Literatura científica selecionada sobre o tema "Variable and anisotropic composites"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Variable and anisotropic composites".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Variable and anisotropic composites"
Robinson, D. N., e W. K. Binienda. "A Representation of Anisotropic Creep Damage in Fiber Reinforced Composites". Journal of Applied Mechanics 72, n.º 4 (28 de outubro de 2004): 484–92. http://dx.doi.org/10.1115/1.1875512.
Texto completo da fonteChang, Yan Jun, Ke Shi Zhang, Gui Qiong Jiao e Jian Yun Chen. "Application and Analysis of Plane Woven C/SiC Composites Based on Continuum Damage Mechanics". Advanced Materials Research 490-495 (março de 2012): 3916–19. http://dx.doi.org/10.4028/www.scientific.net/amr.490-495.3916.
Texto completo da fonteLu, C. H. "Bending of Anisotropic Sandwich Beams with Variable Thickness". Journal of Thermoplastic Composite Materials 7, n.º 4 (outubro de 1994): 364–74. http://dx.doi.org/10.1177/089270579400700406.
Texto completo da fonteMir, Hicham, Mario Fafard, Benoı^t Bissonnette e Marie-Laure Dano. "Damage Modeling in Random Short Glass Fiber Reinforced Composites Including Permanent Strain and Unilateral Effect". Journal of Applied Mechanics 72, n.º 2 (1 de março de 2005): 249–58. http://dx.doi.org/10.1115/1.1839593.
Texto completo da fonteBittrich, Lars, Axel Spickenheuer, José Humberto S. Almeida, Sascha Müller, Lothar Kroll e Gert Heinrich. "Optimizing Variable-Axial Fiber-Reinforced Composite Laminates: The Direct Fiber Path Optimization Concept". Mathematical Problems in Engineering 2019 (19 de fevereiro de 2019): 1–11. http://dx.doi.org/10.1155/2019/8260563.
Texto completo da fonteKawai, Masamichi, H. Kamioka, Jian Qi Zhang e Tetsuya Matsuda. "Off-Axis Creep Recovery of Unidirectional Carbon/Epoxy Composites at High Temperature". Key Engineering Materials 334-335 (março de 2007): 65–68. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.65.
Texto completo da fonteAlmeida, José Humberto S., Lars Bittrich, Tsuyoshi Nomura e Axel Spickenheuer. "Cross-section optimization of topologically-optimized variable-axial anisotropic composite structures". Composite Structures 225 (outubro de 2019): 111150. http://dx.doi.org/10.1016/j.compstruct.2019.111150.
Texto completo da fonteShafei, Erfan, Shirko Faroughi e Timon Rabczuk. "Multi-patch NURBS formulation for anisotropic variable angle tow composite plates". Composite Structures 241 (junho de 2020): 111964. http://dx.doi.org/10.1016/j.compstruct.2020.111964.
Texto completo da fonteKakade, Ramakant S., Dr Ajay Chavan e Prof Mayuri S. Mhaske. "Analysis of Epoxy Fiber Composite Clamp with Variable Slotted Holes for Electric Overhead Crane Mounting". International Journal of Innovative Research in Advanced Engineering 10, n.º 10 (10 de dezembro de 2023): 722–26. http://dx.doi.org/10.26562/ijirae.2023.v1010.02.
Texto completo da fonteKurkin, Evgenii, Oscar Ulises Espinosa Barcenas, Evgenii Kishov e Oleg Lukyanov. "Topology Optimization and Efficiency Evaluation of Short-Fiber-Reinforced Composite Structures Considering Anisotropy". Computation 12, n.º 2 (12 de fevereiro de 2024): 35. http://dx.doi.org/10.3390/computation12020035.
Texto completo da fonteTeses / dissertações sobre o assunto "Variable and anisotropic composites"
Chevalier, Romain. "Modélisation multi-échelles du comportement hygro-mécanique et étude de la stabilité dimensionnelle de structures composites lamellées collées aboutées en Pinus pinaster (Ait.)". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0057.
