Siga este link para ver outros tipos de publicações sobre o tema: Velocity.

Artigos de revistas sobre o tema "Velocity"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Velocity".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas e G. Gregory Haff. "Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity". Journal of Strength and Conditioning Research 32, n.º 5 (maio de 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng e In Seong Park. "표면유속과 평균유속의 관계 고찰". Crisis and Emergency Management: Theory and Praxis 19, n.º 1 (30 de janeiro de 2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.

Texto completo da fonte
Resumo:
Surface velocity measurement using electromagnetic waves is common in flood season discharge surveys in Korea. In order to expand the relatively safe non-contact discharge survey, this study investigated the reliability of the coefficient that converts surface velocity to mean velocity in rivers and waterways. Surface and mean velocity were investigated for agricultural reservoir spillways, gravel rivers, and irrigation canals, and the volumetric capacity of agricultural reservoirs was confirmed. As a result of the investigation, the mean velocity conversion coefficients according to the riverbed slope or riverbed material were very diverse, such as 0.61, 0.90, 0.52, and 0.88. The above result makes it clear that each investigation point has a unique conversion coefficient according to the characteristics of the bed material. In other words, accurate discharge investigation is possible by knowing the unique conversion factor to each point. The importance of water management due to climate change is increasing day by day. Accurate flow rate for rivers and waterways will be used as an essential factor for quantitative water resource management in the future.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Cojanovic, Milos. "Stellar Distance and Velocity (II)". International Journal of Science and Research (IJSR) 8, n.º 9 (5 de setembro de 2019): 275–82. http://dx.doi.org/10.21275/art2020906.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Byun, Joongmoo. "Automatic Velocity Analysis Considering Anisotropy". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, n.º 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Turner, Marie. "Velocity". Fourth Genre 25, n.º 2 (1 de agosto de 2023): 38–52. http://dx.doi.org/10.14321/fourthgenre.25.2.0038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wang, Hongsong, Liang Wang, Jiashi Feng e Daquan Zhou. "Velocity-to-velocity human motion forecasting". Pattern Recognition 124 (abril de 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rowell, A. L., C. S. Williams e D. W. Hill. "CRITICAL VELOCITY IS MINIMAL VELOCITY 101". Medicine &amp Science in Sports &amp Exercise 28, Supplement (maio de 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lazarus, Max J. "Group Velocity Is Not Signal Velocity". Physics Today 56, n.º 8 (agosto de 2003): 14. http://dx.doi.org/10.1063/1.1611340.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

SAWADA, SHIRO. "OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY". International Journal of Modern Physics C 17, n.º 01 (janeiro de 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.

Texto completo da fonte
Resumo:
The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Haitjema, Henk M., e Mary P. Anderson. "Darcy Velocity Is Not a Velocity". Groundwater 54, n.º 1 (30 de novembro de 2015): 1. http://dx.doi.org/10.1111/gwat.12386.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

AYAKO, Yagi, Hiroshi TAKIMOTO, Chusei FUJIWARA, Atsushi INAGAKI, Yasushi FUJIYOSHI e Manabu KANDA. "ESTIMATION OF CIRCUMFERENTIAL VELOCITY FROM OBSERVED RADIAL VELOCITY---Velocity Image Velocimetry(VIV)---". Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 68, n.º 4 (2012): I_1783—I_1788. http://dx.doi.org/10.2208/jscejhe.68.i_1783.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Roh, Young-Sin, Byungman Yoon e Kwonkyu Yu. "Estimatation of Mean Velocity from Surface Velocity". Journal of Korea Water Resources Association 38, n.º 11 (1 de novembro de 2005): 917–25. http://dx.doi.org/10.3741/jkwra.2005.38.11.917.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

McDermott, G. "Velocity index factor sensitivity to velocity distribution". Australasian Journal of Water Resources 12, n.º 3 (janeiro de 2008): 205–22. http://dx.doi.org/10.1080/13241583.2008.11465348.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Hill, Reginald J. "Pressure–velocity–velocity statistics in isotropic turbulence". Physics of Fluids 8, n.º 11 (novembro de 1996): 3085–93. http://dx.doi.org/10.1063/1.869082.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Fomel, Sergey. "Time‐migration velocity analysis by velocity continuation". GEOPHYSICS 68, n.º 5 (setembro de 2003): 1662–72. http://dx.doi.org/10.1190/1.1620640.

