predictive and reconstructive loss functions to optimize a stack of encoder-decoder networks. The proposed deep learning techniques are applied to tackle the image classification problem. The bag-of-words model is adopted due to its strengths in image modeling through the use of local image descriptors and spatial pooling schemes. Deep learning with spatial aggregation is used to learn a hierarchical visual dictionary for encoding the image descriptors into mid-level representations. This method achieves leading image classification performances for object and scene images. The learned dictionaries are diverse and non-redundant. The speed of inference is also high. From this, a further optimization is performed for the subsequent pooling step. This is done by introducing a differentiable pooling parameterization and applying the error backpropagation algorithm. This thesis represents one of the first attempts to synthesize deep learning and the bag-of-words model. This union results in many challenging research problems, leaving much room for further study in this area
Walker, Catherine Livesay. "Visual learning through Hypermedia". CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1148.
Texto completo da fonteOwens, Andrew (Andrew Hale). "Learning visual models from paired audio-visual examples". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107352.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 93-104).
From the clink of a mug placed onto a saucer to the bustle of a busy café, our days are filled with visual experiences that are accompanied by distinctive sounds. In this thesis, we show that these sounds can provide a rich training signal for learning visual models. First, we propose the task of predicting the sound that an object makes when struck as a way of studying physical interactions within a visual scene. We demonstrate this idea by training an algorithm to produce plausible soundtracks for videos in which people hit and scratch objects with a drumstick. Then, with human studies and automated evaluations on recognition tasks, we verify that the sounds produced by the algorithm convey information about actions and material properties. Second, we show that ambient audio - e.g., crashing waves, people speaking in a crowd - can also be used to learn visual models. We train a convolutional neural network to predict a statistical summary of the sounds that occur within a scene, and we demonstrate that the visual representation learned by the model conveys information about objects and scenes.
by Andrew Owens.
Ph. D.
Peyre, Julia. "Learning to detect visual relations". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE016.
Texto completo da fonteIn this thesis, we study the problem of detection of visual relations of the form (subject, predicate, object) in images, which are intermediate level semantic units between objects and complex scenes. Our work addresses two main challenges in visual relation detection: (1) the difficulty of obtaining box-level annotations to train fully-supervised models, (2) the variability of appearance of visual relations. We first propose a weakly-supervised approach which, given pre-trained object detectors, enables us to learn relation detectors using image-level labels only, maintaining a performance close to fully-supervised models. Second, we propose a model that combines different granularities of embeddings (for subject, object, predicate and triplet) to better model appearance variation and introduce an analogical reasoning module to generalize to unseen triplets. Experimental results demonstrate the improvement of our hybrid model over a purely compositional model and validate the benefits of our transfer by analogy to retrieve unseen triplets
Wang, Zhaoqing. "Self-supervised Visual Representation Learning". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29595.
Texto completo da fonteTang-Wright, Kimmy. "Visual topography and perceptual learning in the primate visual system". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:388b9658-dceb-443a-a19b-c960af162819.
Texto completo da fonteShi, Xiaojin. "Visual learning from small training datasets /". Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.
Texto completo da fonteLiu, Jingen. "Learning Semantic Features for Visual Recognition". Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3358.
Texto completo da fontePh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science PhD
Beale, Dan. "Autonomous visual learning for robotic systems". Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558886.
Texto completo da fonteLivros sobre o assunto "Visual learning"
Katsushi, Ikeuchi, e Veloso Manuela M, eds. Symbolic visual learning. New York: Oxford University Press, 1997.
Encontre o texto completo da fonteK, Nayar Shree, e Poggio Tomaso, eds. Early visual learning. New York: Oxford University Press, 1996.
Encontre o texto completo da fonteM, Moore David, e Dwyer Francis M, eds. Visual literacy: A spectrum of visual learning. Englewood Cliffs, N.J: Educational Technology Publications, 1994.
Encontre o texto completo da fonteN, Erin Jane, ed. Visual handicaps and learning. 3a ed. Austin, Tex: PRO-ED, 1992.
Encontre o texto completo da fonteLiberty, Jesse. Learning Visual Basic .NET. Sebastopol, CA: O'Reilly, 2002.
Encontre o texto completo da fonteRourke, Adrianne. Improving visual teaching materials. Hauppauge, N.Y: Nova Science Publishers, 2009.
Encontre o texto completo da fonteBaratta, Alex. Visual writing. Newcastle upon Tyne: Cambridge Scholars, 2010.
Encontre o texto completo da fonteManfred, Fahle, e Poggio Tomaso, eds. Perceptual learning. Cambridge, Mass: MIT Press, 2002.
Encontre o texto completo da fonteVakanski, Aleksandar, e Farrokh Janabi-Sharifi. Robot Learning by Visual Observation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119091882.
Texto completo da fonteBeatty, Grace Joely. PowerPoint: The visual learning guide. Rocklin, CA: Prima Pub., 1994.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Visual learning"
Burge, M., e W. Burger. "Learning visual ideals". In Image Analysis and Processing, 316–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63508-4_138.
Texto completo da fonteBurge, M., e W. Burger. "Learning visual ideals". In Lecture Notes in Computer Science, 464–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0025067.
Texto completo da fontePanciroli, Chiara, Laura Corazza e Anita Macauda. "Visual-Graphic Learning". In Proceedings of the 2nd International and Interdisciplinary Conference on Image and Imagination, 49–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41018-6_6.
Texto completo da fonteLu, Zhong-Lin, e Barbara Anne Dosher. "Visual Perceptual Learning". In Encyclopedia of the Sciences of Learning, 3415–18. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4419-1428-6_258.
Texto completo da fonteLovegrove, William. "The Visual Deficit Hypothesis". In Learning Disabilities, 246–69. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9133-3_8.
