Literatura científica selecionada sobre o tema "Velocity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Velocity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Velocity"
García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas e G. Gregory Haff. "Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity". Journal of Strength and Conditioning Research 32, n.º 5 (maio de 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.
Texto completo da fonteLee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng e In Seong Park. "표면유속과 평균유속의 관계 고찰". Crisis and Emergency Management: Theory and Praxis 19, n.º 1 (30 de janeiro de 2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.
Texto completo da fonteCojanovic, Milos. "Stellar Distance and Velocity (II)". International Journal of Science and Research (IJSR) 8, n.º 9 (5 de setembro de 2019): 275–82. http://dx.doi.org/10.21275/art2020906.
Texto completo da fonteByun, Joongmoo. "Automatic Velocity Analysis Considering Anisotropy". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, n.º 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.
Texto completo da fonteTurner, Marie. "Velocity". Fourth Genre 25, n.º 2 (1 de agosto de 2023): 38–52. http://dx.doi.org/10.14321/fourthgenre.25.2.0038.
Texto completo da fonteWang, Hongsong, Liang Wang, Jiashi Feng e Daquan Zhou. "Velocity-to-velocity human motion forecasting". Pattern Recognition 124 (abril de 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.
Texto completo da fonteRowell, A. L., C. S. Williams e D. W. Hill. "CRITICAL VELOCITY IS MINIMAL VELOCITY 101". Medicine & Science in Sports & Exercise 28, Supplement (maio de 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.
Texto completo da fonteLazarus, Max J. "Group Velocity Is Not Signal Velocity". Physics Today 56, n.º 8 (agosto de 2003): 14. http://dx.doi.org/10.1063/1.1611340.
Texto completo da fonteSAWADA, SHIRO. "OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY". International Journal of Modern Physics C 17, n.º 01 (janeiro de 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.
Texto completo da fonteHaitjema, Henk M., e Mary P. Anderson. "Darcy Velocity Is Not a Velocity". Groundwater 54, n.º 1 (30 de novembro de 2015): 1. http://dx.doi.org/10.1111/gwat.12386.
Texto completo da fonteTeses / dissertações sobre o assunto "Velocity"
Makin, Alexis David James. "Velocity memory". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/velocity-memory(c5c1c28d-0a23-44a5-93bc-21f993d2e7ad).html.
Texto completo da fonteSeligman, Joshua R. "Power development through low velocity isotonic, or combined low velocity isotonic-high velocity isokinetic training /". Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7046.
Texto completo da fonteZhu, Weijia. "A new instrumentation for particle velocity and velocity related measurements under water /". View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/fullcit/3239913.
Texto completo da fonteBeg, Sarena. "The determinants of velocity". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20781.pdf.
Texto completo da fonteSaeed, Khizer. "Laminar burning velocity measurements". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270733.
Texto completo da fonteKopp, Robert William. "Determination of the velocity". Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25837.
Texto completo da fonteTeng, Xiaoqing. "High velocity impact fracture". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32118.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 315-330).
An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural components under high velocity impact are investigated numerically and theoretically. Attention is focused on the formation and propagation of through-thickness cracks, which is difficult to experimentally track down using currently available instruments. Studied are three typical and challenging types of impact problems: (i) rigid mass-to beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with the newly developed Bao-Wierzbicki's (BW) fracture criterion, a number of distinct failure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam impact, confined fracture, petalling, and shear cracking in the Taylor test, are successfully recreated for the first time in the open literature. All of the present predictions are in qualitative agreement with experimental observations.
(cont.) This investigation convincingly demonstrates the applicability of the BW's fracture criterion to high velocity impact problems and at the same time provides an insight into deficiencies of existing fracture loci. Besides void growth, the adiabatic shear banding is another basic failure mechanism often encountered in high velocity impact. This failure mechanism and subsequent fracture is studied through numerical simulation of a recently conducted compression test on a hat specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands is successfully captured. The relation between hot spots and crack formation is revealed. The numerical predictions correlate well with experimental results. An explicit expression controlling through-thickness crack growth is proposed and verified by performing an extensive parametric study in a wide range of input variables. Using this expression, a two-stage analytical model is formulated for shear plugging of a beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are compared with experimental results published in the literature showing very good agreement.
(cont.) Three theoretical models for rigid mass-to-beam impact, the single, double, and multiple impact of beam-to-beam are derived from the momentum conservation principle. The obtained closed-form solutions, which are applicable to the axial stretching dominated case, are validated by finite element analysis.
by Xiaoqing Teng.
Ph.D.
Johansson, Torneus Daniel, e Alexander Kotoglou. "Velocity of plasma flow". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199363.
Texto completo da fonteStober, Gunter, e Christoph Jacobi. "Meteor head velocity determination". Universität Leipzig, 2007. https://ul.qucosa.de/id/qucosa%3A15571.
Texto completo da fonteMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.
Stober, Gunter, e Christoph Jacobi. "Meteor head velocity determination". Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-223206.
Texto completo da fonteMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments
Livros sobre o assunto "Velocity"
Koontz, Dean R. Velocity. New York: Bantam Books, 2005.
Encontre o texto completo da fonteKrygowski, Nancy. Velocity. Pittsburgh, PA: University of Pittsburgh Press, 2008.
Encontre o texto completo da fonteMcCloy, Kristin. Velocity. New York: Random House, 1988.
Encontre o texto completo da fonteKrygowski, Nancy. Velocity. Pittsburgh, Pa: University of Pittsburgh Press, 2007.
Encontre o texto completo da fonteKoontz, Dean R. Velocity. London: Harper, 2011.
