Artigos de revistas sobre o tema "Ventilated Envelope"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ventilated Envelope".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Balter, Julieta, Carolina Ganem e Gustavo Barea. "Mejoras en el desempeño energético de edificios en verano mediante la integración de envolventes ventiladas en fachadas norte y cubiertas. El caso de Mendoza, Argentina". Revista Hábitat Sustentable 10, n.º 2 (30 de dezembro de 2020): 94–105. http://dx.doi.org/10.22320/07190700.2020.10.02.07.
Texto completo da fonteBaciu, I.-R., D. N. Isopescu, M. L. Lupu, S. G. Maxineasa, L. Pruna e S. Dan. "Ventilated façade solutions". IOP Conference Series: Materials Science and Engineering 1242, n.º 1 (1 de abril de 2022): 012002. http://dx.doi.org/10.1088/1757-899x/1242/1/012002.
Texto completo da fonteMøller, E. B., e T. Lading. "Preliminary assessment of the building design of a new test house in Nuuk, Greenland". Journal of Physics: Conference Series 2069, n.º 1 (1 de novembro de 2021): 012228. http://dx.doi.org/10.1088/1742-6596/2069/1/012228.
Texto completo da fonteRahiminejad, M., e D. Khovalyg. "In-situ measurements of the U-value of a ventilated wall assembly". Journal of Physics: Conference Series 2069, n.º 1 (1 de novembro de 2021): 012212. http://dx.doi.org/10.1088/1742-6596/2069/1/012212.
Texto completo da fonteYe, Rongda, Xiaoming Fang e Zhengguo Zhang. "Numerical Study on Energy-Saving Performance of a New Type of Phase Change Material Room". Energies 14, n.º 13 (28 de junho de 2021): 3874. http://dx.doi.org/10.3390/en14133874.
Texto completo da fonteSurendran, Vidhya Maney, Chandramathy Irulappan, Vijayalaxmi Jeyasingh e Velraj Ramalingam. "Thermal Performance Assessment of Envelope Retrofits for Existing School Buildings in a Hot–Humid Climate: A Case Study in Chennai, India". Buildings 13, n.º 4 (21 de abril de 2023): 1103. http://dx.doi.org/10.3390/buildings13041103.
Texto completo da fonteOrdoumpozanis, Konstantinos, Theodoros Theodosiou, Dimitrios Bouris e Katerina Tsikaloudaki. "Energy and thermal modeling of building façade integrated photovoltaics". Thermal Science 22, Suppl. 3 (2018): 921–32. http://dx.doi.org/10.2298/tsci170905025o.
Texto completo da fonteMeng, Xiaojing, Beibei Wei e Yingni Zhai. "Sensitivity Analysis of Envelope Design Parameters of Industrial Buildings with Natural Ventilation". Sustainability 12, n.º 24 (9 de dezembro de 2020): 10288. http://dx.doi.org/10.3390/su122410288.
Texto completo da fonteSaadon, Syamimi, Leon Gaillard, Stéphanie Giroux e Christophe Ménézo. "Simulation Study of a Naturally Ventilated Building Integrated Photovoltaic (BIPV) Envelope". Energy Procedia 78 (novembro de 2015): 2004–9. http://dx.doi.org/10.1016/j.egypro.2015.11.394.
Texto completo da fonteRomila, Claudiu, e Ruxandra Cozmanciuc. "Experimental Analysis of Temperature Reduction Capacity for Wood Ventilated Façades". Advanced Engineering Forum 21 (março de 2017): 468–73. http://dx.doi.org/10.4028/www.scientific.net/aef.21.468.
Texto completo da fonteRajkumar, Rupa, Vasanthi Padmanabhan, Velraj Ramalingam e Nagaraj Meenakshisundaram. "Computational modelling in a high-rise building with different building envelope materials for sustainable living". Thermal Science, n.º 00 (2023): 245. http://dx.doi.org/10.2298/tsci221015245r.
Texto completo da fonteArena, R., S. Aneli, G. M. Tina e A. Gagliano. "Experimental analysis of the performances of ventilated photovoltaic facades". Renewable Energy and Power Quality Journal 20 (setembro de 2022): 178–83. http://dx.doi.org/10.24084/repqj20.257.
Texto completo da fonteRahiminejad, M., e D. Khovalyg. "Thermal resistance of the ventilated air-spaces behind external claddings; theoretical definition and a parametric study". Journal of Physics: Conference Series 2069, n.º 1 (1 de novembro de 2021): 012197. http://dx.doi.org/10.1088/1742-6596/2069/1/012197.
