Artigos de revistas sobre o tema "Vibrational strong coupling"

Siga este link para ver outros tipos de publicações sobre o tema: Vibrational strong coupling.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Vibrational strong coupling".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

De Sio, Antonietta, Xuan Trung Nguyen e Christoph Lienau. "Signatures of Strong Vibronic Coupling Mediating Coherent Charge Transfer in Two-Dimensional Electronic Spectroscopy". Zeitschrift für Naturforschung A 74, n.º 8 (27 de agosto de 2019): 721–37. http://dx.doi.org/10.1515/zna-2019-0150.

Texto completo da fonte
Resumo:
AbstractThe role of molecular vibrations for the persistence of quantum coherences, recently observed in photoinduced charge transfer reactions in both biological and artificial energy conversion systems at room temperature, is currently being intensely discussed. Experiments using two-dimensional electronic spectroscopy (2DES) suggest that vibrational motion – and its coupling to electronic degrees of freedom – may play a key role for such coherent dynamics and potentially even for device function. In organic photovoltaics materials, strong coupling of electronic and vibrational motion is predicted, especially for ubiquitous C=C stretching vibrations. The signatures of such strong vibronic couplings in 2DES are, however, debated. Here we analyse the effect of strong vibronic coupling in model simulations of 2DES spectra and dynamics for an electronic dimer coupled to a single high-frequency vibrational mode. This system represents the simplest conceivable model for a prototypical donor–acceptor interface in the active layer of organic solar cells. The vibrational mode is chosen to mimic C=C stretching vibrations with typical large vibronic couplings predicted in organic photovoltaics materials. Our results show that the decisive signatures of strong vibronic coupling mediating coherent charge transfer between donor and acceptor are not only temporally oscillating cross-peaks, but also most importantly characteristic peak splittings in the 2DES spectra. The 2DES pattern thus directly reflects the new eigenstates of the system that are formed by strong mixing of electronic states and vibrational mode.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Nagarajan, Kalaivanan, Anoop Thomas e Thomas W. Ebbesen. "Chemistry under Vibrational Strong Coupling". Journal of the American Chemical Society 143, n.º 41 (5 de outubro de 2021): 16877–89. http://dx.doi.org/10.1021/jacs.1c07420.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

George, Jino, Atef Shalabney, James A. Hutchison, Cyriaque Genet e Thomas W. Ebbesen. "Liquid-Phase Vibrational Strong Coupling". Journal of Physical Chemistry Letters 6, n.º 6 (9 de março de 2015): 1027–31. http://dx.doi.org/10.1021/acs.jpclett.5b00204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

McConnell, Conor, e Ahsan Nazir. "Strong coupling in thermoelectric nanojunctions: a reaction coordinate framework". New Journal of Physics 24, n.º 2 (1 de fevereiro de 2022): 025002. http://dx.doi.org/10.1088/1367-2630/ac4ce3.

Texto completo da fonte
Resumo:
Abstract We study a model of a thermoelectric nanojunction driven by vibrationally-assisted tunnelling. We apply the reaction coordinate formalism to derive a master equation governing its thermoelectric performance beyond the weak electron-vibrational coupling limit. Employing full counting statistics we calculate the current flow, thermopower, associated noise, and efficiency without resorting to the weak vibrational coupling approximation. We demonstrate intricacies of the power-efficiency-precision trade-off at strong coupling, showing that the three cannot be maximised simultaneously in our model. Finally, we emphasise the importance of capturing non-additivity when considering strong coupling and multiple environments, demonstrating that an additive treatment of the environments can violate the upper bound on thermoelectric efficiency imposed by Carnot.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Casey, Shaelyn R., e Justin R. Sparks. "Vibrational Strong Coupling of Organometallic Complexes". Journal of Physical Chemistry C 120, n.º 49 (7 de dezembro de 2016): 28138–43. http://dx.doi.org/10.1021/acs.jpcc.6b10493.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wang, Derek S., Johannes Flick e Susanne F. Yelin. "Chemical reactivity under collective vibrational strong coupling". Journal of Chemical Physics 157, n.º 22 (14 de dezembro de 2022): 224304. http://dx.doi.org/10.1063/5.0124551.