Encontre o texto completo da fonteEnvironmental Technology Laboratory (Environmental Research Laboratories), ed. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Encontre o texto completo da fonteHill, Reginald J. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Encontre o texto completo da fonteEnvironmental Technology Laboratory (Environmental Research Laboratories), ed. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Encontre o texto completo da fonteBoyd, Blanche M. Terminal velocity. New York: Alfred A. Knopf, 1997.
Encontre o texto completo da fonteYeh, Cindy. Urban Velocity. New York, NY: the artist, 2015.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Velocity"
Roberson, Robert E., e Richard Schwertassek. "Velocity". In Dynamics of Multibody Systems, 79–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-86464-3_4.
Texto completo da fonteGooch, Jan W. "Velocity". In Encyclopedic Dictionary of Polymers, 790. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12467.
Texto completo da fonteWeik, Martin H. "velocity". In Computer Science and Communications Dictionary, 1885. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20712.
Texto completo da fonteDalton, Jeff. "Velocity". In Great Big Agile, 271–72. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4206-3_71.
Texto completo da fonteWatkins, William H. "Velocity". In Loudspeaker Physics and Forced Vibration, 67–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91634-3_11.
Texto completo da fonteKuttner, Thomas, e Armin Rohnen. "Velocity Transducer (Vibration Velocity Transducer)". In Practice of Vibration Measurement, 101–9. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38463-0_7.
Texto completo da fonteElise Albert, C., e Laura Danly. "Interemdiate-velocity Clouds". In High-Velocity Clouds, 73–100. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_4.
Texto completo da fonteWakker, Bart P., Klaas S. de Boer e Hugo van Woerden. "History of HVC research — an Overview". In High-Velocity Clouds, 1–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_1.
Texto completo da fonteVan Woerden, Hugo, e Bart P. Wakker. "Distances and Metallicities of HVCS". In High-Velocity Clouds, 195–226. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_10.
Texto completo da fonteDe Boer, Klaas S. "The Hot Halo". In High-Velocity Clouds, 227–50. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_11.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Velocity"
Butler, John L., Stephen C. Butler, Donald P. Massa e George H. Cavanagh. "Metallic glass velocity sensor". In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50333.
Texto completo da fonteFomel, Sergey. "Migration velocity analysis by velocity continuation". In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816277.
Texto completo da fonteGentilman, Richard L., Leslie J. Bowen, Daniel F. Fiore, Hong T. Pham e William J. Serwatka. "Injection molded 1–3 piezocomposite velocity sensors". In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50346.
Texto completo da fonte-G. Ferber, R. "Velocity independent time migration and velocity analysis". In 54th EAEG Meeting. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609.201410614.
Texto completo da fonteNemeth, Tamas. "Velocity estimation using tomographic migration velocity analysis". In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887304.
Texto completo da fonteFerreira, Rogelma M. S., e Fernando A. Oliveira. "Velocity-velocity correlation function for anomalous diffusion". In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569535.
Texto completo da fonteKo, Sung H. "Performance of velocity sensor for flexural wave reduction". In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50352.
Texto completo da fonteBulik, Tomasz, e Donald Q. Lamb. "Gamma-ray bursts from high velocity neutron stars". In High velocity neutron stars and gamma−ray bursts. AIP, 1996. http://dx.doi.org/10.1063/1.50276.
Texto completo da fonteSherwood, John W. C. "Velocity estimation". In SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892367.
Texto completo da fonteSky, Hellen, John McCormick e Garth Paine. "Escape velocity". In ACM SIGGRAPH 98 Electronic art and animation catalog. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281388.281496.
Texto completo da fonteRelatórios de organizações sobre o assunto "Velocity"
Kramer, Mitchell. divine’s Velocity Marketing. Boston, MA: Patricia Seybold Group, fevereiro de 2003. http://dx.doi.org/10.1571/pr2-21-03cc.
Texto completo da fontePeterfreund, N. The velocity snake: Deformable contour for tracking in spatio-velocity space. Office of Scientific and Technical Information (OSTI), junho de 1997. http://dx.doi.org/10.2172/631265.
Texto completo da fonteLiu, Zhenyue, e Norman Bleistein. Velocity Analysis by Perturbation. Fort Belvoir, VA: Defense Technical Information Center, maio de 1993. http://dx.doi.org/10.21236/ada272537.
Texto completo da fonteLiu, Zhenyue, e Norman Bleistein. Velocity Analysis by Inversion. Fort Belvoir, VA: Defense Technical Information Center, maio de 1991. http://dx.doi.org/10.21236/ada241003.
Texto completo da fonteToor, A., T. Donich e P. Carter. High velocity impact experiment (HVIE). Office of Scientific and Technical Information (OSTI), fevereiro de 1998. http://dx.doi.org/10.2172/303456.
Texto completo da fonteMeidinger, Brian. BENCAP, LLC: CAPSULE VELOCITY TEST. Office of Scientific and Technical Information (OSTI), setembro de 2005. http://dx.doi.org/10.2172/925758.
Texto completo da fonteSymes, William W. Velocity Inversion by Coherency Optimization. Fort Belvoir, VA: Defense Technical Information Center, maio de 1988. http://dx.doi.org/10.21236/ada455248.
Texto completo da fonteWeyburne, David. Similarity of the Velocity Profile. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2014. http://dx.doi.org/10.21236/ada609962.
Texto completo da fonteJohns, William E. Acoustic Velocity Profiling in SYNOP. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1996. http://dx.doi.org/10.21236/ada306621.
Texto completo da fonteLundberg, Patrik. Transition Velocity Experiments on Ceramics. Fort Belvoir, VA: Defense Technical Information Center, novembro de 2003. http://dx.doi.org/10.21236/ada420132.
Texto completo da fonte