Texto completo da fonteFišarová, Zuzana, Lubor Kalousek, Michal Frank e Roman Brzoň. "The influence of ventilated façade on sound insulation properties of envelope walls". MATEC Web of Conferences 93 (22 de dezembro de 2016): 03003. http://dx.doi.org/10.1051/matecconf/201779303003.
Texto completo da fonteFišarová, Zuzana, Lubor Kalousek, Michal Frank e Roman Brzoň. "The influence of ventilated façade on sound insulation properties of envelope walls". MATEC Web of Conferences 93 (22 de dezembro de 2016): 03003. http://dx.doi.org/10.1051/matecconf/20179303003.
Texto completo da fontePastori, Sofia, Riccardo Mereu, Enrico Sergio Mazzucchelli, Stefano Passoni e Giovanni Dotelli. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards". Energies 14, n.º 1 (1 de janeiro de 2021): 193. http://dx.doi.org/10.3390/en14010193.
Texto completo da fonteSaadon, Syamimi, Leon Gaillard, Stéphanie Giroux-Julien e Christophe Ménézo. "Simulation study of a naturally-ventilated building integrated photovoltaic/thermal (BIPV/T) envelope". Renewable Energy 87 (março de 2016): 517–31. http://dx.doi.org/10.1016/j.renene.2015.10.016.
Texto completo da fonteAlghamdi, Abdulrahman, Hamzah Alharthi, Abdulelah Alanazi e Mohammad Halawani. "Effects of Metal Fasteners of Ventilated Building Facade on the Thermal Performances of Building Envelopes". Buildings 11, n.º 7 (24 de junho de 2021): 267. http://dx.doi.org/10.3390/buildings11070267.
Texto completo da fonteGaray-Martinez, Roberto, e Beñat Arregi. "Curtain Wall with Solar Preheating of Ventilation Air. Full Scale Experimental Assessment". E3S Web of Conferences 172 (2020): 09007. http://dx.doi.org/10.1051/e3sconf/202017209007.
Texto completo da fonteBottarelli, Michele, Francisco Javier González Gallero, Ismael Rodríguez Maestre, Gang Pei e Yuehong Su. "Solar gain mitigation in ventilated tiled roofs by using phase change materials". International Journal of Low-Carbon Technologies 15, n.º 3 (2 de fevereiro de 2020): 434–42. http://dx.doi.org/10.1093/ijlct/ctaa001.
Texto completo da fonteFerrantelli, Andrea, Camilla Vornanen-Winqvist, Milla Mattila, Heidi Salonen e Jarek Kurnitski. "Positive pressure effect on moisture performance in a school building". Journal of Building Physics 43, n.º 2 (2 de abril de 2019): 121–42. http://dx.doi.org/10.1177/1744259119837144.
Texto completo da fonteGirma, G., e F. Tariku. "Preliminary Experimental Assessment of Building Envelope Integrated Ventilative Cooling design". Journal of Physics: Conference Series 2069, n.º 1 (1 de novembro de 2021): 012124. http://dx.doi.org/10.1088/1742-6596/2069/1/012124.
Texto completo da fonteCUI, Dongjin, Xianglu ZHAO, Lei YUAN e Hongfeng ZHONG. "Effects of envelope features and upstream buildings on ventilation performance of naturally-ventilated building". Journal of Shenzhen University Science and Engineering 36, n.º 06 (1 de novembro de 2019): 635–41. http://dx.doi.org/10.3724/sp.j.1249.2019.06635.
Texto completo da fontePereira, Cláudia Donald, e Enedir Ghisi. "The influence of the envelope on the thermal performance of ventilated and occupied houses". Energy and Buildings 43, n.º 12 (dezembro de 2011): 3391–99. http://dx.doi.org/10.1016/j.enbuild.2011.09.001.
Texto completo da fonteLópez-Aparicio, S., J. Smolík, L. Mašková, M. Součková, T. Grøntoft, L. Ondráčková e J. Stankiewicz. "Relationship of indoor and outdoor air pollutants in a naturally ventilated historical building envelope". Building and Environment 46, n.º 7 (julho de 2011): 1460–68. http://dx.doi.org/10.1016/j.buildenv.2011.01.013.
Texto completo da fonteZuazua-Ros, Amaia, César Martín-Gómez, Elia Ibáñez-Puy, Marina Vidaurre-Arbizu e María Ibáñez-Puy. "Design, assembly and energy performance of a ventilated active thermoelectric envelope module for heating". Energy and Buildings 176 (outubro de 2018): 371–79. http://dx.doi.org/10.1016/j.enbuild.2018.07.062.