Texto completo da fonte
Resumo:
Recent experiments of chemical reactions in optical cavities have shown great promise to alter and steer chemical reactions, but still remain poorly understood theoretically. In particular, the origin of resonant effects between the cavity and certain vibrational modes in the collective limit is still subject to active research. In this paper, we study the unimolecular dissociation reactions of many molecules, collectively interacting with an infrared cavity mode, through their vibrational dipole moment. We find that the reaction rate can slow down by increasing the number of aligned molecules, if the cavity mode is resonant with a vibrational mode of the molecules. We also discover a simple scaling relation that scales with the collective Rabi splitting, to estimate the onset of reaction rate modification by collective vibrational strong coupling and numerically demonstrate these effects for up to 104 molecules.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cohn, Bar, Kamalika Das, Arghyadeep Basu e Lev Chuntonov. "Infrared Open Cavities for Strong Vibrational Coupling". Journal of Physical Chemistry Letters 12, n.º 29 (22 de julho de 2021): 7060–66. http://dx.doi.org/10.1021/acs.jpclett.1c01438.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Imran, Iffat, Giulia E. Nicolai, Nicholas D. Stavinski e Justin R. Sparks. "Tuning Vibrational Strong Coupling with Co-Resonators". ACS Photonics 6, n.º 10 (13 de setembro de 2019): 2405–12. http://dx.doi.org/10.1021/acsphotonics.9b01040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Vergauwe, Robrecht M. A., Jino George, Thibault Chervy, James A. Hutchison, Atef Shalabney, Vladimir Y. Torbeev e Thomas W. Ebbesen. "Quantum Strong Coupling with Protein Vibrational Modes". Journal of Physical Chemistry Letters 7, n.º 20 (7 de outubro de 2016): 4159–64. http://dx.doi.org/10.1021/acs.jpclett.6b01869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

del Pino, Javier, Johannes Feist e F. J. Garcia-Vidal. "Signatures of Vibrational Strong Coupling in Raman Scattering". Journal of Physical Chemistry C 119, n.º 52 (18 de dezembro de 2015): 29132–37. http://dx.doi.org/10.1021/acs.jpcc.5b11654.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Hirai, Kenji, Rie Takeda, James A. Hutchison e Hiroshi Uji‐i. "Modulation of Prins Cyclization by Vibrational Strong Coupling". Angewandte Chemie 132, n.º 13 (18 de fevereiro de 2020): 5370–73. http://dx.doi.org/10.1002/ange.201915632.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hirai, Kenji, Rie Takeda, James A. Hutchison e Hiroshi Uji‐i. "Modulation of Prins Cyclization by Vibrational Strong Coupling". Angewandte Chemie International Edition 59, n.º 13 (23 de março de 2020): 5332–35. http://dx.doi.org/10.1002/anie.201915632.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Hertzog, Manuel, e Karl Börjesson. "The Effect of Coupling Mode in the Vibrational Strong Coupling Regime". ChemPhotoChem 4, n.º 8 (21 de abril de 2020): 612–17. http://dx.doi.org/10.1002/cptc.202000047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Novak, Urban, Amalija Golobič, Natalija Klančnik, Vlasta Mohaček-Grošev, Jernej Stare e Jože Grdadolnik. "Strong Hydrogen Bonds in Acetylenedicarboxylic Acid Dihydrate". International Journal of Molecular Sciences 23, n.º 11 (31 de maio de 2022): 6164. http://dx.doi.org/10.3390/ijms23116164.