Texto completo da fonte
Resumo:
Time‐migration velocity analysis can be performed by velocity continuation, an incremental process that transforms migrated seismic sections according to changes in the migration velocity. Velocity continuation enhances residual normal moveout correction by properly taking into account both vertical and lateral movements of events on seismic images. Finite‐difference and spectral algorithms provide efficient practical implementations for velocity continuation. Synthetic and field data examples demonstrate the performance of the method and confirm theoretical expectations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Suzuki, Takahiko. "Angular velocity sensor and angular velocity detector". Journal of the Acoustical Society of America 123, n.º 1 (2008): 19. http://dx.doi.org/10.1121/1.2832822.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Dong, Li-yun, Xu-dan Weng e Qing-ding Li. "Velocity anticipation in the optimal velocity model". Journal of Shanghai University (English Edition) 13, n.º 4 (30 de julho de 2009): 327–32. http://dx.doi.org/10.1007/s11741-009-0415-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Smith, A. T. "Velocity coding: Evidence from perceived velocity shifts". Vision Research 25, n.º 12 (janeiro de 1985): 1969–76. http://dx.doi.org/10.1016/0042-6989(85)90021-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Barron, J. L., R. E. Mercer, X. Chen e P. Joe. "3D velocity from 3D Doppler radial velocity". International Journal of Imaging Systems and Technology 15, n.º 3 (2005): 189–98. http://dx.doi.org/10.1002/ima.20048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

ROTARU, Constantin. "NUMERICAL SOLUTIONS FOR COMBUSTION WAVE VELOCITY". SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 21, n.º 1 (8 de outubro de 2019): 184–93. http://dx.doi.org/10.19062/2247-3173.2019.21.25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Busse, Bret, Gregg Taylor, Kiran Tamvada e Kais Al-Rawi. "Terminal Velocity". Civil Engineering Magazine 91, n.º 1 (janeiro de 2021): 56–61. http://dx.doi.org/10.1061/ciegag.0001555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

IOKA, Seiichiro. "Groundwater Velocity". Journal of Japanese Association of Hydrological Sciences 51, n.º 3 (25 de dezembro de 2021): 65–66. http://dx.doi.org/10.4145/jahs.51.65.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Baker, D. N., T. A. Fritz e P. A. Bernhardt. "Plasmoid Velocity". Science 243, n.º 4892 (10 de fevereiro de 1989): 713. http://dx.doi.org/10.1126/science.243.4892.713.d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Divall, Colin. "Civilising Velocity". Journal of Transport History 32, n.º 2 (dezembro de 2011): 164–91. http://dx.doi.org/10.7227/tjth.32.2.4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Rogerson, S. "Escape velocity". Power Engineer 18, n.º 6 (2004): 16. http://dx.doi.org/10.1049/pe:20040603.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Baker, D. N., T. A. Fritz e P. A. Bernhardt. "Plasmoid Velocity". Science 243, n.º 4892 (10 de fevereiro de 1989): 713. http://dx.doi.org/10.1126/science.243.4892.713-c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Herbert, Steven, e Terrence Toepker. "Terminal velocity". Physics Teacher 37, n.º 2 (fevereiro de 1999): 96–97. http://dx.doi.org/10.1119/1.880189.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Maerfeld, Charles, Michel Josserand e Claude Gragnolati. "Velocity hydrophone". Journal of the Acoustical Society of America 79, n.º 4 (abril de 1986): 1204. http://dx.doi.org/10.1121/1.393717.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Bjørne, Elias, Edmund F. Brekke, Torleiv H. Bryne, Jeff Delaune e Tor Arne Johansen. "Globally stable velocity estimation using normalized velocity measurement". International Journal of Robotics Research 39, n.º 1 (25 de novembro de 2019): 143–57. http://dx.doi.org/10.1177/0278364919887436.

