Literatura científica selecionada sobre o tema "Vecteur viraux"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Vecteur viraux".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Vecteur viraux"
Tangy, Frédéric, e Jean-Nicolas Tournier. "Les virus au service de la santé : la vaccination". médecine/sciences 38, n.º 12 (dezembro de 2022): 1052–60. http://dx.doi.org/10.1051/medsci/2022168.
Texto completo da fonteBertagnoli, Stéphane. "Actualité sur les vecteurs vaccinaux viraux". Bulletin de l'Académie Vétérinaire de France, n.º 1 (2017): 22. http://dx.doi.org/10.4267/2042/62249.
Texto completo da fonteChouchan, Dominique. "Thérapie Génique: Loin des vecteurs viraux". Biofutur 1997, n.º 166 (abril de 1997): 11. http://dx.doi.org/10.1016/s0294-3506(97)86766-x.
Texto completo da fonteBERTAGNOLI, S., B. PIGNOLET, S. BIACCHESI, M. ELOIT, B. KLONJKOWSKI, J. RICHARDSON e M. BREMONT. "Les vecteurs viraux : outils modernes de vaccination". INRAE Productions Animales 21, n.º 1 (22 de março de 2008): 127–36. http://dx.doi.org/10.20870/productions-animales.2008.21.1.3383.
Texto completo da fonteLegendre, JY, J. Haensler e JS Rémy. "Les vecteurs non-viraux de thérapie génique." médecine/sciences 12, n.º 12 (1996): 1334. http://dx.doi.org/10.4267/10608/675.
Texto completo da fonteQuéméneur, Éric. "Les vecteurs viraux en immunothérapie du cancer". Annales des Mines - Réalités industrielles Novembre 2023, n.º 4 (9 de novembro de 2023): 87–91. http://dx.doi.org/10.3917/rindu1.234.0087.
Texto completo da fontePeschanski, M. "Tyrosine hydroxylase : trois vecteurs viraux pour un gène". médecine/sciences 11, n.º 3 (1995): 474. http://dx.doi.org/10.4267/10608/2231.
Texto completo da fonteManus, Jean-Marie. "Anémie de Fanconi : vecteurs viraux pour essai de thérapie génique". Revue Francophone des Laboratoires 2020, n.º 518 (janeiro de 2020): 10. http://dx.doi.org/10.1016/s1773-035x(20)30011-3.
Texto completo da fonteFontenille, D., e C. Paupy. "Vecteurs et environnement pour support de l’émergence virale". Médecine et Maladies Infectieuses 38 (junho de 2008): S27—S29. http://dx.doi.org/10.1016/s0399-077x(08)72980-9.
Texto completo da fonteMartinent, E., e M. Zawati. "Le virage numérique comme vecteur d’égalité (territoriale) en santé (I)". Ethics, Medicine and Public Health 15 (outubro de 2020): 100593. http://dx.doi.org/10.1016/j.jemep.2020.100593.
Texto completo da fonteTeses / dissertações sobre o assunto "Vecteur viraux"
Link, Peggy. "Identification des déterminants viraux responsables de la spécificité de transmission du Grapevine fanleaf virus par son nématode vecteur Xiphinema index". Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13140.
Texto completo da fonteGrapevine fanleaf virus (GFLV) causes fanleaf degeneration, one of the most severe viral diseases of grapevines worlwide. This virus is specifically transmitted by the nematode Xiphinema index and its genome consists of two single-stranded positive-sense RNA species. My thesis work focused on the identification of the molecular determinants involved in the specific transmission of GFLV by Xiphinema index. Previous studies indicated that residues responsible for transmission map to RNA2, in particular within the 9 C-terminal amino acids of the movement protein and the 504 amino acids of the coat protein. Chimeric cDNA of RNA2 were constructed by exchanging GFLV residues by their counterparts in Arabis mosaic virus (ArMV), another virus responsible for fanleaf degeneration that is specifically transmitted by Xiphinema diversicaudatum but not by Xiphinema index. The infectivity of chimeric RNA2 was tested on systemic herbaceous host plants in the presence of GFLV RNA1, as well as their transmissibility by Xiphinema index. Results indicated that the coat protein is the sole viral determinant for the specific transmission. A 3D model of the GFLV capsid was constructed from the crystal structure of Tobacco ringspot virus to identify surface amino acids that are specific and conserved among GFLV isolates for mutagenesis experiments. Two of the coat protein mutants systemically infected host plants. Their transmissibility by Xiphinema index is being tested. The transmissibility of the other mutants was not determined because they did not infect systemically host plants likely because their RNA are not encapsidated, as shown by RNA protection assays upon electroporation of Chenopodium quinoa protoplasts
BRUYERE, ARNAUD. "Etude des determinants viraux impliques dans la transmission du beet western yellows virus (bwyv) par son vecteur, le puceron myzus persicae". Strasbourg 1, 1997. http://www.theses.fr/1997STR13128.
