Artigos de revistas sobre o tema "Viral fusion glycoproteins"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Viral fusion glycoproteins".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Oliver, Michael R., Kamilla Toon, Charlotte B. Lewis, Stephen Devlin, Robert J. Gifford e Joe Grove. "Structures of the Hepaci-, Pegi-, and Pestiviruses envelope proteins suggest a novel membrane fusion mechanism". PLOS Biology 21, n.º 7 (11 de julho de 2023): e3002174. http://dx.doi.org/10.1371/journal.pbio.3002174.
Texto completo da fonteQuinn, Derek J., Neil V. McFerran, John Nelson e W. Paul Duprex. "Live-cell visualization of transmembrane protein oligomerization and membrane fusion using two-fragment haptoEGFP methodology". Bioscience Reports 32, n.º 3 (29 de março de 2012): 333–43. http://dx.doi.org/10.1042/bsr20110100.
Texto completo da fonteLibersou, Sonia, Aurélie A. V. Albertini, Malika Ouldali, Virginie Maury, Christine Maheu, Hélène Raux, Felix de Haas, Stéphane Roche, Yves Gaudin e Jean Lepault. "Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion". Journal of Cell Biology 191, n.º 1 (4 de outubro de 2010): 199–210. http://dx.doi.org/10.1083/jcb.201006116.
Texto completo da fonteLay Mendoza, Maria Fernanda, Marissa Danielle Acciani, Courtney Nina Levit, Christopher Santa Maria e Melinda Ann Brindley. "Monitoring Viral Entry in Real-Time Using a Luciferase Recombinant Vesicular Stomatitis Virus Producing SARS-CoV-2, EBOV, LASV, CHIKV, and VSV Glycoproteins". Viruses 12, n.º 12 (17 de dezembro de 2020): 1457. http://dx.doi.org/10.3390/v12121457.
Texto completo da fonteJambunathan, Nithya, Carolyn M. Clark, Farhana Musarrat, Vladimir N. Chouljenko, Jared Rudd e Konstantin G. Kousoulas. "Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion". Viruses 13, n.º 9 (16 de setembro de 2021): 1849. http://dx.doi.org/10.3390/v13091849.
Texto completo da fonteZhang, You, Joanne York, Melinda A. Brindley, Jack H. Nunberg e Gregory B. Melikyan. "Fusogenic structural changes in arenavirus glycoproteins are associated with viroporin activity". PLOS Pathogens 19, n.º 7 (26 de julho de 2023): e1011217. http://dx.doi.org/10.1371/journal.ppat.1011217.
Texto completo da fonteJackson, Julia O., e Richard Longnecker. "Reevaluating Herpes Simplex Virus Hemifusion". Journal of Virology 84, n.º 22 (15 de setembro de 2010): 11814–21. http://dx.doi.org/10.1128/jvi.01615-10.
Texto completo da fonteMelder, Deborah C., Xueqian Yin, Sue E. Delos e Mark J. Federspiel. "A Charged Second-Site Mutation in the Fusion Peptide Rescues Replication of a Mutant Avian Sarcoma and Leukosis Virus Lacking Critical Cysteine Residues Flanking the Internal Fusion Domain". Journal of Virology 83, n.º 17 (10 de junho de 2009): 8575–86. http://dx.doi.org/10.1128/jvi.00526-09.
Texto completo da fonteYang, Xinzhen, Svetla Kurteva, Xinping Ren, Sandra Lee e Joseph Sodroski. "Subunit Stoichiometry of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers during Virus Entry into Host Cells". Journal of Virology 80, n.º 9 (1 de maio de 2006): 4388–95. http://dx.doi.org/10.1128/jvi.80.9.4388-4395.2006.
Texto completo da fonteKinzler, Eric R., e Teresa Compton. "Characterization of Human Cytomegalovirus Glycoprotein-Induced Cell-Cell Fusion". Journal of Virology 79, n.º 12 (15 de junho de 2005): 7827–37. http://dx.doi.org/10.1128/jvi.79.12.7827-7837.2005.
Texto completo da fonteVallbracht, Melina, Barbara G. Klupp e Thomas C. Mettenleiter. "Die komplexe Fusionsmaschinerie der Herpesviren". BIOspektrum 28, n.º 2 (março de 2022): 168–70. http://dx.doi.org/10.1007/s12268-022-1718-5.
Texto completo da fonteLavillette, Dimitri, Alessia Ruggieri, Bertrand Boson, Marielle Maurice e François-Loïc Cosset. "Relationship between SU Subdomains That Regulate the Receptor-Mediated Transition from the Native (Fusion-Inhibited) to the Fusion-Active Conformation of the Murine Leukemia Virus Glycoprotein". Journal of Virology 76, n.º 19 (1 de outubro de 2002): 9673–85. http://dx.doi.org/10.1128/jvi.76.19.9673-9685.2002.
Texto completo da fonteBude, Sara Amanuel, Zengjun Lu, Zhixun Zhao e Qiang Zhang. "Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development". Vaccines 12, n.º 9 (20 de setembro de 2024): 1078. http://dx.doi.org/10.3390/vaccines12091078.
Texto completo da fonteGarry, Courtney E., e Robert F. Garry. "Proteomics Computational Analyses Suggest that the Antennavirus Glycoprotein Complex Includes a Class I Viral Fusion Protein (α-Penetrene) with an Internal Zinc-Binding Domain and a Stable Signal Peptide". Viruses 11, n.º 8 (14 de agosto de 2019): 750. http://dx.doi.org/10.3390/v11080750.
Texto completo da fonteEarnest, James T., Michael P. Hantak, Jung-Eun Park e Tom Gallagher. "Coronavirus and Influenza Virus Proteolytic Priming Takes Place in Tetraspanin-Enriched Membrane Microdomains". Journal of Virology 89, n.º 11 (1 de abril de 2015): 6093–104. http://dx.doi.org/10.1128/jvi.00543-15.
Texto completo da fonteFan, Qing, Richard Longnecker e Sarah A. Connolly. "A Functional Interaction between Herpes Simplex Virus 1 Glycoprotein gH/gL Domains I and II and gD Is Defined by Using Alphaherpesvirus gH and gL Chimeras". Journal of Virology 89, n.º 14 (29 de abril de 2015): 7159–69. http://dx.doi.org/10.1128/jvi.00740-15.
Texto completo da fonteFederspiel, Mark J. "Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity". Viruses 11, n.º 6 (30 de maio de 2019): 497. http://dx.doi.org/10.3390/v11060497.
Texto completo da fonteSnyder, Aleksandra, Todd W. Wisner e David C. Johnson. "Herpes Simplex Virus Capsids Are Transported in Neuronal Axons without an Envelope Containing the Viral Glycoproteins". Journal of Virology 80, n.º 22 (13 de setembro de 2006): 11165–77. http://dx.doi.org/10.1128/jvi.01107-06.
Texto completo da fonteBowden, Thomas A., Max Crispin, Stephen C. Graham, David J. Harvey, Jonathan M. Grimes, E. Yvonne Jones e David I. Stuart. "Unusual Molecular Architecture of the Machupo Virus Attachment Glycoprotein". Journal of Virology 83, n.º 16 (3 de junho de 2009): 8259–65. http://dx.doi.org/10.1128/jvi.00761-09.
Texto completo da fonteTischler, Nicole D., Angel Gonzalez, Tomas Perez-Acle, Mario Rosemblatt e Pablo D. T. Valenzuela. "Hantavirus Gc glycoprotein: evidence for a class II fusion protein". Journal of General Virology 86, n.º 11 (1 de novembro de 2005): 2937–47. http://dx.doi.org/10.1099/vir.0.81083-0.