Texto completo da fonte
Resumo:
The problem of estimating velocity from a monocular camera and calibrated inertial measurement unit (IMU) measurements is revisited. For the presented setup, it is assumed that normalized velocity measurements are available from the camera. By applying results from nonlinear observer theory, we present velocity estimators with proven global stability under defined conditions, and without the need to observe features from several camera frames. Several nonlinear methods are compared with each other, also against an extended Kalman filter (EKF), where the robustness of the nonlinear methods compared with the EKF are demonstrated in simulations and experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Chanson, Hubert. "Velocity measurements within high velocity air-water jets". Journal of Hydraulic Research 31, n.º 3 (maio de 1993): 365–82. http://dx.doi.org/10.1080/00221689309498832.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Orphal, D. L., e C. E. Anderson. "The dependence of penetration velocity on impact velocity". International Journal of Impact Engineering 33, n.º 1-12 (dezembro de 2006): 546–54. http://dx.doi.org/10.1016/j.ijimpeng.2006.09.054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Ihara, Tomonori, Hiroshige Kikura e Yasushi Takeda. "Ultrasonic velocity profiler for very low velocity field". Flow Measurement and Instrumentation 34 (dezembro de 2013): 127–33. http://dx.doi.org/10.1016/j.flowmeasinst.2013.10.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Blanford, Thomas E., Daniel C. Brown e Richard J. Meyer. "Velocity estimation using a compact correlation velocity log". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A304. http://dx.doi.org/10.1121/10.0018939.

Texto completo da fonte
Resumo:
Unmanned underwater vehicles require bottom-referenced acoustic navigation aids to maintain long-term positional accuracy without surfacing. When these platforms are small, they create new design constraints for acoustic navigation aids because of the limited available space and power. Traditional acoustic navigation techniques, such as Doppler Velocity Logs, are unsuitable for use on small platforms because of the power required to maintain adequate signal to noise ratio when they are scaled in size. A compact correlation velocity log (CVL) is an alternative approach that can meet the power, space, and accuracy requirements for an acoustic navigation aid on such platforms. This device uses a single projector, a sparse receive array, and estimates platform motion using a multi-dimensional fitting algorithm over an ensemble of 3 or more pings. This presentation will discuss the theory of operation, simulation, and experimental results for a 300 kHz compact CVL that is 4 × 8 cm2. [The authors want to acknowledge Lockheed Martin Rotary and Mission Systems for their financial support of this work.]
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Guo, Yong Ming. "Computer Modeling of Extrusion by the Rigid-Plastic Hybrid Element Method". Materials Science Forum 505-507 (janeiro de 2006): 703–8. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.703.

Texto completo da fonte
Resumo:
In this paper, a rigid-plastic hybrid element method is formulated, which is a mixed approach of the rigid-plastic domain-BEM and the rigid-plastic FEM based on the theory of slightly compressible plasticity. Since compatibilities of velocity and velocity's derivative between adjoining boundary elements and finite elements can be met, the velocity and the derivative of velocity can be calculated with the same precision for this hybrid element method. While, the compatibility of the velocity's derivative cannot be met for the rigid-plastic FEMs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Guglielmi, Anatol, Boris Klain e Alexander Potapov. "On the group velocity of whistling atmospherics". Solar-Terrestrial Physics 7, n.º 4 (20 de dezembro de 2021): 67–70. http://dx.doi.org/10.12737/stp-74202106.

Texto completo da fonte
Resumo:
The dynamic spectrum of a whistling atmospheric is a signal of falling tone, and the group delay time of the signal as a function of frequency is formed as a result of propagation of a broadband pulse in a medium (magnetospheric plasma) with a quadratic dispersion law. In this paper, we show that for quadratic dispersion the group velocity is invariant under Galilean transformations. This means that, contrary to expectations, the group velocity is paradoxically independent of the velocity of the medium relative to the observer. A general invariance condition is found in the form of a differential equation. To explain the paradox, we introduce the concept of the dynamic spectrum of Green’s function of the path of propagation of electromagnetic waves from a pulse source (lightning discharge in the case of a whistling atmospheric) in a dispersive medium. We emphasize the importance of taking into account the motion of plasma in the experimental and theoretical study of electromagnetic wave phenomena in near-Earth space.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Yan, Xiao He, e Shao Xing Su. "Model Predictive Control for Velocity Tracking in Full-Motor Injection Molding". Advanced Materials Research 271-273 (julho de 2011): 541–45. http://dx.doi.org/10.4028/www.scientific.net/amr.271-273.541.