Texto completo da fonteMartín-Gómez, César, Amaia Zuazua-Ros, Kattalin Del Valle de Lersundi, Bruno Sánchez Saiz-Ezquerra e María Ibáñez-Puy. "Integration development of a Ventilated Active Thermoelectric Envelope (VATE): Constructive optimization and thermal performance". Energy and Buildings 231 (janeiro de 2021): 110593. http://dx.doi.org/10.1016/j.enbuild.2020.110593.
Texto completo da fonteUjma, Adam, e Marta Pomada. "Analysis of the temperature distribution in the place of fixing the ventilated facade". E3S Web of Conferences 97 (2019): 01041. http://dx.doi.org/10.1051/e3sconf/20199701041.
Texto completo da fonteColinart, T., H. Noel, M. Batard, A. Fuentes, A. Magueresse e P. Glouannec. "Air preheating potential with high Opaque Ventilated Façade under natural and forced convection". Journal of Physics: Conference Series 2069, n.º 1 (1 de novembro de 2021): 012023. http://dx.doi.org/10.1088/1742-6596/2069/1/012023.
Texto completo da fonteZhangabay, Nurlan. "Development of models and analysis of temperature fields of new energy-saving enclosing structures with an air layer". E3S Web of Conferences 474 (2024): 01009. http://dx.doi.org/10.1051/e3sconf/202447401009.
Texto completo da fonteNemova, Darya, Evgeny Kotov, Darya Andreeva, Svyatoslav Khorobrov, Vyacheslav Olshevskiy, Irina Vasileva, Daria Zaborova e Tatiana Musorina. "Experimental Study on the Thermal Performance of 3D-Printed Enclosing Structures". Energies 15, n.º 12 (8 de junho de 2022): 4230. http://dx.doi.org/10.3390/en15124230.
Texto completo da fontePracucci, Alessandro, Laura Vandi, Francesco Belletti, Amanda Ramos Aragão Melo, Marios Vlachos, Angelos Amditis, Maria Teresa Calcagni e David Seixas Esteves. "Integration of Piezoelectric Energy Harvesting Systems into Building Envelopes for Structural Health Monitoring with Fiber Optic Sensing Technology". Energies 17, n.º 7 (8 de abril de 2024): 1789. http://dx.doi.org/10.3390/en17071789.
Texto completo da fonteZhang, Chong, Zhanzhi Yu, Qiuyuan Zhu, Hongqi Shi, Zhongyi Yu e Xinhua Xu. "Air-Permeable Building Envelopes for Building Ventilation and Heat Recovery: Research Progress and Future Perspectives". Buildings 14, n.º 1 (22 de dezembro de 2023): 42. http://dx.doi.org/10.3390/buildings14010042.
Texto completo da fonteAlderucci, Tiziana, Luigi Patrono, Piercosimo Rametta e Placido Munafo. "The effectiveness of an internet of things-aware smart ventilated insulation system". Thermal Science 22, Suppl. 3 (2018): 909–19. http://dx.doi.org/10.2298/tsci170906024a.
Texto completo da fonteSohail, Maha. "An Attempt to Design a Naturally Ventilated Tower in Subtropical Climate of the Developing Country; Pakistan". Environmental and Climate Technologies 21, n.º 1 (1 de dezembro de 2017): 47–67. http://dx.doi.org/10.1515/rtuect-2017-0015.
Texto completo da fonteGaillard, Leon, Stéphanie Giroux-Julien, Christophe Ménézo e Hervé Pabiou. "Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions". Solar Energy 103 (maio de 2014): 223–41. http://dx.doi.org/10.1016/j.solener.2014.02.018.
Texto completo da fonteGoncharov, Yu M. "Experience gained with the construction and occupancy of buildings on three-dimensional ventilated envelope foundations". Soil Mechanics and Foundation Engineering 31, n.º 5 (setembro de 1994): 181–85. http://dx.doi.org/10.1007/bf02336748.
Texto completo da fonteIbañez-Puy, María, César Martín-Gómez, Javier Bermejo-Busto, José Antonio Sacristán e Elia Ibañez-Puy. "Ventilated Active Thermoelectric Envelope (VATE): Analysis of its energy performance when integrated in a building". Energy and Buildings 158 (janeiro de 2018): 1586–92. http://dx.doi.org/10.1016/j.enbuild.2017.11.037.