Texto completo da fonte
Resumo:
Acetylenedicarboxylic acid dihydrate (ADAD) represents a complex with strong hydrogen bonding between the carboxylic OH and the water molecule. An X-ray re-examination of the ADAD crystal structure confirms the O…O distance of the short hydrogen bonds, and clearly shows different bond lengths between the two oxygen atoms with respect to the carbon atom in the carboxyl group, indicating a neutral structure for the complex. The neutral structure was also confirmed by vibrational spectroscopy, as no proton transfer was observed. The diffraction studies also revealed two polymorph modifications: room temperature (α) and low temperature (β), with a phase transition at approximately 4.9 °C. The calculated vibrational spectra are in satisfactory agreement with the experimental spectra. A comparison of the structure and the vibrational spectra between the ADAD and the oxalic acid dihydrate reveals some interesting details. The crystal structures of both crystal hydrates are almost identical; only the O…O distances of the strongest hydrogen bonds differ by 0.08 Å. Although it was expected that a larger O…O spacing in the ADAD crystal may significantly change the infrared and Raman spectra, especially for the frequency and the shape of the acidic OH stretching vibration, both the shape and frequency are almost identical, with all subpeaks topped on the broad OH stretching vibration. The O…O distance dependent are only in- and out-of-plane OH deformations modes. The presence of polarons due to the ionized defects was not observed in the vibrational spectra of ADAD. Therefore, the origin of the broad OH band shape was explained in a similar way to the acid dimers. The anharmonicity of a potential enhances the coupling of the OH stretching with the low-frequency hydrogen bond stretching, which, in addition to the Fermi resonance, structures the band shape of the OH stretching. The fine structure found as a superposition of a broad OH stretching is attributed to Davydov coupling.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Takele, Wassie Mersha, Lukasz Piatkowski, Frank Wackenhut, Sylwester Gawinkowski, Alfred J. Meixner e Jacek Waluk. "Scouting for strong light–matter coupling signatures in Raman spectra". Physical Chemistry Chemical Physics 23, n.º 31 (2021): 16837–46. http://dx.doi.org/10.1039/d1cp01863a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

XIAO, WEI, e JING-LIN XIAO. "THE PROPERTIES OF STRONG-COUPLING IMPURITY BOUND MAGNETOPOLARON IN AN ANISOTROPIC QUANTUM DOT". International Journal of Modern Physics B 25, n.º 26 (20 de outubro de 2011): 3485–94. http://dx.doi.org/10.1142/s0217979211101259.

Texto completo da fonte
Resumo:
We study the vibrational frequency, the ground-state energy and the ground-state binding energy of the strong-coupling impurity bound magnetopolaron in an anisotropic quantum dot. The effects of the transverse and longitudinal effective confinement lengths, the electron–phonon coupling strength, the cyclotron frequency of a magnetic field and the Coulomb bound potential are taken into consideration by using an linear combination operator and unitary transformation methods. It is found that the vibrational frequency, the ground-state energy and the ground-state binding energy will increase rapidly with decreasing confinement lengths. The vibrational frequency is an increasing function of the Coulomb bound potential, the electron–phonon coupling strength and cyclotron frequency, whereas the ground-state energy is a decreasing function of the potential and coupling strength, and the ground-state binding energy is an increasing function of the potential and coupling strength. The ground-state energy and the ground-state binding energy increases with increasing cyclotron frequency.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lather, Jyoti, Ahammad N. K. Thabassum, Jaibir Singh e Jino George. "Cavity catalysis: modifying linear free-energy relationship under cooperative vibrational strong coupling". Chemical Science 13, n.º 1 (2022): 195–202. http://dx.doi.org/10.1039/d1sc04707h.