Texto completo da fonte
Resumo:
Because very high or low velocity tracking will influence on product quality, velocity tracking must be proper high. So Controller of tall requirement is putting forward, we achieve veloctiy control requirements with model predictive control, get predictive control model and simulation curve to increase control efficiency.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Bajewski, Łukasz, Aleksander Wilk e Andrzej Urbaniec. "Porównanie modeli prędkości obliczonych z wykorzystaniem różnych wariantów prędkości i algorytmów na profilu sejsmicznym 2D na potrzeby migracji czasowej po składaniu". Nafta-Gaz 77, n.º 7 (julho de 2021): 419–28. http://dx.doi.org/10.18668/ng.2021.07.01.

Texto completo da fonte
Resumo:
This article presents a construction method of the velocity field for poststack time migration for 2D seismic calculated on the basis of interval velocities in boreholes and structural interpretation, as well as the results of poststack time migration based on this solution. Three velocity field models have been developed. The models used differ in the way of spatial interpolation and extrapolation in the adopted calculation grid in the depth domain, which was created on the basis of a structural interpretation of 2D seismic profiles. Three methods of interpolation and extrapolation were used: Gaussian distribution, kriging and moving average. The spatial distribution of the interval velocities in the boreholes was made using the Petrel software by Schlumberger. The interval velocities along the analyzed seismic profile were extracted from the computed spatial interval velocity models, and after conversion from the depth to the time domain, they were used for the poststack time migration. For comparison, poststack time migration was calculated for the same seismic profile based on the stacking velocities obtained in the seismic processing data as a result of velocity analyzes. The velocity field calculated on the basis of interval velocities and structural interpretation was used for the poststack time migration procedure performed with the Implicit FD Time Migration algorithm (finite difference), while the stacking velocities were used for the poststack time migration procedure performed with the Stolt and Kirchhoff algorithms in accordance with the technical conditions of correct operation of these algorithms. The selected percentage ranges of 60%, 100%, and 140% have been used for all velocity fields. Application of the element of directional velocity variation resulting from the spatial distribution of interval velocities in the boreholes to the velocity field for the poststack time migration allowed to obtain a better seismic image in relation to the one obtained as a result of applying the stacking velocities. The most reliable seismic image after poststack time migration was obtained for the velocity field calculated on the basis of the interval velocities with Gaussian distribution, using the finite difference algorithm with 60 percent value of the velocity field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

LI, Zhong. "Effect of velocity on ductility under high velocity forming". Chinese Journal of Mechanical Engineering (English Edition) 20, n.º 02 (2007): 32. http://dx.doi.org/10.3901/cjme.2007.02.032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Browne, Rodrigo Alberto Vieira, Marcelo Magalhães Sales, Rafael da Costa Sotero, Ricardo Yukio Asano, José Fernando Vila Nova de Moraes, Jônatas de França Barros, Carmen Sílvia Grubert Campbell e Herbert Gustavo Simões. "Critical velocity estimates lactate minimum velocity in youth runners". Motriz: Revista de Educação Física 21, n.º 1 (março de 2015): 1–7. http://dx.doi.org/10.1590/s1980-65742015000100001.