Texto completo da fonteThis thesis focuses on the development of a multi-scale model of the hygro-mechanical behaviour and the study of the shape stability of glued laminated timber (GLT) made of Pinus pinaster (Ait.). Wooden structures are subject to dimensional variations due to changes in climatic conditions. In the case of GLT structures, shape stability can be achieved through systematic design based on the properties of the constituent lamellae. To this end, a multi-scale model based on an exhaustive bibliographic study of the properties of Pinus pinaster (Ait.) has been developed. Using a numerical homogenisation method and a metamodel based on Non-Uniform Rational Basis-Spline (NURBS) hypersurfaces, this model provides a spatial representation of the heterogeneous, variable, and anisotropic properties of Pinus pinaster (Ait.) lamellae. In addition, configurations of GLTs, based on laminate theory, have been proposed and experimentally subjected to variations in climatic conditions. The induced displacements are measured using a digital image correlation method. Finally, a comparison of the displacements is carried out, enabling the recommendation of GLT configurations that improve the shape stability of the GLTs produced by the Gascogne Bois company
McKernan, Scott John. "Anisotropic tensile probabilistic failure criterion for composites". Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA237601.
Texto completo da fonteThesis Advisor(s): Wu, Edward M. "June 1990." Description based on title screen as viewed on October 16, 2009. Author(s) subject terms: Composite materials, probabilistic failure criterion, combined stress. Includes bibliographical references (p. 151). Also available in print.
Bradford, Ian David Richard. "Finite deformations of highly anisotropic materials". Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334952.
Texto completo da fonteMohamed, Abdel-Mohsen Onsy. "Performance of an anisotropic clay under variable stresses". Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75342.
Texto completo da fonteAs a consequence to what is mentioned above, two types of consolidated undrained true triaxial tests were conducted in this study. In the first type, specimens were trimmed from the block sample with 90, 60, 30 and 0 degree orientation angles of particle's bedding planes; these angles were measured with respect to the direction of the major principal stress axis. For each degree of inclination, specimens were tested with three confining pressures 207, 276 and 345 kPa, and for each value of confining pressure, the loading path was varied from compression to tension.
The degree of dissociation between the stress and strain increment vectors was seen to depend on both initial and stress induced anisotropy.
Most important of all, a constitutive relationship for anisotropic kaolinite clay was derived on the basis of the observed experimental behaviour of soil samples under loading.
Additionally, anisotropy is characterized by a double transformation technique. The first transformation accounts for the directional dependency whilst the second transformation concerns itself with anisotropy of the base vectors. The relative joint invariant principle is used to calculate the degree of dissociation during the loading process. The variation of the dissociation angle during the loading process can be considered as a measure of the evolution of the resultant anisotropy. The model has shown to provide viable predictions of the stress-strain relationships obtained from true triaxial tests on an anisotropic kaolinite clay for: (a) different inclinations of particle's bedding planes, (b) different stress paths in one sector, (c) different stress paths in other sectors, and (d) the failure surfaces for different inclinations of particle's bedding planes in the octahedral plane. (Abstract shortened with permission of author.)
Senan, Anish Sen. "Determination of the Viscoelastic Properties of General Anisotropic Materials". Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/SenanAS2003.pdf.
Texto completo da fonteBourn, Steven. "Anisotropic behaviour of magneto-electric coupling in multiferroic composites". Thesis, University of Central Lancashire, 2018. http://clok.uclan.ac.uk/23578/.
Texto completo da fonteCosta, Luan Mayk Torres. "Modélisation micromécanique à variables internes du comportement viscoélastique anisotrope des matériaux hétérogènes : applications aux composites à matrice organique". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0116.
Texto completo da fonteThe primary aim of this thesis is to devise a novel micromechanical approach for predicting the macroscopic viscoelastic response of heterogeneous materials. The behavior is achieved through micromechanical modeling that is based on local properties and microstructure. The effective viscoelastic properties are obtained by the use of appropriate mean-field homogenization methods. The mechanical approach is based on a Volterra integral-form functional constitutive law. Firstly, a new internal variable micromechanical formulation is obtained by utilizing the relaxation modulus. Secondly, a second micromechanical approach is developed, which employs the creep modulus and consists to the dual formulation. Using Green's function techniques, we derive integral equations that describe the heterogeneous viscoelastic problem for both cases. The main equation contains a challenging volume integral term, which necessitates the development of a second complementary integral equation. These two integral equations form the general formulation that we apply to the classical Eshelby viscoelastic inclusion problem. We employ an internal variable method that considers the material's history to be contained in its internal state. The approach is solved directly in the time domain, resulting in an exact solution with reduced computation time compared to hereditary approaches processed in the Laplace-Carson space. Our model enables us to evaluate the impact of anisotropic inclusions and to examine the influence of aging behavior on the composite viscoelastic properties. Both approaches proposed in this thesis deliver results that are consistent with those reported in the literature and offer a significant computational advantage over existing methods
Yalcin, Omer Fatih. "A Dynamic Theory For Laminated Composites Consisting Of Anisotropic Layers". Phd thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607116/index.pdf.
Texto completo da fonteit contains all kinds of deformation modes of the layered composite
its validity range for frequencies and wave numbers may be enlarged by increasing, respectively, the orders of the theory and interface conditions. CM is assessed by comparing its prediction with the exact for the spectra of harmonic waves propagating in various directions of a two-phase periodic layered composite, as well as, for transient dynamic response of a composite slab induced by waves propagating perpendicular to layering. A good comparison is observed in the results and it is found that the model predicts very well the periodic structure of spectra with passing and stopping bands for harmonic waves propagating perpendicular to layering. In view of the results, the physical significance of Floquet wave number is also discussed in the study.
Searle, Timothy John. "The manufacture of marine propellers in moulded anisotropic polymer composites". Thesis, University of Plymouth, 1998. http://hdl.handle.net/10026.1/2766.
Texto completo da fonteBelijar, Guillaume. "Anisotropic composite elaboration and modeling : toward materials adapted to systems". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30353/document.
Texto completo da fonteThis study was aimed to demonstrate the possibility, based on a predictive approach, to tailor the structure of a composite from isotropic to anisotropic when applying an electric field. This composites have great potential for future applications such as embed capacitors or thermally conductive composites. A theoretical approach of the forces and mechanisms acting in the elaboration of anisotropic composites by chaining allowed identifying the key parameters. Based on this approach a model of particle chaining under electric field was established to predict the structuration dynamics. This model (effective dipole moment) allowed simulating more than 4500 particles. The parameters previously identified were then measured, and for the particle permittivity, a dielectrophoretic measurement method was developed, which was a first for ceramic particles. The elaboration of anisotropic composites was coupled to a novel on-line monitoring of a chaining marker (permittivity), allowing to obtain the structuration dynamics. To validate the predictive aspect of the model, experimental and numerical dynamics were compared showing the robustness and accuracy of the model, even if improvement is still possible at low filler content. In the last part, a proof of concept was demonstrated of the elaboration of anisotropic composites with fillers oriented normally to the direction of the electric field
Livros sobre o assunto "Variable and anisotropic composites"
Freger, G. E., V. N. Kestelman e D. G. Freger. Spirally Anisotropic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9.
Texto completo da fonteFreger, G. E. Spirally Anisotropic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Encontre o texto completo da fonteRobinson, David N. A hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteQ, Tao, Verrilli M. J e United States. National Aeronautics and Space Administration., eds. A hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteNayfeh, Adnan H. Wave propagation in layered anisotropic media: With applications to composites. Amsterdam: Elsevier, 1995.
Encontre o texto completo da fonteF, Knight Norman, Ambur Damodar R e United States. National Aeronautics and Space Administration., eds. Buckling analysis of anisotropic curved panels and shells with variable curvature. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Encontre o texto completo da fonteF, Knight Norman, Ambur Damodar R e United States. National Aeronautics and Space Administration., eds. Buckling analysis of anisotropic curved panels and shells with variable curvature. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Encontre o texto completo da fonteM, Arnold S., Al-Zoubi Nasser R e NASA Glenn Research Center, eds. A study of time-dependent and anisotropic effects on the deformation response of two flywheel designs. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Encontre o texto completo da fonteM, Arnold S., Al-Zoubi Nasser R e NASA Glenn Research Center, eds. A study of time-dependent and anisotropic effects on the deformation response of two flywheel designs. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Encontre o texto completo da fonteSaleeb, Atef F. A study of time-dependent and anisotropic effects on the deformation response of two flywheel designs. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Variable and anisotropic composites"
Hwu, Chyanbin. "Complex Variable Formalism". In Anisotropic Elasticity with Matlab, 21–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66676-7_2.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Hybridization and Spatial Reinforcement of Composite Materials". In Spirally Anisotropic Composites, 1–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_1.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "General Conclusions and Recommendations". In Spirally Anisotropic Composites, 287–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_10.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Major Principles of Developing Material Structures with Hybrid Spirally Reinforced Filler". In Spirally Anisotropic Composites, 27–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_2.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Stress-Strain State in Composites Based on Hybrid Spirally Reinforced Fillers Under Transverse Loading". In Spirally Anisotropic Composites, 61–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_3.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Stress-Strain State of the Composite Based on Spirally Reinforced Filler Under Loading in the Direction of Reinforcement". In Spirally Anisotropic Composites, 115–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_4.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Description of Production Technology and Physico-Mechanical Properties of Composites Based on Spirally Reinforced Fillers". In Spirally Anisotropic Composites, 141–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_5.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Design of Composite Spirally Reinforced Rods". In Spirally Anisotropic Composites, 195–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_6.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "The Effect of Structural and Geometrical Parameters on Rod Properties". In Spirally Anisotropic Composites, 219–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_7.
Texto completo da fonteFreger, G. E., V. N. Kestelman e D. G. Freger. "Optimal Design of Hybrid Spirally Reinforced Rods". In Spirally Anisotropic Composites, 243–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9_8.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Variable and anisotropic composites"
Shen, Zikui, Yanpeng Hao, Meng Zhou, Zhidong Jia, Jun Wang, Dongyuan Du, Fengzhen Zhang e Wei Liang. "Electric Field-assisted Preparation of Anisotropic BNNw/SiR Composites for Thermal Management". In 2024 IEEE 5th International Conference on Dielectrics (ICD), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icd59037.2024.10613286.
Texto completo da fonteZhou, Yuqing, Tsuyoshi Nomura, Enpei Zhao, Wei Zhang e Kazuhiro Saitou. "Large-Scale Three-Dimensional Anisotropic Topology Optimization of Variable-Axial Composite Structures". In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22509.
Texto completo da fonteHe, Ge, Yucheng Liu, D. J. Bammann e M. F. Horstemeyer. "An Elastothermoviscoplasticity Anisotropic Damage Model for Short Fiber Reinforced Polymer Composites". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86286.
Texto completo da fonteGarcia, Jordan, Sayer Smith, Brian Sibley e Y. Charles Lu. "Effect of Fiber Content on Anisotropic Behavior of 3D Printed Fiber Composites". In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0071.
Texto completo da fonteRAHMAN, MINHAZUR, VAMSEE VADLAMUDI e RASSEL RAIHAN. "MECHANICAL AND DIELECTRIC MODELING OF ADHESIVE BONDED FIBER REINFORCED COMPOSITE SINGLE LAP JOINTS". In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36462.
Texto completo da fonteGérard, A., e P. K. Raju. "Optimization of Composites Through Ultrasonic Characterization". In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0212.
Texto completo da fonteChow, C. L., Fan Yang e H. Eliot Fang. "Crack Initiation in Notched Unidirectional Graphite/Epoxy Composites". In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0668.
Texto completo da fonteGori, Fabio, Sandra Corasaniti e Jean-François Ciparisse. "Theoretical Prediction of the Anisotropic Effective Thermal Conductivity of Composite Materials". In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86114.
Texto completo da fonteSakai, J., e Y. H. Park. "Optimum Design of Composite Pressure Vessel Based on 3-Dimensional Failure Criteria". In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93816.
Texto completo da fonteNomura, Tsuyoshi, Yoshihiro Iwano, Atsushi Kawamoto, Katsuharu Yoshikawa e Axel Spickenheuer. "Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement". In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2022. http://dx.doi.org/10.4271/2022-01-0344.
Texto completo da fonteRelatórios de organizações sobre o assunto "Variable and anisotropic composites"
Biswas, Kaushik, Som S. Shrestha, Diana E. Hun e Jerald Atchley. Experimental and numerical evaluations of the energy savings potential of thermally anisotropic composites. Office of Scientific and Technical Information (OSTI), maio de 2019. http://dx.doi.org/10.2172/1515652.
Texto completo da fonteMalchi, Jonathan Y., e Timothy J. Foley. Development of nano-thermite composites with variable electrostatic discharge ignition thresholds. Office of Scientific and Technical Information (OSTI), novembro de 2007. http://dx.doi.org/10.2172/1454970.
Texto completo da fonteWetzel, Kyle K., Thomas M. Hermann e James Locke. Fabrication, testing, and analysis of anisotropic carbon/glass hybrid composites: volume 1: technical report. Office of Scientific and Technical Information (OSTI), novembro de 2005. http://dx.doi.org/10.2172/896281.
Texto completo da fonteJury, William A., e David Russo. Characterization of Field-Scale Solute Transport in Spatially Variable Unsaturated Field Soils. United States Department of Agriculture, janeiro de 1994. http://dx.doi.org/10.32747/1994.7568772.bard.
Texto completo da fonteZiegler, Nancy, Nicholas Webb, Adrian Chappell e Sandra LeGrand. Scale invariance of albedo-based wind friction velocity. Engineer Research and Development Center (U.S.), maio de 2021. http://dx.doi.org/10.21079/11681/40499.
Texto completo da fonteDocumentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density. US Geological Survey, 2001. http://dx.doi.org/10.3133/wri004105.
Texto completo da fonte