Texto completo da fonte
Resumo:
Cavity catalysis: vibrational strong coupling of solute and solvent molecules enhanced the rate of an esterification reaction. Hammett relation breaks under strong light-matter coupling conditions suggesting its potential applications in catalysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Joseph, Kripa, Soh Kushida, Emanuel Smarsly, Dris Ihiawakrim, Anoop Thomas, Gian Lorenzo Paravicini‐Bagliani, Kalaivanan Nagarajan et al. "Supramolecular Assembly of Conjugated Polymers under Vibrational Strong Coupling". Angewandte Chemie 133, n.º 36 (30 de julho de 2021): 19817–22. http://dx.doi.org/10.1002/ange.202105840.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Joseph, Kripa, Soh Kushida, Emanuel Smarsly, Dris Ihiawakrim, Anoop Thomas, Gian Lorenzo Paravicini‐Bagliani, Kalaivanan Nagarajan et al. "Supramolecular Assembly of Conjugated Polymers under Vibrational Strong Coupling". Angewandte Chemie International Edition 60, n.º 36 (29 de julho de 2021): 19665–70. http://dx.doi.org/10.1002/anie.202105840.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Thorwart, M., M. Grifoni e P. Hänggi. "Strong Coupling Theory for Driven Tunneling and Vibrational Relaxation". Physical Review Letters 85, n.º 4 (24 de julho de 2000): 860–63. http://dx.doi.org/10.1103/physrevlett.85.860.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Dunkelberger, Adam D., Roderick B. Davidson, Wonmi Ahn, Blake S. Simpkins e Jeffrey C. Owrutsky. "Ultrafast Transmission Modulation and Recovery via Vibrational Strong Coupling". Journal of Physical Chemistry A 122, n.º 4 (2 de janeiro de 2018): 965–71. http://dx.doi.org/10.1021/acs.jpca.7b10299.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Xiang, Bo, Raphael F. Ribeiro, Matthew Du, Liying Chen, Zimo Yang, Jiaxi Wang, Joel Yuen-Zhou e Wei Xiong. "Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling". Science 368, n.º 6491 (7 de maio de 2020): 665–67. http://dx.doi.org/10.1126/science.aba3544.

Texto completo da fonte
Resumo:
Selective vibrational energy transfer between molecules in the liquid phase, a difficult process hampered by weak intermolecular forces, is achieved through polaritons formed by strong coupling between cavity photon modes and donor and acceptor molecules. Using pump-probe and two-dimensional infrared spectroscopy, we found that the excitation of the upper polariton, which is composed mostly of donors, can efficiently relax to the acceptors within ~5 picoseconds. The energy-transfer efficiency can be further enhanced by increasing the cavity lifetime, suggesting that the energy transfer is a polaritonic process. This vibrational energy-transfer pathway opens doors for applications in remote chemistry, sensing mechanisms, and vibrational polariton condensation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Climent, Clàudia, e Johannes Feist. "On the SN2 reactions modified in vibrational strong coupling experiments: reaction mechanisms and vibrational mode assignments". Physical Chemistry Chemical Physics 22, n.º 41 (2020): 23545–52. http://dx.doi.org/10.1039/d0cp04154h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Thomas, A., L. Lethuillier-Karl, K. Nagarajan, R. M. A. Vergauwe, J. George, T. Chervy, A. Shalabney et al. "Tilting a ground-state reactivity landscape by vibrational strong coupling". Science 363, n.º 6427 (7 de fevereiro de 2019): 615–19. http://dx.doi.org/10.1126/science.aau7742.

Texto completo da fonte
Resumo:
Many chemical methods have been developed to favor a particular product in transformations of compounds that have two or more reactive sites. We explored a different approach to site selectivity using vibrational strong coupling (VSC) between a reactant and the vacuum field of a microfluidic optical cavity. Specifically, we studied the reactivity of a compound bearing two possible silyl bond cleavage sites—Si–C and Si–O, respectively—as a function of VSC of three distinct vibrational modes in the dark. The results show that VSC can indeed tilt the reactivity landscape to favor one product over the other. Thermodynamic parameters reveal the presence of a large activation barrier and substantial changes to the activation entropy, confirming the modified chemical landscape under strong coupling.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Neuman, Tomáš, Javier Aizpurua e Ruben Esteban. "Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems". Nanophotonics 9, n.º 2 (25 de fevereiro de 2020): 295–308. http://dx.doi.org/10.1515/nanoph-2019-0336.

Texto completo da fonte
Resumo:
AbstractLocalised surface plasmons can couple strongly with the electronic transitions of a molecule, inducing new hybridised states of light and matter, the plasmon–exciton polaritons. Furthermore, molecules support vibrational degrees of freedom that interact with the electronic levels, giving rise to inelastic resonant Raman scattering under coherent laser illumination. Here we show the influence of strong plasmon–exciton coupling on resonant Raman processes that populate the vibrational states of the molecule and that lead to the characteristic surface-enhanced Raman scattering spectra. We develop analytical expressions that give insight into these processes for the case of moderate illumination intensity, weak electron–vibration coupling and no dephasing. These expressions help us to elucidate the twofold role of plasmon–exciton polaritons to pump the system efficiently and to enhance the Raman emission. Our results show a close analogy with the optomechanical process described for off-resonant Raman scattering but with a difference in the resonant reservoir. We also use full numerical calculations to study the effects reaching beyond these approximations and discuss the interplay between the fluorescence background and the Raman lines. Our results allow for better understanding and exploitation of the strong coupling regime in vibrational pumping and in the surface-enhanced resonant Raman scattering signal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

WANG, CUI TAO, CUI LAN ZHAO e JING LIN XIAO. "THE GROUND-STATE ENERGY OF STRONG-COUPLING POLARON IN QUANTUM ROD". International Journal of Nanoscience 08, n.º 04n05 (agosto de 2009): 439–42. http://dx.doi.org/10.1142/s0219581x09006249.

Texto completo da fonte
Resumo:
The vibrational frequency and the ground-state energy of strong-coupling polaron in quantum rod (QR), bounded in parabolic potential with ellipsoidal boundary condition, are respectively, obtained using the linear-combination operator and unitary transformation methods. Numerical results illustrate that the vibrational frequency will increase with decreasing the effective radii R0 of ellipsoidal parabolic potential and the aspect ratio e' of ellipsoid while with increasing electron-bulk longitudinal-optical (LO)-phonon coupling strength α, and that the ground-state energy will increase with decreasing R0 and α. Besides, the ground-state energy will decrease with e' increasing in 0 < e' < 1 area, get to minimum when e' = 1, and then increase with e' increasing in e' > 1 area.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Xu, Chenran, Han Cai e Da-Wei Wang. "Vibrational strong coupling between Tamm phonon polaritons and organic molecules". Journal of the Optical Society of America B 38, n.º 5 (12 de abril de 2021): 1505. http://dx.doi.org/10.1364/josab.419042.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Jiang, Shukang, Mingzhi Su, Shuo Yang, Chong Wang, Qian-Rui Huang, Gang Li, Hua Xie et al. "Vibrational Signature of Dynamic Coupling of a Strong Hydrogen Bond". Journal of Physical Chemistry Letters 12, n.º 9 (26 de fevereiro de 2021): 2259–65. http://dx.doi.org/10.1021/acs.jpclett.1c00168.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wiesehan, Garret D., e Wei Xiong. "Negligible rate enhancement from reported cooperative vibrational strong coupling catalysis". Journal of Chemical Physics 155, n.º 24 (28 de dezembro de 2021): 241103. http://dx.doi.org/10.1063/5.0077549.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Sandeep, Kulangara, Kripa Joseph, Jérôme Gautier, Kalaivanan Nagarajan, Meleppatt Sujith, K. George Thomas e Thomas W. Ebbesen. "Manipulating the Self-Assembly of Phenyleneethynylenes under Vibrational Strong Coupling". Journal of Physical Chemistry Letters 13, n.º 5 (28 de janeiro de 2022): 1209–14. http://dx.doi.org/10.1021/acs.jpclett.1c03893.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Li, Xinyang, Arkajit Mandal e Pengfei Huo. "Theory of Mode-Selective Chemistry through Polaritonic Vibrational Strong Coupling". Journal of Physical Chemistry Letters 12, n.º 29 (20 de julho de 2021): 6974–82. http://dx.doi.org/10.1021/acs.jpclett.1c01847.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Vergauwe, Robrecht M. A., Anoop Thomas, Kalaivanan Nagarajan, Atef Shalabney, Jino George, Thibault Chervy, Marcus Seidel, Eloïse Devaux, Vladimir Torbeev e Thomas W. Ebbesen. "Modification of Enzyme Activity by Vibrational Strong Coupling of Water". Angewandte Chemie International Edition 58, n.º 43 (21 de outubro de 2019): 15324–28. http://dx.doi.org/10.1002/anie.201908876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Vergauwe, Robrecht M. A., Anoop Thomas, Kalaivanan Nagarajan, Atef Shalabney, Jino George, Thibault Chervy, Marcus Seidel, Eloïse Devaux, Vladimir Torbeev e Thomas W. Ebbesen. "Modification of Enzyme Activity by Vibrational Strong Coupling of Water". Angewandte Chemie 131, n.º 43 (17 de setembro de 2019): 15468–72. http://dx.doi.org/10.1002/ange.201908876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Triana, Johan F., Mauricio Arias, Jun Nishida, Eric A. Muller, Roland Wilcken, Samuel C. Johnson, Aldo Delgado, Markus B. Raschke e Felipe Herrera. "Semi-empirical quantum optics for mid-infrared molecular nanophotonics". Journal of Chemical Physics 156, n.º 12 (28 de março de 2022): 124110. http://dx.doi.org/10.1063/5.0075894.