Texto completo da fonte
Resumo:
In order to investigate the validity of critical velocity (CV) as a noninvasive method to estimate the lactate minimum velocity (LMV), 25 youth runners underwent the following tests: 1) 3,000m running; 2) 1,600m running; 3) LMV test. The intensity of lactate minimum was defined as the velocity corresponding to the lowest blood lactate concentration during the LMV test. The CV was determined using the linear model, defined by the inclination of the regression line between distance and duration in the running tests of 1,600 and 3,000m. There was no significant difference (p=0.3055) between LMV and CV. In addition, both protocols presented a good agreement based on the small difference between means and the narrow levels of agreement, as well as a standard error of estimation classified as ideal. In conclusion, CV, as identified in this study, may be an alternative for noninvasive identification of LMV.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Esquivel, Alejandro, e A. Lazarian. "Velocity Centroids as Tracers of the Turbulent Velocity Statistics". Astrophysical Journal 631, n.º 1 (20 de setembro de 2005): 320–50. http://dx.doi.org/10.1086/432458.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zaroubi, S., E. Branchini, Y. Hoffman e L. N. Da Costa. "Consistent values from density-density and velocity-velocity comparisons". Monthly Notices of the Royal Astronomical Society 336, n.º 4 (11 de novembro de 2002): 1234–46. http://dx.doi.org/10.1046/j.1365-8711.2002.05861.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Avellaneda, M., R. Ryan e E. Weinan. "PDFs for velocity and velocity gradients in Burgers’ turbulence". Physics of Fluids 7, n.º 12 (dezembro de 1995): 3067–71. http://dx.doi.org/10.1063/1.868683.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Franca, M. J., e U. Lemmin. "Eliminating velocity aliasing in acoustic Doppler velocity profiler data". Measurement Science and Technology 17, n.º 2 (4 de janeiro de 2006): 313–22. http://dx.doi.org/10.1088/0957-0233/17/2/012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Khatib, Rémi, e Marialore Sulpizi. "Sum Frequency Generation Spectra from Velocity–Velocity Correlation Functions". Journal of Physical Chemistry Letters 8, n.º 6 (8 de março de 2017): 1310–14. http://dx.doi.org/10.1021/acs.jpclett.7b00207.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

JUNGE, KENNETH. "Velocity concatenation and velocity as rate of position dissimilation". Scandinavian Journal of Psychology 28, n.º 2 (junho de 1987): 144–49. http://dx.doi.org/10.1111/j.1467-9450.1987.tb00748.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Strumpf, C., M. L. Braunstein, C. W. Sauer e G. J. Andersen. "Velocity difference and velocity ratio in structure-from-motion". Journal of Vision 1, n.º 3 (15 de março de 2010): 330. http://dx.doi.org/10.1167/1.3.330.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Wang, Hao, Ye Li, Wei Wang, Min Fu e Rong Huang. "Optimal velocity model with dual boundary optimal velocity function". Transportmetrica B: Transport Dynamics 5, n.º 2 (21 de março de 2016): 211–27. http://dx.doi.org/10.1080/21680566.2016.1159149.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

MALMSTRÖM, TOR G., ALLAN T. KIRKPATRICK, BRIAN CHRISTENSEN e KEVIN D. KNAPPMILLER. "Centreline velocity decay measurements in low-velocity axisymmetric jets". Journal of Fluid Mechanics 346 (10 de setembro de 1997): 363–77. http://dx.doi.org/10.1017/s0022112097006368.

Texto completo da fonte
Resumo:
The streamwise velocity profiles of low-velocity isothermal axisymmetric jets from nozzles of different diameters were measured and compared with previous experimental data. The objective of the measurements was to examine the dependence of the diffusion of the jet on the outlet conditions. As the outlet velocity was decreased, the centreline velocity decay coefficient began to decrease at an outlet velocity of about 6 m s−1.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Rahmani, Abderrehmane, Fabrice Viale, Georges Dalleau e Jean-René Lacour. "Force/velocity and power/velocity relationships in squat exercise". European Journal of Applied Physiology 84, n.º 3 (12 de março de 2001): 227–32. http://dx.doi.org/10.1007/pl00007956.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Dong, Li-yun, e Qing-xun Meng. "Effect of relative velocity on the optimal velocity model". Journal of Shanghai University (English Edition) 9, n.º 4 (agosto de 2005): 283–85. http://dx.doi.org/10.1007/s11741-005-0037-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia