Artigos de revistas sobre o tema "Viscous flow Mathematical models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Viscous flow Mathematical models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Masuko, Akira, Yasushi Shirose, Yasunori Ando e Masafumi Kawai. "Numerical Simulation of Viscous Flow around a Series of Mathematical Ship Models". Journal of the Society of Naval Architects of Japan 1987, n.º 162 (1987): 1–10. http://dx.doi.org/10.2534/jjasnaoe1968.1987.162_1.
Texto completo da fonteToxopeus, Serge L. "Deriving mathematical manoeuvring models for bare ship hulls using viscous flow calculations". Journal of Marine Science and Technology 14, n.º 1 (23 de julho de 2008): 30–38. http://dx.doi.org/10.1007/s00773-008-0002-9.
Texto completo da fonteAripov, M. M., J. SH Rajabov e SH R. Settiev. "About one of the mathematical models of viscous flow incompressible fluid above sandy bottom". Journal of Physics: Conference Series 1902, n.º 1 (1 de maio de 2021): 012001. http://dx.doi.org/10.1088/1742-6596/1902/1/012001.
Texto completo da fonteHowell, P. D. "Models for thin viscous sheets". European Journal of Applied Mathematics 7, n.º 4 (agosto de 1996): 321–43. http://dx.doi.org/10.1017/s0956792500002400.
Texto completo da fontePATEL, L. K., e LAKSHMI S. DESAI. "PLANE SYMMETRIC VISCOUS-FLUID COSMOLOGICAL MODELS WITH HEAT FLUX". International Journal of Modern Physics D 03, n.º 03 (setembro de 1994): 639–45. http://dx.doi.org/10.1142/s0218271894000770.
Texto completo da fonteKrusteva, Ekaterina D., Stefan Y. Radoslavov e Zdravko I. Diankov. "Modelling the Seepage of Groundwater: Application of the Viscous Analogy and Numerical Methods". Applied Rheology 9, n.º 4 (1 de agosto de 1999): 165–71. http://dx.doi.org/10.1515/arh-2009-0012.
Texto completo da fonteNazarov, Serdar, Muhammetberdi Rakhimov e Gurbanyaz Khekimov. "Linearization of the Navier-Stokes equations". E3S Web of Conferences 216 (2020): 01060. http://dx.doi.org/10.1051/e3sconf/202021601060.
Texto completo da fonteAli, Azhar, Dil Nawaz Khan Marwat e Saleem Asghar. "Viscous flow over a stretching (shrinking) and porous cylinder of non-uniform radius". Advances in Mechanical Engineering 11, n.º 9 (setembro de 2019): 168781401987984. http://dx.doi.org/10.1177/1687814019879842.
Texto completo da fonteNazarov, Serdar, Muhammetberdi Rakhimov e Gurbanyaz Khekimov. "Optimal modeling of the heat transfer of a viscous incompressible liquid". E3S Web of Conferences 216 (2020): 01059. http://dx.doi.org/10.1051/e3sconf/202021601059.
Texto completo da fonteSocolowsky, Jürgen. "On the Nusselt Solution of a Nonisothermal Two-Fluid Inclined Film Flow". International Journal of Mathematics and Mathematical Sciences 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/981983.
Texto completo da fonteXie, Fangwei, Diancheng Wu, Yaowen Tong, Bing Zhang e Jie Zhu. "Effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property of oil film". Industrial Lubrication and Tribology 69, n.º 5 (4 de setembro de 2017): 690–700. http://dx.doi.org/10.1108/ilt-12-2015-0207.
Texto completo da fonteCHAI, ZHEN-HUA, BAO-CHANG SHI e LIN ZHENG. "LATTICE BOLTZMANN SIMULATION OF VISCOUS DISSIPATION IN ELECTRO-OSMOTIC FLOW IN MICROCHANNELS". International Journal of Modern Physics C 18, n.º 07 (julho de 2007): 1119–31. http://dx.doi.org/10.1142/s0129183107011200.
Texto completo da fonteDorodnitsyn, L. V. "Acoustics in viscous subsonic flow models with nonreflecting boundary conditions". Computational Mathematics and Modeling 11, n.º 4 (outubro de 2000): 356–76. http://dx.doi.org/10.1007/bf02359300.
Texto completo da fonteZhang, Guoping, e Mingchao Cai. "Normal mode analysis of 3D incompressible viscous fluid flow models". Applicable Analysis 100, n.º 1 (25 de março de 2019): 116–34. http://dx.doi.org/10.1080/00036811.2019.1594201.
Texto completo da fonteZhang, Bo-ning, Xiao-gang Li, Yu-long Zhao, Cheng Chang e Jian Zheng. "A Review of Gas Flow and Its Mathematical Models in Shale Gas Reservoirs". Geofluids 2020 (30 de novembro de 2020): 1–19. http://dx.doi.org/10.1155/2020/8877777.
Texto completo da fonteLei, Chen, Gao Junjie, Liu Gang, Zhai Keping, Zhang Yuyu e Gao Jingyang. "Prediction of pipeline restart using different rheological models of gelled crude oil". Applied Rheology 29, n.º 1 (1 de janeiro de 2019): 182–95. http://dx.doi.org/10.1515/arh-2019-0016.
Texto completo da fonteLi, Xi Bing, Shi Gang Wang, Jian Hua Guo e Dong Sheng Li. "A Mathematical Modeling Method on Micro Heat Pipe with a Trapezium-Grooved Wick Structure". Applied Mechanics and Materials 29-32 (agosto de 2010): 1686–94. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1686.
Texto completo da fonteAyata, Muammer, e Ozan Özkan. "A new approach to mathematical models of Drinfeld-Sokolov-Wilson and coupled viscous Burgers’ equations in water flow". Physica Scripta 96, n.º 9 (7 de junho de 2021): 095207. http://dx.doi.org/10.1088/1402-4896/ac05f4.
Texto completo da fonteHamdan, M. H., e R. A. Ford. "Single-phase flow through porous channels part II: Flow models, critical length, and viscous separation". Applied Mathematics and Computation 69, n.º 2-3 (maio de 1995): 241–54. http://dx.doi.org/10.1016/0096-3003(94)00132-n.
Texto completo da fonteCamassa, Roberto, e H. Reed Ogrosky. "On viscous film flows coating the interior of a tube: thin-film and long-wave models". Journal of Fluid Mechanics 772 (7 de maio de 2015): 569–99. http://dx.doi.org/10.1017/jfm.2015.221.
Texto completo da fonteWANG, Y., Y. L. HE, Q. LI, G. H. TANG e W. Q. TAO. "LATTICE BOLTZMANN MODEL FOR SIMULATING VISCOUS COMPRESSIBLE FLOWS". International Journal of Modern Physics C 21, n.º 03 (março de 2010): 383–407. http://dx.doi.org/10.1142/s0129183110015178.
Texto completo da fonteСуровежко, А. С., e С. И. Мартыненко. "On optimization of technical devices based on a hierarchy of mathematical models". Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), n.º 4 (10 de setembro de 2019): 411–27. http://dx.doi.org/10.26089/nummet.v20r436.
Texto completo da fontePerkins, Greg. "Mathematical modelling of in situ combustion and gasification". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, n.º 1 (2 de agosto de 2017): 56–73. http://dx.doi.org/10.1177/0957650917721595.
Texto completo da fonteBayly, P. V., e S. K. Dutcher. "Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella". Journal of The Royal Society Interface 13, n.º 123 (outubro de 2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Texto completo da fonteZhurba Eremeeva, I. A., D. Scerrato, C. Cardillo e A. Tran. "A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS". Problems of strenght and plasticity 81, n.º 4 (2019): 500–511. http://dx.doi.org/10.32326/1814-9146-2019-81-4-500-511.
Texto completo da fonteZhurba Eremeeva, I. A., D. Scerrato, C. Cardillo e A. Tran. "A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS". Problems of strenght and plasticity 81, n.º 4 (2019): 501–12. http://dx.doi.org/10.32326/1814-9146-2019-81-4-501-512.
Texto completo da fontePrůša, Vít, e K. R. Rajagopal. "Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids". Fluids 6, n.º 3 (22 de março de 2021): 131. http://dx.doi.org/10.3390/fluids6030131.