Texto completo da fonte
Resumo:
Nanoscale infrared (IR) resonators with sub-diffraction limited mode volumes and open geometries have emerged as new platforms for implementing cavity quantum electrodynamics at room temperature. The use of IR nanoantennas and tip nanoprobes to study strong light–matter coupling of molecular vibrations with the vacuum field can be exploited for IR quantum control with nanometer spatial and femtosecond temporal resolution. In order to advance the development of molecule-based quantum nanophotonics in the mid-IR, we propose a generally applicable semi-empirical methodology based on quantum optics to describe light–matter interaction in systems driven by mid-IR femtosecond laser pulses. The theory is shown to reproduce recent experiments on the acceleration of the vibrational relaxation rate in infrared nanostructures. It also provides physical insights on the implementation of coherent phase rotations of the near-field using broadband nanotips. We then apply the quantum framework to develop general tip-design rules for the experimental manipulation of vibrational strong coupling and Fano interference effects in open infrared resonators. We finally propose the possibility of transferring the natural anharmonicity of molecular vibrational levels to the resonator near-field in the weak coupling regime to implement intensity-dependent phase shifts of the coupled system response with strong pulses and develop a vibrational chirping model to understand the effect. The semi-empirical quantum theory is equivalent to first-principles techniques based on Maxwell’s equations, but its lower computational cost suggests its use as a rapid design tool for the development of strongly coupled infrared nanophotonic hardware for applications ranging from quantum control of materials to quantum information processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Gelin, Maxim, Elisa Palacino-González, Lipeng Chen e Wolfgang Domcke. "Monitoring of Nonadiabatic Effects in Individual Chromophores by Femtosecond Double-Pump Single-Molecule Spectroscopy: A Model Study". Molecules 24, n.º 2 (9 de janeiro de 2019): 231. http://dx.doi.org/10.3390/molecules24020231.

Texto completo da fonte
Resumo:
We explore, by theoretical modeling and computer simulations, how nonadiabatic couplings of excited electronic states of a polyatomic chromophore manifest themselves in single-molecule signals on femtosecond timescales. The chromophore is modeled as a system with three electronic states (the ground state and two non-adiabatically coupled excited states) and a Condon-active vibrational mode which, in turn, is coupled to a harmonic oscillator heat bath. For this system, we simulate double-pump single-molecule signals with fluorescence detection for different system-field interaction strengths, from the weak-coupling regime to the strong-coupling regime. While the signals are determined by the coherence of the electronic density matrix in the weak-coupling regime, they are determined by the populations of the electronic density matrix in the strong-coupling regime. As a consequence, the signals in the strong coupling regime allow the monitoring of nonadiabatic electronic population dynamics and are robust with respect to temporal inhomogeneity of the optical gap, while signals in the weak-coupling regime are sensitive to fluctuations of the optical gap and do not contain information on the electronic population dynamics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Menghrajani, Kishan S., Mingzhou Chen, Kishan Dholakia e William L. Barnes. "Probing Vibrational Strong Coupling of Molecules with Wavelength‐Modulated Raman Spectroscopy". Advanced Optical Materials 10, n.º 3 (27 de novembro de 2021): 2102065. http://dx.doi.org/10.1002/adom.202102065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Xiao, Jing-lin, e Cui-Lan Zhao. "Vibrational frequency of strong-coupling impurity bound magnetopolaron in quantum rods". Physica B: Condensed Matter 405, n.º 3 (fevereiro de 2010): 912–15. http://dx.doi.org/10.1016/j.physb.2009.10.013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

WANG Dong-min, 王东民, e 肖景林 XIAO Jing-lin. "Vibrational Frequency of Strong-coupling Impurity Bound Polaron in Quantum Rods". Chinese Journal of Luminescence 32, n.º 1 (2011): 27–32. http://dx.doi.org/10.3788/fgxb20113201.0027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Kristoforov, L. N., e V. N. Kharkyanen. "Resonance Electron Tunneling under Strong Electron-Vibrational Coupling with a Medium". physica status solidi (b) 157, n.º 2 (1 de fevereiro de 1990): K99—K102. http://dx.doi.org/10.1002/pssb.2221570233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Chen, Teng-Teng, Matthew Du, Zimo Yang, Joel Yuen-Zhou e Wei Xiong. "Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation". Science 378, n.º 6621 (18 de novembro de 2022): 790–94. http://dx.doi.org/10.1126/science.add0276.

Texto completo da fonte
Resumo:
Vibrational strong coupling (VSC) between molecular vibrations and microcavity photons yields a few polaritons (light-matter modes) and many dark modes (with negligible photonic character). Although VSC is reported to alter thermally activated chemical reactions, its mechanisms remain opaque. To elucidate this problem, we followed ultrafast dynamics of a simple unimolecular vibrational energy exchange in iron pentacarbonyl [Fe(CO) 5 ] under VSC, which showed two competing channels: pseudorotation and intramolecular vibrational-energy redistribution (IVR). We found that under polariton excitation, energy exchange was overall accelerated, with IVR becoming faster and pseudorotation being slowed down. However, dark-mode excitation revealed unchanged dynamics compared with those outside of the cavity, with pseudorotation dominating. Thus, despite controversies around thermally activated VSC modified chemistry, our work shows that VSC can indeed alter chemistry through a nonequilibrium preparation of polaritons.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Thomas, Anoop, Anjali Jayachandran, Lucas Lethuillier-Karl, Robrecht M. A. Vergauwe, Kalaivanan Nagarajan, Eloise Devaux, Cyriaque Genet, Joseph Moran e Thomas W. Ebbesen. "Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy". Nanophotonics 9, n.º 2 (25 de fevereiro de 2020): 249–55. http://dx.doi.org/10.1515/nanoph-2019-0340.

Texto completo da fonte
Resumo:
AbstractVibrational strong coupling (VSC) is currently emerging as a tool to control chemical dynamics. Here we study the impact of strong coupling strength, given by the Rabi splitting energy (ħΩR), on the thermodynamic parameters associated with the transition state of the desilylation reaction of the model molecule 1-phenyl-2-trimethylsilylacetylene. Under VSC, the enthalpy and entropy of activation determined from the temperature-dependent kinetic studies varied nonlinearly with the coupling strength. The thermodynamic parameters of the noncavity reaction did not show noticeable variation, ruling out concentration effects other than the enhanced ħΩR for the changes observed under VSC. The difference between the total free energy change under VSC and in noncavity was relatively smaller possibly because the enthalpy and entropy of activation compensate each other. This thermodynamic study gives more insight into the role of collective strong coupling on the transition state that leads to modified dynamics and branching ratios.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Lafont, T., N. Totaro e A. Le Bot. "Coupling strength assumption in statistical energy analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, n.º 2200 (abril de 2017): 20160927. http://dx.doi.org/10.1098/rspa.2016.0927.