Texto completo da fonteCottard, Virginie. "Développement et utilisation de vecteurs viraux et cellulaires en thérapie génique anti-inflammatoire : application à un modèle de polyarthrite rhumatoïde". Paris 7, 2003. http://www.theses.fr/2003PA077029.
Texto completo da fonteAvenel, Allan. "Caractérisation et immunomodulation de la réponse cellulaire contre les produits de thérapie génique". Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU1028.
Texto completo da fonteRecombinant adeno-associated viruses Of positive donors, followed by AAV8 with 24%. In addition,(rAAVS) are efficient tools for in vivo gene transfer,with 8 drugs approved by the FDA or the EMA in theUnited States and Europe. However, there are stillmajor hurdles to overcome to improve their efficiencyand safety in clinics. Actually, severe adverse eventsrelated to the activation of the host's immune systemfollowing systemic injection of high doses of rAAV.into patients have been reported, leading in somecases to clinical trials hold. This immunotoxicity ispartly due to a reactivation of a T cell-mediatedcellular response, developed after primary wild-typeAAV infection during childhood. This response is stillpoorly characterized, despite its strong potentialeffect on treatment efficacy and patient health. Theaim of this thesis is therefore to improve ourknowledge on this pre-existing cellular response toAAV. We first studied the prevalence of the cellularresponse towards 6 AAV serotypes used in clinicaltrials in a cohort of-45-145 healthy donors from thePays de la Loire area. Our results show that in ourcohort, AAV9 was the most prevalent with 45%assessment of the cytokine expression profile highlighteddifferences between anti-AAV8 and anti-AAV9 T cells. To furthercharacterize these cells, | developed a protocol to enrich thevery rare population of anti-AAV8 and anti-AAV9 T lymphocytesdepending on their IFN-y secretion in healthy donors (n=6 andn=9 respectively). These cells were then analyzed by spectralcytometry using a panel of 26 colors to characterize themaccording to their phenotype and state of differentiation. Thisallowed us to identify a subpopulation of EM CD8 T-cells inresponse to AAV8 and AAV9. Moreover, a subpopulation ofEMRA CD8 T-cells in an advanced state of differentiation wasidentified in response to AAV8. The development of these toolswill allow to develop innovative immunomodulatory strategies to prevent AAV immunogenicity in patient
BELIN, CHRISTOPHE. "Recherche des determinants viraux impliques dans la transmission du virus du court-noue de la vigne (gflv) par son vecteur, le nematode xiphinema index". Université Louis Pasteur (Strasbourg) (1971-2008), 1999. http://www.theses.fr/1999STR13078.
Texto completo da fonteVaysse, Laurence. "Développement de vecteurs non viraux pour le transfert de gène dans l'épithélium respiratoire". Bordeaux 2, 2000. http://www.theses.fr/2000BOR28795.
Texto completo da fonteDoucet, Gilles. "Les vecteurs viraux pour le développement de thérapies géniques ex vivo dans les cellules du muscle squelettique humain". Master's thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19481.
Texto completo da fonteVenail, Frédéric. "Transfert d'ADN dans la cochlée de mammifère par vecteur adénoviral : mise au point technique vers un modèle de régénération de l'organe de Corti utilisant l'interférence ARN". Montpellier 1, 2008. http://www.theses.fr/2008MON1T024.
Texto completo da fonteLéger, Psylvia. "Etude comparée de l'infection de cellules de l'hôte mammifère et de cellules du vecteur moustique par le virus de la Fièvre de la Vallée du Rift". Paris 7, 2009. http://www.theses.fr/2009PA077073.
Texto completo da fonteThe Rift Valley Fever Virus (RVFV) is an arbovirus transmitted by mosquitoes to humans and livestock that causes dramatic epidemies and epizootics. As a member of the Phlebovirus genus of the Bunyaviridae family, the short segment (S) of its genome has an ambisens coding strategy for the nucleoprotein N and the non structural protein NSs. The later present an unusual localization to the nucleus, where it forms filamentous structures in mammalian cells. Through the interaction with several cellular factors, the NSs protein can be considered as a virulent factor. Interaction of NSs with p44, a subunit of the general transcription factor TFIIH, induces a progressive inhibition of the cellular RNA synthesis. NSs is also responsible of a specific inhibition of the interferon (3 (IFN(3) pathway when interacting with SAP30 and the transcription factor YY1, both required for the cell antiviral response. Contrary to mammals, the infection of mosquito cells by the RVFV remains asymptomatic. As the filamentous structure in the nucleus vanishes early after infection of mosquito cells, we analyzed the interaction of the NSs protein with the mosquito orthologs of the p44 and SAP30. A transient shutoff of the transcription is associated when NSs is present in the nucleus of mosquito cells, whereas the cleafance of NSs correlates with RNA synthesis restoration. These findings highlight the role of the NSs protein for differential pathogenesis observed between arthropod and mammal
Lourenco, Sofia. "Etude de la modulation de la traduction du virus de l'hépatite C par des facteurs viraux en cis et en trans et développement de nouveaux outils via le système lentiviral". Paris 6, 2008. http://www.theses.fr/2008PA066333.
Texto completo da fonteHepatitis C virus (HCV) is responsible of a major health problem, infecting 3% of world population. Hepatitis C Virus (HCV) possesses a positive single-stranded RNA genome with highly structured non coding (NC) regions at its extremities: 5’NC and 3’NC. Translation initiation of HCV RNA occurs via an Internal Ribosome Entry Site (IRES) located at its 5’end. Our aim was to clarify the role of cis (3’NCR) and trans (C, NS5A, NS5B) viral factors on the regulation of IRES activity. By the use of a dual RNA reporter system, targeting the translation step and avoiding the cryptic IRES promoter activity, relative IRES activities measured in luminometry (= RLuc/FLuc activities ratio) revealed the following features : 1) all the HCV 3’ non coding (NC) sequences tested highly stimulate in cis the IRES efficiency; 2) a dose and genotype dependent modulation of the translation in trans was shown with the capsid and NS5B ; and 3) not any cooperative effect could be obtained either between viral proteins, or in the presence of both cis and trans factors. Taking together these results encouraged us to propose a model in which the viral factors tested act sequentially to modulate viral translation and the switch to replication. We then focus on the development of novel tools for evaluating the IRES activity analysis. We established a bicistronic lentiviral system, which revealed efficient for drugs screening, however not adequate for a precise IRES activity analysis. Experiments actually in progress aim the precise analysis of IRES activity, drugs screening and in addition the study of other viruses, replacing the vaccine system currently used
Livros sobre o assunto "Vecteur viraux"
Julien, Jennifer. Le clônage de la protéine virale CrmA dans un vecteur d'expression. Sudbury, Ont: Université Laurentienne, 2000.
Encontre o texto completo da fonteL, Hefferon Kathleen, ed. Virus expression vectors. Tribandrum: Transworld Research Network, 2007.
Encontre o texto completo da fonteMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Encontre o texto completo da fonteMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Encontre o texto completo da fonteMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Encontre o texto completo da fonteT, Plumb R., ed. Plant virus vector interactions. San Diego: Academic Press, 2002.
Encontre o texto completo da fonteChan, C. K. Aphid-transmitted viruses and their vectors of the world. Vancouver: Research Branch, Agriculture Canada, 1991.
Encontre o texto completo da fonteInternational Symposium on Viruses with Fungal Vectors (1987 St. Andrews University). Viruses with fungal vectors. Wellesbourne, Warwick: Association of Applied Biologists, 1988.
Encontre o texto completo da fonteC, Asher M. J., Cooper J. I e Association of Applied Biologists, eds. Viruses with fungal vectors: Proceedings of a conference at the University of St. Andrews, 25-27 August, 1987. Wellesbourne, Warwick: Association of Applied Biologists, 1988.