Texto completo da fonteReddy, Kattamreddy Venugopal, Machireddy Gnaneswara Reddy e Oluwole Daniel Makinde. "Heat and Mass Transfer of a Peristaltic Electro-osmotic Flow of a Couple Stress Fluid through an Inclined Asymmetric Channel with Effects of Thermal Radiation and Chemical Reaction". Periodica Polytechnica Mechanical Engineering 65, n.º 2 (16 de março de 2021): 151–62. http://dx.doi.org/10.3311/ppme.16760.
Texto completo da fonteZhong, Huiying, Weidong Zhang, Hongjun Yin e Haoyang Liu. "Study on Mechanism of Viscoelastic Polymer Transient Flow in Porous Media". Geofluids 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8763951.
Texto completo da fonteDu, Dong Xing, Fa Hu Zhang, Dian Cai Geng e Ying Ge Li. "Numerical Study on Film Foam Flow Characteristics in a Straight Duct". Key Engineering Materials 561 (julho de 2013): 472–77. http://dx.doi.org/10.4028/www.scientific.net/kem.561.472.
Texto completo da fonteTai, Chang-Hsien, Yuh-Long Tian e Jtm-Lun Liou. "High-resolution upwind viscous flow solver on SOCBT configuration with turbulence models". Finite Elements in Analysis and Design 18, n.º 1-3 (dezembro de 1994): 237–57. http://dx.doi.org/10.1016/0168-874x(94)90105-8.
Texto completo da fonteDeng, Wubing, e Igor B. Morozov. "Solid viscosity of fluid-saturated porous rock with squirt flows at seismic frequencies". GEOPHYSICS 81, n.º 4 (julho de 2016): D395—D404. http://dx.doi.org/10.1190/geo2015-0406.1.
Texto completo da fonteHu, Yumeng, Haiming Huang e Zimao Zhang. "Numerical simulation of a hypersonic flow past a blunt body". International Journal of Numerical Methods for Heat & Fluid Flow 27, n.º 6 (5 de junho de 2017): 1351–64. http://dx.doi.org/10.1108/hff-05-2016-0187.
Texto completo da fonteWang, Da Zheng, Dan Wang, Lei Mei e Wei Chao Shi. "The Hydrodynamic Analysis of Propeller Based on ANSYS-CFX". Advanced Materials Research 694-697 (maio de 2013): 673–77. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.673.
Texto completo da fonteFiorot, G. H., G. F. Maciel e C. Kitano. "MATHEMATICAL MODEL AND EXPERIMENTAL PROCEEDINGS TO DETERMINE ROLL WAVES IN OPEN CHANNELS". Revista de Engenharia Térmica 10, n.º 1-2 (31 de dezembro de 2011): 55. http://dx.doi.org/10.5380/reterm.v10i1-2.61953.
Texto completo da fonteStrzelecki, Tomasz, e Michał Strzelecki. "Relation Between Filtration and Soil Consolidation Theories". Studia Geotechnica et Mechanica 37, n.º 1 (1 de março de 2015): 105–14. http://dx.doi.org/10.1515/sgem-2015-0012.
Texto completo da fonteHunt, Barry. "Knowledge-Based Nonlinear Boundary Integral Models of Compressible Viscous Flows Over Arbitrary Bodies: Taking CFD Back to Basics". Applied Mechanics Reviews 44, n.º 11S (1 de novembro de 1991): S130—S142. http://dx.doi.org/10.1115/1.3121345.
Texto completo da fonteCenteno, R., K. S. Varyani e C. Guedes Soares. "Experimental Study on the Influence of Hull Spacing on Hard-Chine Catamaran Motions". Journal of Ship Research 45, n.º 03 (1 de setembro de 2001): 216–27. http://dx.doi.org/10.5957/jsr.2001.45.3.216.
Texto completo da fonteTIAN, ZHI-WEI, CHUN ZOU, H. J. LIU, Z. H. LIU, Z. L. GUO e C. G. ZHENG. "THERMAL LATTICE BOLTZMANN MODEL WITH VISCOUS HEAT DISSIPATION IN THE INCOMPRESSIBLE LIMIT". International Journal of Modern Physics C 17, n.º 08 (agosto de 2006): 1131–39. http://dx.doi.org/10.1142/s0129183106009631.
