Artigos de revistas sobre o tema "Vegetation-Atmosphere System"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Vegetation-Atmosphere System".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Vella, Ryan, Matthew Forrest, Jos Lelieveld e Holger Tost. "Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)". Geoscientific Model Development 16, n.º 3 (3 de fevereiro de 2023): 885–906. http://dx.doi.org/10.5194/gmd-16-885-2023.
Texto completo da fonteYoshioka, H. "Vegetation Isoline Equations for an Atmosphere–Canopy–Soil System". IEEE Transactions on Geoscience and Remote Sensing 42, n.º 1 (janeiro de 2004): 166–75. http://dx.doi.org/10.1109/tgrs.2003.817793.
Texto completo da fontePort, U., e M. Claussen. "Stability of the vegetation–atmosphere system in the early Eocene climate". Climate of the Past Discussions 11, n.º 3 (5 de maio de 2015): 1551–78. http://dx.doi.org/10.5194/cpd-11-1551-2015.
Texto completo da fonteKleidon, A., K. Fraedrich e C. Low. "Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification?" Biogeosciences 4, n.º 5 (28 de agosto de 2007): 707–14. http://dx.doi.org/10.5194/bg-4-707-2007.
Texto completo da fonteKleidon, A., K. Fraedrich e C. Low. "Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification?" Biogeosciences Discussions 4, n.º 1 (22 de fevereiro de 2007): 687–705. http://dx.doi.org/10.5194/bgd-4-687-2007.
Texto completo da fonteWang, Fuyao, Michael Notaro, Zhengyu Liu e Guangshan Chen. "Observed Local and Remote Influences of Vegetation on the Atmosphere across North America Using a Model-Validated Statistical Technique That First Excludes Oceanic Forcings*". Journal of Climate 27, n.º 1 (1 de janeiro de 2014): 362–82. http://dx.doi.org/10.1175/jcli-d-13-00080.1.
Texto completo da fonteYang, Peiqi, Wout Verhoef e Christiaan van der van der Tol. "Unified Four-Stream Radiative Transfer Theory in the Optical-Thermal Domain with Consideration of Fluorescence for Multi-Layer Vegetation Canopies". Remote Sensing 12, n.º 23 (28 de novembro de 2020): 3914. http://dx.doi.org/10.3390/rs12233914.
Texto completo da fonteCalvet, Jean-Christophe, Patricia de Rosnay e Stephen G. Penny. "Editorial for the Special Issue “Assimilation of Remote Sensing Data into Earth System Models”". Remote Sensing 11, n.º 18 (19 de setembro de 2019): 2177. http://dx.doi.org/10.3390/rs11182177.
Texto completo da fonteDekker, S. C., H. J. de Boer, V. Brovkin, K. Fraedrich, M. J. Wassen e M. Rietkerk. "Biogeophysical feedbacks trigger shifts in the modelled vegetation-atmosphere system at multiple scales". Biogeosciences 7, n.º 4 (12 de abril de 2010): 1237–45. http://dx.doi.org/10.5194/bg-7-1237-2010.
Texto completo da fonteMilcu, Alexandru, Martin Lukac, Jens-Arne Subke, Pete Manning, Andreas Heinemeyer, Dennis Wildman, Robert Anderson e Phil Ineson. "Biotic carbon feedbacks in a materially closed soil–vegetation–atmosphere system". Nature Climate Change 2, n.º 4 (11 de março de 2012): 281–84. http://dx.doi.org/10.1038/nclimate1448.
Texto completo da fonteDelire, Christine, Nathalie de Noblet-Ducoudré, Adriana Sima e Isabelle Gouirand. "Vegetation Dynamics Enhancing Long-Term Climate Variability Confirmed by Two Models". Journal of Climate 24, n.º 9 (1 de maio de 2011): 2238–57. http://dx.doi.org/10.1175/2010jcli3664.1.
Texto completo da fonteListon, Glen E., e Christopher A. Hiemstra. "Representing Grass– and Shrub–Snow–Atmosphere Interactions in Climate System Models". Journal of Climate 24, n.º 8 (15 de abril de 2011): 2061–79. http://dx.doi.org/10.1175/2010jcli4028.1.