Encontre o texto completo da fonteDanielová, Vlasta. Relationships of mosquitoes to Ťahyňa virus as determinant factors of its circulation in nature. Prague: Academia, Publishing House of the Czechoslovak Academy of Sciences, 1992.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Vecteur viraux"
Conzelmann, Karl-Klaus. "Reverse Genetics of Mononegavirales: The Rabies Virus Paradigm". In Sendai Virus Vector, 1–20. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_1.
Texto completo da fonteNagai, Yoshiyuki, e Atsushi Kato. "Sendai Virus Biology and Engineering Leading up to the Development of a Novel Class of Expression Vector". In Sendai Virus Vector, 21–68. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_2.
Texto completo da fonteIida, Akihiro, e Makoto Inoue. "Concept and Technology Underlying Sendai Virus (SeV) Vector Development". In Sendai Virus Vector, 69–89. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_3.
Texto completo da fonteWiegand, Marian, e Wolfgang J. Neubert. "Genome Replication-Incompetent Sendai Virus Vaccine Vector Against Respiratory Viral Infections That Is Capable of Eliciting a Broad Spectrum of Specific Immune Response". In Sendai Virus Vector, 91–126. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_4.
Texto completo da fonteSeki, Sayuri, e Tetsuro Matano. "Development of Vaccines Using SeV Vectors Against AIDS and Other Infectious Diseases". In Sendai Virus Vector, 127–49. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_5.
Texto completo da fonteYonemitsu, Yoshikazu, Yasuji Ueda e Mamoru Hasegawa. "BioKnife, a Modified Sendai Virus, to Resect Malignant Tumors". In Sendai Virus Vector, 151–69. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_6.
Texto completo da fonteFusaki, Noemi, e Hiroshi Ban. "Induction of Human Pluripotent Stem Cells by the Sendai Virus Vector: Establishment of a Highly Efficient and Footprint-Free System". In Sendai Virus Vector, 171–83. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_7.
Texto completo da fonteYonemitsu, Yoshikazu, Takuya Matsumoto e Yoshihiko Maehara. "Gene Therapy for Peripheral Arterial Disease Using Sendai Virus Vector: From Preclinical Studies to the Phase I/IIa Clinical Trial". In Sendai Virus Vector, 185–99. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_8.
Texto completo da fonteDíaz-Menéndez, Marta, e Clara Crespillo-Andújar. "The Vector". In Zika Virus Infection, 21–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59406-4_4.
Texto completo da fonteGulhan, Baris. "Biological Methods Used in Gene Therapy". In Gene Therapy, 39–63. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Vecteur viraux"
Araujo, Carlos Soares, Marco Cristo e Rafael Giusti. "Predicting Music Popularity on Streaming Platforms". In Simpósio Brasileiro de Computação Musical. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sbcm.2019.10436.
Texto completo da fonteMueller, Melanie, Ralf Amann, Thomas Feger e Hans-Georg Rammensee. "Abstract A170: The mode of action of Orf virus – a novel viral vector for therapeutic cancer vaccines". In Abstracts: CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr15-a170.
Texto completo da fonteTomilova, Yulia, Yulia Khvorostova, Mikhail Ivanov, Marina Mikhailenko, Elena Runkova, Viktoriia Makukha, Tatiana Komissarova e Eduard Agletidinov. "Complex PCR-diagnostics of respiratory infections in A children's hospital". In Proceedings of the International Congress Public Health - Achievements and Challenges, 72. Institute of Public Health of Serbia "Dr Milan Jovanović Batut", 2024. http://dx.doi.org/10.5937/batutphco24027t.
Texto completo da fonteNurpeisova, Ainur, Zhandos Abay, Kamshat Shorayeva, Sandugash Sadikaliyeva, Bolat Yespembetov, Kuanish Jekebekov, Nazym Syrym et al. "Determining optimal conditions for growing recombinant vectors to be used in developing a bovine tuberculosis vaccine". In Research for Rural Development 2023 : annual 29th international scientific conference proceedings. Latvia University of Life Sciences and Technologies, 2023. http://dx.doi.org/10.22616/rrd.29.2023.013.
Texto completo da fonteLessa, Ruan Teixeira, Daniel Pedrosa Cassiano, Yasmin Jawhari da Silva, Sebastião José de Almeida Júnior, Adrianny Freitas Teixeira, Ana Luíza Paes da Silveira, Antônio Henrique Roberti dos Santos et al. "Epidemiological study on hospitalizations for viral encephalitis in Brazil between january 2010 to december 2020". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.561.
Texto completo da fonteChisholm, Paul Joseph. "Competition with non-vectors mediates virus-vector interactions". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115741.
Texto completo da fonteZhu, Richard, e Sujata Bhatia. "Optimizing COVID-19 Vaccine Diffusion in Respiratory Mucosa through Stokes-Einstein Modeling". In 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1065.
Texto completo da fontede Souza, Laise Novellino Nunes, Wagner Rambaldi Telles e Jader Lugon Junior. "Analysis of legislation relating to vectors and management of urban floods in the state of Rio de Janeiro". In ENSUS 2024 - XII Encontro de Sustentabilidade em Projeto, 178–88. Grupo de Pesquisa Virtuhab/UFSC, 2024. http://dx.doi.org/10.29183/2596-237x.ensus2024.v12.n1.p178-188.
Texto completo da fonteRedinbaugh, Margaret (Peg). "Vector-virus interactions in maize agroecosystems in East Africa". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94561.
Texto completo da fonteRaafat, Nermin, Chantal Mengus, Michael Heberer, Giulio C. Spagnoli e Paul Zajac. "Abstract 1500: Modulation of recombinant vaccinia virus vector immunogenicity". In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1500.
Texto completo da fonteRelatórios de organizações sobre o assunto "Vecteur viraux"
Ullman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein e Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, setembro de 2002. http://dx.doi.org/10.32747/2002.7695847.bard.
Texto completo da fonteMawassi, Munir, e Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, junho de 2014. http://dx.doi.org/10.32747/2014.7594396.bard.
Texto completo da fonteMawassi, Munir, Adib Rowhani, Deborah A. Golino, Avichai Perl e Edna Tanne. Rugose Wood Disease of Grapevine, Etiology and Virus Resistance in Transgenic Vines. United States Department of Agriculture, novembro de 2003. http://dx.doi.org/10.32747/2003.7586477.bard.
Texto completo da fonteUllman, Diane E., Benjamin Raccah, John Sherwood, Meir Klein, Yehezkiel Antignus e Abed Gera. Tomato Spotted Wilt Tosporvirus and its Thrips Vectors: Epidemiology, Insect/Virus Interactions and Control. United States Department of Agriculture, novembro de 1999. http://dx.doi.org/10.32747/1999.7573062.bard.
Texto completo da fonteGrubman, Marvin J., Yehuda Stram, Peter W. Mason e Hagai Yadin. Development of an Empty Viral Capsid Vaccine against Foot and Mouth Disease. United States Department of Agriculture, agosto de 1995. http://dx.doi.org/10.32747/1995.7570568.bard.
Texto completo da fonteAntignus, Yehezkiel, Ernest Hiebert, Shlomo Cohen e Susan Webb. Approaches for Studying the Interaction of Geminiviruses with Their Whitefly Vector Bemisia tabaci. United States Department of Agriculture, julho de 1995. http://dx.doi.org/10.32747/1995.7604928.bard.
Texto completo da fonteHernández Guzmán, Anngie Katherine, Diana Marcela Torres Jiménez e Olga Yanet Pérez Cardona. Effect of the acquisition access period, retention period and inoculation access period on transmission efficiency of Potato yellow vein virus by Trialeurodes vaporariorum. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, 2013. http://dx.doi.org/10.21930/agrosavia.poster.2013.1.
Texto completo da fonteMawassi, Munir, Baozhong Meng e Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, julho de 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Texto completo da fonteKlement, Eyal, Elizabeth Howerth, William C. Wilson, David Stallknecht, Danny Mead, Hagai Yadin, Itamar Lensky e Nadav Galon. Exploration of the Epidemiology of a Newly Emerging Cattle-Epizootic Hemorrhagic Disease Virus in Israel. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7697118.bard.
Texto completo da fonteDurden, Lance A., Thomas M. Logan, Mark L. Wilson e Kenneth J. Linthicum. Experimental Vector Incompetence of a Soft Tick, Ornithodoros sonrai (Acari: Argasidae), for Crimean-Congo Hemorrhagic Fever Virus. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1993. http://dx.doi.org/10.21236/ada265568.
Texto completo da fonte