Texto completo da fonteGolon, Alexandra Shires. "Learning Styles Differentiation". In VISUAL-SPATIAL learners, 1–18. 2a ed. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003239482-1.
Texto completo da fonteGolon, Alexandra Shires. "Learning Styles Differentiation". In VISUAL-SPATIAL learners, 1–18. 2a ed. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003239482-1.
Texto completo da fonteWu, Qi, Peng Wang, Xin Wang, Xiaodong He e Wenwu Zhu. "Video Representation Learning". In Visual Question Answering, 111–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0964-1_7.
Texto completo da fonteWu, Qi, Peng Wang, Xin Wang, Xiaodong He e Wenwu Zhu. "Deep Learning Basics". In Visual Question Answering, 15–26. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0964-1_2.
Texto completo da fonteGrobstein, Paul, e Kao Liang Chow. "Visual System Development, Plasticity". In Learning and Memory, 56–58. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4899-6778-7_22.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Visual learning"
Buijs, Jean M., e Michael S. Lew. "Learning visual concepts". In the seventh ACM international conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/319878.319880.
Texto completo da fonteZhao, Qi, e Christof Koch. "Learning visual saliency". In 2011 45th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2011. http://dx.doi.org/10.1109/ciss.2011.5766178.
Texto completo da fonteBERARDI, NICOLETTA, e ADRIANA FIORENTINI. "VISUAL PERCEPTUAL LEARNING". In Proceedings of the International School of Biophysics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799975_0034.
Texto completo da fonteJi, Daomin, Hui Luo e Zhifeng Bao. "Visualization Recommendation Through Visual Relation Learning and Visual Preference Learning". In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 2023. http://dx.doi.org/10.1109/icde55515.2023.00145.
Texto completo da fonteGuangming Chang, Chunfen Yuan e Weiming Hu. "Interclass visual similarity based visual vocabulary learning". In 2011 First Asian Conference on Pattern Recognition (ACPR 2011). IEEE, 2011. http://dx.doi.org/10.1109/acpr.2011.6166597.
Texto completo da fonteMahouachi, Dorra, e Moulay A. Akhloufi. "Deep learning visual programming". In Disruptive Technologies in Information Sciences III, editado por Misty Blowers, Russell D. Hall e Venkateswara R. Dasari. SPIE, 2019. http://dx.doi.org/10.1117/12.2519882.
Texto completo da fonteCruz, Rodrigo Santa, Basura Fernando, Anoop Cherian e Stephen Gould. "DeepPermNet: Visual Permutation Learning". In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017. http://dx.doi.org/10.1109/cvpr.2017.640.
Texto completo da fonteCai, Haipeng, Shiv Raj Pant e Wen Li. "Towards learning visual semantics". In ESEC/FSE '20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3368089.3417040.
Texto completo da fonteTeow, Matthew Y. W. "Convolutional Visual Feature Learning". In the 2018 International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3232651.3232672.
Texto completo da fonteYeh, Tom, e Trevor Darrell. "Dynamic visual category learning". In 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2008. http://dx.doi.org/10.1109/cvpr.2008.4587616.
Texto completo da fonteRelatórios de organizações sobre o assunto "Visual learning"
Bhanu, Bir. Learning Integrated Visual Database for Image Exploitation. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2002. http://dx.doi.org/10.21236/ada413389.
Texto completo da fonteEdelman, Shimon, Heinrich H. Buelthoff e Erik Sklar. Task and Object Learning in Visual Recognition. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1991. http://dx.doi.org/10.21236/ada259961.
Texto completo da fonteJiang, Yuhong V. Implicit Learning of Complex Visual Contexts Under Non-Optimal Conditions. Fort Belvoir, VA: Defense Technical Information Center, julho de 2007. http://dx.doi.org/10.21236/ada482119.
Texto completo da fontePetrie, Christopher, e Katija Aladin. Spotlight: Visual Arts. HundrED, dezembro de 2020. http://dx.doi.org/10.58261/azgu5536.
Texto completo da fontePoggio, Tomaso, e Stephen Smale. Hierarchical Kernel Machines: The Mathematics of Learning Inspired by Visual Cortex. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2013. http://dx.doi.org/10.21236/ada580529.
Texto completo da fonteHarmon, Dr Jennifer. Exploring the Efficacy of Active and Authentic Learning in the Visual Merchandising Classroom. Ames: Iowa State University, Digital Repository, novembro de 2016. http://dx.doi.org/10.31274/itaa_proceedings-180814-1524.
Texto completo da fonteMills, Kathy, Elizabeth Heck, Alinta Brown, Patricia Funnell e Lesley Friend. Senses together : Multimodal literacy learning in primary education : Final project report. Institute for Learning Sciences and Teacher Education, Australian Catholic University, 2023. http://dx.doi.org/10.24268/acu.8zy8y.
Texto completo da fonteYu, Wanchi. Implicit Learning of Children with and without Developmental Language Disorder across Auditory and Visual Categories. Portland State University Library, janeiro de 2000. http://dx.doi.org/10.15760/etd.7460.
Texto completo da fonteNahorniak, Maya. Occupation of profession: Methodology of laboratory classes from practically-oriented courses under distance learning (on an example of discipline «Radioproduction»). Ivan Franko National University of Lviv, fevereiro de 2022. http://dx.doi.org/10.30970/vjo.2022.51.11412.
Texto completo da fonteShepiliev, Dmytro S., Yevhenii O. Modlo, Yuliia V. Yechkalo, Viktoriia V. Tkachuk, Mykhailo M. Mintii, Iryna S. Mintii, Oksana M. Markova et al. WebAR development tools: An overview. CEUR Workshop Proceedings, março de 2021. http://dx.doi.org/10.31812/123456789/4356.
Texto completo da fonte