Texto completo da fonteSnyder, Aleksandra, Birgitte Bruun, Helena M. Browne e David C. Johnson. "A Herpes Simplex Virus gD-YFP Fusion Glycoprotein Is Transported Separately from Viral Capsids in Neuronal Axons". Journal of Virology 81, n.º 15 (23 de maio de 2007): 8337–40. http://dx.doi.org/10.1128/jvi.00520-07.
Texto completo da fonteDrummer, Heidi E., Irene Boo e Pantelis Poumbourios. "Mutagenesis of a conserved fusion peptide-like motif and membrane-proximal heptad-repeat region of hepatitis C virus glycoprotein E1". Journal of General Virology 88, n.º 4 (1 de abril de 2007): 1144–48. http://dx.doi.org/10.1099/vir.0.82567-0.
Texto completo da fonteSantos, Joy Ramielle L., Weijie Sun, Tarana A. Mangukia, Eduardo Reyes-Serratos e Marcelo Marcet-Palacios. "Challenging the Existing Model of the Hexameric HIV-1 Gag Lattice and MA Shell Superstructure: Implications for Viral Entry". Viruses 13, n.º 8 (31 de julho de 2021): 1515. http://dx.doi.org/10.3390/v13081515.
Texto completo da fonteStone, Jacquelyn A., Bhadra M. Vemulapati, Birgit Bradel-Tretheway e Hector C. Aguilar. "Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins". Journal of Virology 90, n.º 23 (21 de setembro de 2016): 10762–73. http://dx.doi.org/10.1128/jvi.01469-16.
Texto completo da fonteBradel-Tretheway, Birgit G., Qian Liu, Jacquelyn A. Stone, Samantha McInally e Hector C. Aguilar. "Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus". Journal of Virology 89, n.º 14 (6 de maio de 2015): 7235–47. http://dx.doi.org/10.1128/jvi.00773-15.
Texto completo da fonteDollery, Stephen J. "Towards Understanding KSHV Fusion and Entry". Viruses 11, n.º 11 (18 de novembro de 2019): 1073. http://dx.doi.org/10.3390/v11111073.
Texto completo da fonteHasegawa, Kosei, Chunling Hu, Takafumi Nakamura, James D. Marks, Stephen J. Russell e Kah-Whye Peng. "Affinity Thresholds for Membrane Fusion Triggering by Viral Glycoproteins". Journal of Virology 81, n.º 23 (5 de setembro de 2007): 13149–57. http://dx.doi.org/10.1128/jvi.01415-07.
Texto completo da fonteBatonick, Melissa, Antonius G. P. Oomens e Gail W. Wertz. "Human Respiratory Syncytial Virus Glycoproteins Are Not Required for Apical Targeting and Release from Polarized Epithelial Cells". Journal of Virology 82, n.º 17 (18 de junho de 2008): 8664–72. http://dx.doi.org/10.1128/jvi.00827-08.
Texto completo da fonteZhao, Xuesen, Fang Guo, Mary Ann Comunale, Anand Mehta, Mohit Sehgal, Pooja Jain, Andrea Cuconati et al. "Inhibition of Endoplasmic Reticulum-Resident Glucosidases Impairs Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63 Spike Protein-Mediated Entry by Altering the Glycan Processing of Angiotensin I-Converting Enzyme 2". Antimicrobial Agents and Chemotherapy 59, n.º 1 (27 de outubro de 2014): 206–16. http://dx.doi.org/10.1128/aac.03999-14.
Texto completo da fontePiñón, Josefina D., Sharon M. Kelly, Nicholas C. Price, Jack U. Flanagan e David W. Brighty. "An Antiviral Peptide Targets a Coiled-Coil Domain of the Human T-Cell Leukemia Virus Envelope Glycoprotein". Journal of Virology 77, n.º 5 (1 de março de 2003): 3281–90. http://dx.doi.org/10.1128/jvi.77.5.3281-3290.2003.
Texto completo da fonteNieva, José L., e Tatiana Suárez. "Hydrophobic-at-Interface Regions in Viral Fusion Protein Ectodomains". Bioscience Reports 20, n.º 6 (1 de dezembro de 2000): 519–33. http://dx.doi.org/10.1023/a:1010458904487.
Texto completo da fonteChandra, Sunandini, Raju Kalaivani, Manoj Kumar, Narayanaswamy Srinivasan e Debi P. Sarkar. "Sendai virus recruits cellular villin to remodel actin cytoskeleton during fusion with hepatocytes". Molecular Biology of the Cell 28, n.º 26 (15 de dezembro de 2017): 3801–14. http://dx.doi.org/10.1091/mbc.e17-06-0400.
Texto completo da fonteGarry, Courtney, e Robert Garry. "Proteomics Computational Analyses Suggest that the Envelope Glycoproteins of Segmented Jingmen Flavi-Like Viruses Are Class II Viral Fusion Proteins (β-Penetrenes) with Mucin-Like Domains". Viruses 12, n.º 3 (27 de fevereiro de 2020): 260. http://dx.doi.org/10.3390/v12030260.
Texto completo da fonteChen, Bing, Yifan Cheng, Lesley Calder, Stephen C. Harrison, Ellis L. Reinherz, John J. Skehel e Don C. Wiley. "A Chimeric Protein of Simian Immunodeficiency Virus Envelope Glycoprotein gp140 and Escherichia coli Aspartate Transcarbamoylase". Journal of Virology 78, n.º 9 (1 de maio de 2004): 4508–16. http://dx.doi.org/10.1128/jvi.78.9.4508-4516.2004.
Texto completo da fonteBalliet, John W., Kristin Gendron e Paul Bates. "Mutational Analysis of the Subgroup A Avian Sarcoma and Leukosis Virus Putative Fusion Peptide Domain". Journal of Virology 74, n.º 8 (15 de abril de 2000): 3731–39. http://dx.doi.org/10.1128/jvi.74.8.3731-3739.2000.
Texto completo da fonteChi, Jung Hee I., Carol A. Harley, Aparna Mukhopadhyay e Duncan W. Wilson. "The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids". Journal of General Virology 86, n.º 2 (1 de fevereiro de 2005): 253–61. http://dx.doi.org/10.1099/vir.0.80444-0.
Texto completo da fonteKlupp, Barbara G., Ralf Nixdorf e Thomas C. Mettenleiter. "Pseudorabies Virus Glycoprotein M Inhibits Membrane Fusion". Journal of Virology 74, n.º 15 (1 de agosto de 2000): 6760–68. http://dx.doi.org/10.1128/jvi.74.15.6760-6768.2000.
Texto completo da fonteDe Clercq, Erik. "Antiviral Metal Complexes". Metal-Based Drugs 4, n.º 3 (1 de janeiro de 1997): 173–92. http://dx.doi.org/10.1155/mbd.1997.173.
Texto completo da fontePlemper, Richard K., Anthea L. Hammond, Denis Gerlier, Adele K. Fielding e Roberto Cattaneo. "Strength of Envelope Protein Interaction Modulates Cytopathicity of Measles Virus". Journal of Virology 76, n.º 10 (15 de maio de 2002): 5051–61. http://dx.doi.org/10.1128/jvi.76.10.5051-5061.2002.
Texto completo da fontePertel, Peter E. "Human Herpesvirus 8 Glycoprotein B (gB), gH, and gL Can Mediate Cell Fusion". Journal of Virology 76, n.º 9 (1 de maio de 2002): 4390–400. http://dx.doi.org/10.1128/jvi.76.9.4390-4400.2002.
Texto completo da fonteWebb, Stacy R., Stacy E. Smith, Michael G. Fried e Rebecca Ellis Dutch. "Transmembrane Domains of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro". mSphere 3, n.º 2 (18 de abril de 2018): e00047-18. http://dx.doi.org/10.1128/msphere.00047-18.
Texto completo da fonteLavillette, Dimitri, Eve-Isabelle Pécheur, Peggy Donot, Judith Fresquet, Jennifer Molle, Romuald Corbau, Marlène Dreux, François Penin e François-Loïc Cosset. "Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus". Journal of Virology 81, n.º 16 (30 de maio de 2007): 8752–65. http://dx.doi.org/10.1128/jvi.02642-06.
Texto completo da fonteMadani, Navid, Amy M. Hubicki, Ana Luisa Perdigoto, Martin Springer e Joseph Sodroski. "Inhibition of Human Immunodeficiency Virus Envelope Glycoprotein- Mediated Single Cell Lysis by Low-Molecular-Weight Antagonists of Viral Entry". Journal of Virology 81, n.º 2 (30 de agosto de 2006): 532–38. http://dx.doi.org/10.1128/jvi.01079-06.
Texto completo da fonteKelly, James T., Stacey Human, Joseph Alderman, Fatoumatta Jobe, Leanne Logan, Thomas Rix, Daniel Gonçalves-Carneiro et al. "BST2/Tetherin Overexpression Modulates Morbillivirus Glycoprotein Production to Inhibit Cell–Cell Fusion". Viruses 11, n.º 8 (30 de julho de 2019): 692. http://dx.doi.org/10.3390/v11080692.
Texto completo da fonteZhou, Xuan, Giorgia Cimato, Yihua Zhou, Giada Frascaroli e Wolfram Brune. "A Virus Genetic System to Analyze the Fusogenicity of Human Cytomegalovirus Glycoprotein B Variants". Viruses 15, n.º 4 (16 de abril de 2023): 979. http://dx.doi.org/10.3390/v15040979.
Texto completo da fonteJeetendra, E., Clinton S. Robison, Lorraine M. Albritton e Michael A. Whitt. "The Membrane-Proximal Domain of Vesicular Stomatitis Virus G Protein Functions as a Membrane Fusion Potentiator and Can Induce Hemifusion". Journal of Virology 76, n.º 23 (1 de dezembro de 2002): 12300–12311. http://dx.doi.org/10.1128/jvi.76.23.12300-12311.2002.
Texto completo da fonteZelus, Bruce D., Jeanne H. Schickli, Dianna M. Blau, Susan R. Weiss e Kathryn V. Holmes. "Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37°C either by Soluble Murine CEACAM1 Receptors or by pH 8". Journal of Virology 77, n.º 2 (15 de janeiro de 2003): 830–40. http://dx.doi.org/10.1128/jvi.77.2.830-840.2003.
Texto completo da fonteKlupp, Barbara, Jan Altenschmidt, Harald Granzow, Walter Fuchs e Thomas C. Mettenleiter. "Glycoproteins Required for Entry Are Not Necessary for Egress of Pseudorabies Virus". Journal of Virology 82, n.º 13 (16 de abril de 2008): 6299–309. http://dx.doi.org/10.1128/jvi.00386-08.
Texto completo da fonteEisfeld, Hannah S., Alexander Simonis, Sandra Winter, Jason Chhen, Luisa J. Ströh, Thomas Krey, Manuel Koch, Sebastian J. Theobald e Jan Rybniker. "Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages". Viruses 13, n.º 10 (15 de outubro de 2021): 2076. http://dx.doi.org/10.3390/v13102076.
Texto completo da fonteBrighty, David W., e Sushma R. Jassal. "The Synthetic Peptide P-197 Inhibits Human T-Cell Leukemia Virus Type 1 Envelope-Mediated Syncytium Formation by a Mechanism That Is Independent of Hsc70". Journal of Virology 75, n.º 21 (1 de novembro de 2001): 10472–78. http://dx.doi.org/10.1128/jvi.75.21.10472-10478.2001.
Texto completo da fonte