Texto completo da fonteCui, Dongjin, Zhengtao Ai, Cheuk-ming Mak, Kenny Kwok e Peng Xue. "The influence of envelope features on interunit dispersion around a naturally ventilated multi-story building". Building Simulation 11, n.º 6 (18 de julho de 2018): 1245–53. http://dx.doi.org/10.1007/s12273-018-0460-x.
Texto completo da fonteFernández-Agüera, Jesica, Miguel Ángel Campano, Samuel Domínguez-Amarillo, Ignacio Acosta e Juan José Sendra. "CO2 Concentration and Occupants’ Symptoms in Naturally Ventilated Schools in Mediterranean Climate". Buildings 9, n.º 9 (29 de agosto de 2019): 197. http://dx.doi.org/10.3390/buildings9090197.
Texto completo da fonteYasa, Enes. "The Interaction of Wind Velocity and Air Gap Width on the Thermal Comfort in Naturally Ventilated Buildings with Multiple Skin Facade". Athens Journal of Τechnology & Engineering 9, n.º 3 (31 de agosto de 2022): 213–66. http://dx.doi.org/10.30958/ajte.9-3-4.
Texto completo da fonteAli, Asmaa, Esther Kieseritzky, Anna Bogacz, Vaia Tsiokou e P. B. Sousa Susana. "Innovative Integration of Phase Change Materials and Conceptional Design of Test Cases – New Products for the Building Envelope". Journal of Physics: Conference Series 2654, n.º 1 (1 de dezembro de 2023): 012101. http://dx.doi.org/10.1088/1742-6596/2654/1/012101.
Texto completo da fonteIbe, Ekaterina, Galina Shibaeva, Svyatoslav Mironov e Danil Litvin. "Problems of thermal protection of two-layer external walls with hinged facade systems". E3S Web of Conferences 263 (2021): 02013. http://dx.doi.org/10.1051/e3sconf/202126302013.
Texto completo da fonteSerdyuk, Vasyl. "EXPANSION OF THE FUNCTIONAL PROPERTIES OF HINGES VENTILATED FACADES WHEN INSULATING BUILDINGS". Modern technology, materials and design in construction 34, n.º 1 (30 de julho de 2023): 91–100. http://dx.doi.org/10.31649/2311-1429-2023-1-91-100.
Texto completo da fonteBrozovsky, J., A. Nocente e P. Rüther. "In-use conditions of air-tightening materials applied in the air gap of ventilated building envelope constructions: A parametric study for different European climates". Journal of Physics: Conference Series 2654, n.º 1 (1 de dezembro de 2023): 012108. http://dx.doi.org/10.1088/1742-6596/2654/1/012108.
Texto completo da fonteChen, Y. H., R. L. Hwang e K. T. Huang. "Sensitivity analysis of envelope design on the summer thermal comfort of naturally ventilated classrooms in Taiwan". IOP Conference Series: Materials Science and Engineering 609 (23 de outubro de 2019): 042035. http://dx.doi.org/10.1088/1757-899x/609/4/042035.
Texto completo da fonteIqbal, Muhammad, Akihito Ozaki, Younhee Choi e Yusuke Arima. "Performance Improvement Plan towards Energy-Efficient Naturally Ventilated Houses in Tropical Climate Regions". Sustainability 15, n.º 16 (9 de agosto de 2023): 12173. http://dx.doi.org/10.3390/su151612173.
Texto completo da fonteBagarić, M., I. Banjad Pečur e B. Milovanović. "Application of developed facade panel from recycled CDW: A case study". Journal of Physics: Conference Series 2069, n.º 1 (1 de novembro de 2021): 012187. http://dx.doi.org/10.1088/1742-6596/2069/1/012187.
Texto completo da fonteElgheriani, Lobna Hassan Ali Hassan, Parid Wardi e AbdulBasit Ali Ali Ahmed. "Thermal Performance of a High-Rise Residential Building with Internal Courtyard in Tropical Climate". Environment-Behaviour Proceedings Journal 3, n.º 7 (2 de março de 2018): 357. http://dx.doi.org/10.21834/e-bpj.v3i7.1240.
Texto completo da fonteDavidsson, H., D. Johansson e S. K. Chowdary. "Decentralized ventilation unit for window frame integration". IOP Conference Series: Earth and Environmental Science 1085, n.º 1 (1 de setembro de 2022): 012030. http://dx.doi.org/10.1088/1755-1315/1085/1/012030.
Texto completo da fonte