Texto completo da fonteShchuryk, Volodymyr, Leonid Serilko, Leonid Voitovych e Zoia Sasiuk. "MATHEMATICAL MODEL OF DYNAMICS OF CENTRIFUGE FOR FORMATION OF CONCRETE TUBULAR PRODUCTS". Vibrations in engineering and technology, n.º 4(95) (20 de novembro de 2019): 72–79. http://dx.doi.org/10.37128/2306-8744-2019-4-9.
Texto completo da fonteAstafiev, V. I., M. G. Kakhidze, V. I. Popkov e A. V. Popkova. "MULTI-SCALE STRESS-DEFORMATION STATUS OF POROUS GEOLOGICAL STRUCTURE AS RELATED TO WELL FILTRATION FLOWS". Vestnik of Samara University. Natural Science Series 19, n.º 9.2 (6 de junho de 2017): 153–69. http://dx.doi.org/10.18287/2541-7525-2013-19-9.2-153-169.
Texto completo da fontePIYASENA, PUNIDADAS, e ROBIN C. McKELLAR. "Influence of Guar Gum on the Thermal Stability of Listeria innocua, Listeria monocytogenes, and γ-Glutamyl Transpeptidase during High-Temperature Short-Time Pasteurization of Bovine Milk". Journal of Food Protection 62, n.º 8 (1 de agosto de 1999): 861–66. http://dx.doi.org/10.4315/0362-028x-62.8.861.
Texto completo da fonteDAMSGAARD, ANDERS, JENNY SUCKALE, JAN A. PIOTROWSKI, MORGANE HOUSSAIS, MATTHEW R. SIEGFRIED e HELEN A. FRICKER. "Sediment behavior controls equilibrium width of subglacial channels". Journal of Glaciology 63, n.º 242 (27 de novembro de 2017): 1034–48. http://dx.doi.org/10.1017/jog.2017.71.
Texto completo da fonteDeng, Wubing, e Igor B. Morozov. "A simple and general macroscopic model for local-deformation effects in fluid-saturated porous rock". Geophysical Journal International 220, n.º 3 (6 de dezembro de 2019): 1893–903. http://dx.doi.org/10.1093/gji/ggz552.
Texto completo da fonteLeclaire, Sébastien, Andrea Parmigiani, Bastien Chopard e Jonas Latt. "Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models". International Journal of Modern Physics C 28, n.º 07 (julho de 2017): 1750085. http://dx.doi.org/10.1142/s0129183117500851.
Texto completo da fonteCurt, Paula, e Denisa Fericean. "A Special Class of Univalent Functions in Hele-Shaw Flow Problems". Abstract and Applied Analysis 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/948236.
Texto completo da fonteLi, Guo-Jie, Wen-Bin Shangguan e Subhash Rakheja. "Modelling and analysis of a magneto-rheological damper featuring non-magnetized flow paths in the piston". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, n.º 10-11 (8 de abril de 2020): 2665–79. http://dx.doi.org/10.1177/0954407020907487.
Texto completo da fonteAlam, Aftab, Dil Nawaz Khan Marwat e Saleem Asghar. "Flow over a non-uniform sheet with non-uniform stretching (shrinking) and porous velocities". Advances in Mechanical Engineering 12, n.º 2 (fevereiro de 2020): 168781402090900. http://dx.doi.org/10.1177/1687814020909000.
Texto completo da fonteButler, J. P., J. Huang, S. H. Loring, S. J. Lai-Fook, P. M. Wang e T. A. Wilson. "Model for a pump that drives circulation of pleural fluid". Journal of Applied Physiology 78, n.º 1 (1 de janeiro de 1995): 23–29. http://dx.doi.org/10.1152/jappl.1995.78.1.23.
Texto completo da fonteAsif, Muhammad, Sami Ul Haq, Saeed Islam, Tawfeeq Abdullah Alkanhal, Zar Khan, Ilyas Khan e Kottakkaran Nisar. "Unsteady Flow of Fractional Fluid between Two Parallel Walls with Arbitrary Wall Shear Stress Using Caputo–Fabrizio Derivative". Symmetry 11, n.º 4 (1 de abril de 2019): 449. http://dx.doi.org/10.3390/sym11040449.
Texto completo da fonte