Texto completo da fonteClaussen, Martin, Victor Brovkin, Andrey Ganopolski, Claudia Kubatzki e Vladimir Petoukhov. "Modelling global terrestrial vegetation–climate interaction". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, n.º 1365 (29 de janeiro de 1998): 53–63. http://dx.doi.org/10.1098/rstb.1998.0190.
Texto completo da fonteChylek, P., J. Li, M. K. Dubey, M. Wang e G. Lesins. "Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2". Atmospheric Chemistry and Physics Discussions 11, n.º 8 (15 de agosto de 2011): 22893–907. http://dx.doi.org/10.5194/acpd-11-22893-2011.
Texto completo da fonteCurdt, Constanze, Dirk Hoffmeister, Guido Waldhoff, Christian Jekel e Georg Bareth. "Scientific Research Data Management for Soil-Vegetation-Atmosphere Data – The TR32DB". International Journal of Digital Curation 7, n.º 2 (23 de outubro de 2012): 68–80. http://dx.doi.org/10.2218/ijdc.v7i2.208.
Texto completo da fonteCLAUSSEN, MARTIN. "On multiple solutions of the atmosphere-vegetation system in present-day climate". Global Change Biology 4, n.º 5 (junho de 1998): 549–59. http://dx.doi.org/10.1046/j.1365-2486.1998.00122.x.
Texto completo da fonteClaussen, Martin. "On multiple solutions of the atmosphere–vegetation system in present‐day climate". Global Change Biology 4, n.º 5 (junho de 1998): 549–59. http://dx.doi.org/10.1046/j.1365-2486.1998.t01-1-00122.x.
Texto completo da fonteWang, Weile, Bruce T. Anderson, Dara Entekhabi, Dong Huang, Yin Su, Robert K. Kaufmann e Ranga B. Myneni. "Intraseasonal Interactions between Temperature and Vegetation over the Boreal Forests". Earth Interactions 11, n.º 18 (1 de dezembro de 2007): 1–30. http://dx.doi.org/10.1175/ei219.1.
Texto completo da fonteWilhelm, C., D. Rechid e D. Jacob. "Interactive coupling of regional atmosphere with biosphere in the new generation regional climate system model REMO-iMOVE". Geoscientific Model Development 7, n.º 3 (6 de junho de 2014): 1093–114. http://dx.doi.org/10.5194/gmd-7-1093-2014.
Texto completo da fonteBrovkin, Victor, Martin Claussen, Vladimir Petoukhov e Andrey Ganopolski. "On the stability of the atmosphere-vegetation system in the Sahara/Sahel region". Journal of Geophysical Research: Atmospheres 103, n.º D24 (1 de dezembro de 1998): 31613–24. http://dx.doi.org/10.1029/1998jd200006.
Texto completo da fonteZeng, Xiaodong, Aihui Wang, Qingcun Zeng, Robert E. Dickinson, Xubin Zeng e Samuel S. P. Shen. "Intermediately complex models for the hydrological interactions in the atmosphere-vegetation-soil system". Advances in Atmospheric Sciences 23, n.º 1 (janeiro de 2006): 127–40. http://dx.doi.org/10.1007/s00376-006-0013-6.
Texto completo da fonteDevaraju, N., L. Cao, G. Bala, K. Caldeira e R. Nemani. "A model investigation of vegetation-atmosphere interactions on a millennial timescale". Biogeosciences 8, n.º 12 (15 de dezembro de 2011): 3677–86. http://dx.doi.org/10.5194/bg-8-3677-2011.
Texto completo da fonteDevaraju, N., L. Cao, G. Bala, K. Caldeira e R. Nemani. "A model investigation of vegetation-atmosphere interactions on a millennial timescale". Biogeosciences Discussions 8, n.º 4 (29 de agosto de 2011): 8761–80. http://dx.doi.org/10.5194/bgd-8-8761-2011.
Texto completo da fonteLaguë, Marysa M., Gordon B. Bonan e Abigail L. S. Swann. "Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System". Journal of Climate 32, n.º 18 (12 de agosto de 2019): 5725–44. http://dx.doi.org/10.1175/jcli-d-18-0812.1.
Texto completo da fonteDekker, S. C., H. J. de Boer, V. Brovkin, K. Fraedrich, M. J. Wassen e M. Rietkerk. "Biogeophysical feedbacks trigger shifts in the modelled climate system at multiple scales". Biogeosciences Discussions 6, n.º 6 (25 de novembro de 2009): 10983–1004. http://dx.doi.org/10.5194/bgd-6-10983-2009.
Texto completo da fonteSubin, Z. M., W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn e L. M. Kueppers. "Ecosystem Feedbacks to Climate Change in California: Development, Testing, and Analysis Using a Coupled Regional Atmosphere and Land Surface Model (WRF3–CLM3.5)". Earth Interactions 15, n.º 15 (1 de maio de 2011): 1–38. http://dx.doi.org/10.1175/2010ei331.1.
Texto completo da fonteQuevedo, D. I., e F. Francés. "A conceptual dynamic vegetation-soil model for arid and semiarid zones". Hydrology and Earth System Sciences Discussions 4, n.º 5 (25 de setembro de 2007): 3469–99. http://dx.doi.org/10.5194/hessd-4-3469-2007.
Texto completo da fonteKuchment, L. S., V. N. Demidov e Z. P. Startseva. "Coupled modeling of the hydrological and carbon cycles in the soil–vegetation–atmosphere system". Journal of Hydrology 323, n.º 1-4 (maio de 2006): 4–21. http://dx.doi.org/10.1016/j.jhydrol.2005.08.011.
Texto completo da fonteZeng, Ning, Katrina Hales e J. David Neelin. "Nonlinear Dynamics in a Coupled Vegetation–Atmosphere System and Implications for Desert–Forest Gradient". Journal of Climate 15, n.º 23 (dezembro de 2002): 3474–87. http://dx.doi.org/10.1175/1520-0442(2002)015<3474:ndiacv>2.0.co;2.
Texto completo da fonteZhang, Yuan, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li e Fabienne Maignan. "Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)". Geoscientific Model Development 15, n.º 24 (20 de dezembro de 2022): 9111–25. http://dx.doi.org/10.5194/gmd-15-9111-2022.
Texto completo da fonteBadger, A. M., e P. A. Dirmeyer. "Climate response to Amazon forest replacement by heterogeneous crop cover". Hydrology and Earth System Sciences Discussions 12, n.º 1 (22 de janeiro de 2015): 879–910. http://dx.doi.org/10.5194/hessd-12-879-2015.
Texto completo da fonteBagley, Justin E., Ankur R. Desai, Paul C. West e Jonathan A. Foley. "A Simple, Minimal Parameter Model for Predicting the Influence of Changing Land Cover on the Land–Atmosphere System+". Earth Interactions 15, n.º 29 (1 de outubro de 2011): 1–32. http://dx.doi.org/10.1175/2011ei394.1.
Texto completo da fonteMatsui, Toshihisa, Venkataraman Lakshmi e Eric E. Small. "The Effects of Satellite-Derived Vegetation Cover Variability on Simulated Land–Atmosphere Interactions in the NAMS". Journal of Climate 18, n.º 1 (1 de janeiro de 2005): 21–40. http://dx.doi.org/10.1175/jcli3254.1.
Texto completo da fonteMartin, G. M., e R. C. Levine. "The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family". Earth System Dynamics 3, n.º 2 (28 de novembro de 2012): 245–61. http://dx.doi.org/10.5194/esd-3-245-2012.
Texto completo da fonteGroner, Vivienne P., Thomas Raddatz, Christian H. Reick e Martin Claussen. "Plant functional diversity affects climate–vegetation interaction". Biogeosciences 15, n.º 7 (4 de abril de 2018): 1947–68. http://dx.doi.org/10.5194/bg-15-1947-2018.
Texto completo da fonteHong, Seungbum, Venkat Lakshmi e Eric E. Small. "Relationship between Vegetation Biophysical Properties and Surface Temperature Using Multisensor Satellite Data". Journal of Climate 20, n.º 22 (15 de novembro de 2007): 5593–606. http://dx.doi.org/10.1175/2007jcli1294.1.
Texto completo da fonteChug, Divyansh, e Francina Dominguez. "Isolating the Observed Influence of Vegetation Variability on the Climate of La Plata River Basin". Journal of Climate 32, n.º 14 (24 de junho de 2019): 4473–90. http://dx.doi.org/10.1175/jcli-d-18-0677.1.
Texto completo da fonteMartin, G. M., e R. C. Levine. "The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family". Earth System Dynamics Discussions 3, n.º 2 (3 de agosto de 2012): 759–99. http://dx.doi.org/10.5194/esdd-3-759-2012.
Texto completo da fonteBadger, A. M., e P. A. Dirmeyer. "Climate response to Amazon forest replacement by heterogeneous crop cover". Hydrology and Earth System Sciences 19, n.º 11 (16 de novembro de 2015): 4547–57. http://dx.doi.org/10.5194/hess-19-4547-2015.
Texto completo da fonteTeixeira, João C., Gerd A. Folberth, Fiona M. O'Connor, Nadine Unger e Apostolos Voulgarakis. "Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model". Geoscientific Model Development 14, n.º 10 (28 de outubro de 2021): 6515–39. http://dx.doi.org/10.5194/gmd-14-6515-2021.
Texto completo da fonteImbach, Pablo, Luis Molina, Bruno Locatelli, Olivier Roupsard, Gil Mahé, Ronald Neilson, Lenin Corrales, Marko Scholze e Philippe Ciais. "Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios*". Journal of Hydrometeorology 13, n.º 2 (1 de abril de 2012): 665–80. http://dx.doi.org/10.1175/jhm-d-11-023.1.
Texto completo da fonteZhang, W., C. Jansson, P. A. Miller, B. Smith e P. Samuelsson. "Biogeophysical feedbacks enhance Arctic terrestrial carbon sink in regional Earth system dynamics". Biogeosciences Discussions 11, n.º 5 (12 de maio de 2014): 6715–54. http://dx.doi.org/10.5194/bgd-11-6715-2014.
Texto completo da fonteWang, Yunfei, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai e Zhongbo Su. "Integrated modeling of canopy photosynthesis, fluorescence, and the transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum (STEMMUS–SCOPE v1.0.0)". Geoscientific Model Development 14, n.º 3 (11 de março de 2021): 1379–407. http://dx.doi.org/10.5194/gmd-14-1379-2021.
Texto completo da fonteWu, Minchao, Guy Schurgers, Markku Rummukainen, Benjamin Smith, Patrick Samuelsson, Christer Jansson, Joe Siltberg e Wilhelm May. "Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change". Earth System Dynamics 7, n.º 3 (26 de julho de 2016): 627–47. http://dx.doi.org/10.5194/esd-7-627-2016.
Texto completo da fonteWoodward, Stephanie, Alistair A. Sellar, Yongming Tang, Marc Stringer, Andrew Yool, Eddy Robertson e Andy Wiltshire. "The simulation of mineral dust in the United Kingdom Earth System Model UKESM1". Atmospheric Chemistry and Physics 22, n.º 22 (15 de novembro de 2022): 14503–28. http://dx.doi.org/10.5194/acp-22-14503-2022.
Texto completo da fonteQuevedo, D. I., e F. Francés. "A conceptual dynamic vegetation-soil model for arid and semiarid zones". Hydrology and Earth System Sciences 12, n.º 5 (10 de setembro de 2008): 1175–87. http://dx.doi.org/10.5194/hess-12-1175-2008.
Texto completo da fonteDunne, John P., Jasmin G. John, Elena Shevliakova, Ronald J. Stouffer, John P. Krasting, Sergey L. Malyshev, P. C. D. Milly et al. "GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*". Journal of Climate 26, n.º 7 (1 de abril de 2013): 2247–67. http://dx.doi.org/10.1175/jcli-d-12-00150.1.
Texto completo da fonteDrüke, Markus, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner e Kirsten Thonicke. "CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model". Geoscientific Model Development 14, n.º 6 (1 de julho de 2021): 4117–41. http://dx.doi.org/10.5194/gmd-14-4117-2021.
Texto completo da fonteKerkhoven, E., e T. Y. Gan. "Differences in the Potential Hydrologic Impact of Climate Change to the Athabasca and Fraser River Basins of Canada with and without Considering Shifts in Vegetation Patterns Induced by Climate Change". Journal of Hydrometeorology 14, n.º 3 (1 de junho de 2013): 963–76. http://dx.doi.org/10.1175/jhm-d-12-011.1.
Texto completo da fonteBrunsell, N. A., S. J. Schymanski e A. Kleidon. "Quantifying the thermodynamic entropy budget of the land surface: is this useful?" Earth System Dynamics 2, n.º 1 (20 de junho de 2011): 87–103. http://dx.doi.org/10.5194/esd-2-87-2011.
Texto completo da fonte