Texto completo da fonte
Resumo:
This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Simpkins, Blake S., Adam D. Dunkelberger e Jeffrey C. Owrutsky. "Mode-Specific Chemistry through Vibrational Strong Coupling (or A Wish Come True)". Journal of Physical Chemistry C 125, n.º 35 (25 de agosto de 2021): 19081–87. http://dx.doi.org/10.1021/acs.jpcc.1c05362.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kuznetsov, Alexander M., e Jens Ulstrup. "Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling". Journal of Chemical Physics 116, n.º 5 (fevereiro de 2002): 2149–65. http://dx.doi.org/10.1063/1.1430695.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Takele, Wassie Mersha, Frank Wackenhut, Lukasz Piatkowski, Alfred J. Meixner e Jacek Waluk. "Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry–Pérot Microcavity". Journal of Physical Chemistry B 124, n.º 27 (15 de junho de 2020): 5709–16. http://dx.doi.org/10.1021/acs.jpcb.0c03815.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Lather, Jyoti, Pooja Bhatt, Anoop Thomas, Thomas W. Ebbesen e Jino George. "Cavity Catalysis by Cooperative Vibrational Strong Coupling of Reactant and Solvent Molecules". Angewandte Chemie International Edition 58, n.º 31 (4 de julho de 2019): 10635–38. http://dx.doi.org/10.1002/anie.201905407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Lather, Jyoti, Pooja Bhatt, Anoop Thomas, Thomas W. Ebbesen e Jino George. "Cavity Catalysis by Cooperative Vibrational Strong Coupling of Reactant and Solvent Molecules". Angewandte Chemie 131, n.º 31 (3 de julho de 2019): 10745–48. http://dx.doi.org/10.1002/ange.201905407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Menghrajani, Kishan S., Henry A. Fernandez, Geoffrey R. Nash e William L. Barnes. "Hybridization of Multiple Vibrational Modes via Strong Coupling Using Confined Light Fields". Advanced Optical Materials 7, n.º 18 (19 de junho de 2019): 1900403. http://dx.doi.org/10.1002/adom.201900403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Dong, Jun-Yu, Yasutaka Kitahama, Takatoshi Fujita, Motoyasu Adachi, Yasuteru Shigeta, Akihito Ishizaki, Shigenori Tanaka, Ting-Hui Xiao e Keisuke Goda. "Manipulation of photosynthetic energy transfer by vibrational strong coupling". Journal of Chemical Physics 160, n.º 4 (28 de janeiro de 2024). http://dx.doi.org/10.1063/5.0183383.

Texto completo da fonte
Resumo:
Uncovering the mystery of efficient and directional energy transfer in photosynthetic organisms remains a critical challenge in quantum biology. Recent experimental evidence and quantum theory developments indicate the significance of quantum features of molecular vibrations in assisting photosynthetic energy transfer, which provides the possibility of manipulating the process by controlling molecular vibrations. Here, we propose and theoretically demonstrate efficient manipulation of photosynthetic energy transfer by using vibrational strong coupling between the vibrational state of a Fenna–Matthews–Olson (FMO) complex and the vacuum state of an optical cavity. Specifically, based on a full-quantum analytical model to describe the strong coupling effect between the optical cavity and molecular vibration, we realize efficient manipulation of energy transfer efficiency (from 58% to 92%) and energy transfer time (from 20 to 500 ps) in one branch of FMO complex by actively controlling the coupling strength and the quality factor of the optical cavity under both near-resonant and off-resonant conditions, respectively. Our work provides a practical scenario to manipulate photosynthetic energy transfer by externally interfering molecular vibrations via an optical cavity and a comprehensible conceptual framework for researching other similar systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Barbhuiya, Sabur Ahmed, Sajia Yeasmin e Aranya bhuti Bhattacherjee. "Spectral response of vibrational polaritons in an optomechanical cavity". Journal of Chemical Physics, 20 de junho de 2022. http://dx.doi.org/10.1063/5.0093680.

Texto completo da fonte
Resumo:
Vibrational strong coupling provides a convenient way to modify the energy of molecular vibrations and to explore controlling chemical reactivity. In this work, we theoretically report the various vibrational anharmonicities that modulate the dynamics of optomechanically coupled W(CO)6-cavity. The optomechanical free-space cavity consists of movable photonic crystal (PhC) membrane, which creates the photonic bound states to interact with the molecular vibration. This coupled system is used for realizing strong optomechanical dispersive or dissipative type coupling, which provides a platform to explore the new regimes of the optomechanical interaction. The addition of different strong coupling and mechanical (nuclear) anharmonicities to the optical cavity establishes the modified splitting dynamics in the absorption spectrum and shows that the ground-state bleach of coupled W(CO)6- cavity has a broad, multisigned spectral response. This work points out the possibility of systematic and predictive modification of the multimode spectroscopy of optomechanical W(CO)6-cavity polariton system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia