Artigos de revistas sobre o tema "Unmanned ground vehicles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Unmanned ground vehicles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gorsky, Alexander, Vitaliy Demyanov e Alexander Zhukov. "Problem of creation ground robotics vehicle". Robotics and Technical Cybernetics 10, n.º 2 (junho de 2022): 154–60. http://dx.doi.org/10.31776/rtcj.10209.
Texto completo da fonteChang, Bao Rong, Hsiu-Fen Tsai, Jyong-Lin Lyu e Chien-Feng Huang. "Distributed sensing units deploying on group unmanned vehicles". International Journal of Distributed Sensor Networks 17, n.º 7 (julho de 2021): 155014772110368. http://dx.doi.org/10.1177/15501477211036877.
Texto completo da fonteLi, Xin, Guang Ming Xiong, Yang Sun, Shao Bin Wu, Jian Wei Gong, Hui Yan Chen e Li Gao. "Design on Hierarchical Testing System for Unmanned Ground Vehicles". Advanced Materials Research 346 (setembro de 2011): 817–22. http://dx.doi.org/10.4028/www.scientific.net/amr.346.817.
Texto completo da fonteHay, A., C. Samson, L. Tuck e A. Ellery. "Magnetic surveying with an unmanned ground vehicle". Journal of Unmanned Vehicle Systems 6, n.º 4 (1 de dezembro de 2018): 249–66. http://dx.doi.org/10.1139/juvs-2018-0013.
Texto completo da fonteAli, Ali M., Md Asri Ngadi, Rohana Sham e Israa Ibraheem Al_Barazanchi. "Enhanced QoS Routing Protocol for an Unmanned Ground Vehicle, Based on the ACO Approach". Sensors 23, n.º 3 (28 de janeiro de 2023): 1431. http://dx.doi.org/10.3390/s23031431.
Texto completo da fonteAl-Bkree, Mahmod. "Optimizing Perimeter Surveillance Drones to enhance the security system of unmanned aerial vehicles". Security science journal 2, n.º 2 (13 de dezembro de 2021): 105–15. http://dx.doi.org/10.37458/ssj.2.2.7.
Texto completo da fonteZhang, Xin, Yan An Zhao, Li Gao e Dong Hao Hao. "Evaluation Framework and Method of the Intelligent Behaviors of Unmanned Ground Vehicles Based on AHP Scheme". Applied Mechanics and Materials 721 (dezembro de 2014): 476–80. http://dx.doi.org/10.4028/www.scientific.net/amm.721.476.
Texto completo da fonteLiu, Qi, Zirui Li, Shihua Yuan, Yuzheng Zhu e Xueyuan Li. "Review on Vehicle Detection Technology for Unmanned Ground Vehicles". Sensors 21, n.º 4 (14 de fevereiro de 2021): 1354. http://dx.doi.org/10.3390/s21041354.
Texto completo da fonteShipov, Il’ya, e Evgeniy Vetoshkin. "Integrated navigation of unmanned ground vehicles". Robotics and Technical Cybernetics 9, n.º 2 (30 de junho de 2021): 127–32. http://dx.doi.org/10.31776/rtcj.9207.
Texto completo da fonteMuangmin, Kamonwan, e Thanapat Wanichanon. "Formation keeping of unmanned ground vehicles". MATEC Web of Conferences 95 (2017): 09006. http://dx.doi.org/10.1051/matecconf/20179509006.
Texto completo da fonteValerio, Carlos G., Néstor Aguillón, Eduardo S. Espinoza e Rogelio Lozano. "Reference Generator for a System of Multiple Tethered Unmanned Aerial Vehicles". Drones 6, n.º 12 (1 de dezembro de 2022): 390. http://dx.doi.org/10.3390/drones6120390.
Texto completo da fonteAkopov, A. S., N. K. Khachatryan, L. A. Beklaryan e A. L. Beklaryan. "UNMANNED VEHICLE CONTROL SYSTEM BASED ON FUZZY CLUSTERING. PART 2. FUZZY CLUSTERING AND SOFTWARE IMPLEMENTATION". Vestnik komp'iuternykh i informatsionnykh tekhnologii, n.º 196 (outubro de 2020): 21–29. http://dx.doi.org/10.14489/vkit.2020.10.pp.021-029.
Texto completo da fonteAkopov, A. S., N. K. Khachatryan, L. A. Beklaryan e A. L. Beklaryan. "UNMANNED VEHICLE CONTROL SYSTEM BASED ON FUZZY CLUSTERING. PART 2. FUZZY CLUSTERING AND SOFTWARE IMPLEMENTATION". Vestnik komp'iuternykh i informatsionnykh tekhnologii, n.º 196 (outubro de 2020): 21–29. http://dx.doi.org/10.14489/vkit.2020.10.pp.021-029.
Texto completo da fonteTypiak, Andrzej, e Michał Gnatowski. "Map Building System for Unmanned Ground Vehicle". Solid State Phenomena 180 (novembro de 2011): 131–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.180.131.
Texto completo da fonteKuprinenko, O., V. Mocherad, S. Zahrebelnyi e O. Sliusarenko. "Determination of the need of the army in unmanned ground vehicles". Military Technical Collection, n.º 26 (23 de junho de 2022): 33–41. http://dx.doi.org/10.33577/2312-4458.26.2022.33-41.
Texto completo da fonteSun, Yang, Guang Ming Xiong, Hui Yan Chen, Shao Bin Wu, Jian Wei Gong e Yan Jiang. "A Cost Function-Oriented Quantitative Evaluation Method for Unmanned Ground Vehicles". Advanced Materials Research 301-303 (julho de 2011): 701–6. http://dx.doi.org/10.4028/www.scientific.net/amr.301-303.701.
Texto completo da fonteZhao, Ya-Nan, Kai-Wen Meng e Li Gao. "The Entropy-Cost Function Evaluation Method for Unmanned Ground Vehicles". Mathematical Problems in Engineering 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/410796.
Texto completo da fonteBis, Rachael, Huei Peng e A. Galip Ulsoy. "Vehicle occupancy space for unmanned ground vehicles with actuation error". International Journal of Vehicle Autonomous Systems 12, n.º 2 (2014): 180. http://dx.doi.org/10.1504/ijvas.2014.060115.
Texto completo da fonteMeng, Channa, John Morris e Chattraku Sombattheera. "Tracking from Unmanned Aerial Vehicles". Applied Mechanics and Materials 781 (agosto de 2015): 491–94. http://dx.doi.org/10.4028/www.scientific.net/amm.781.491.
Texto completo da fonteArokiasami, Willson Amalraj, Prahlad Vadakkepat, Kay Chen Tan e Dipti Srinivasan. "Real-Time Path-Generation and Path-Following Using an Interoperable Multi-Agent Framework". Unmanned Systems 06, n.º 04 (outubro de 2018): 231–50. http://dx.doi.org/10.1142/s2301385018500061.
Texto completo da fonteVäljaots, E., e R. Sell. "Energy efficiency profiles for unmanned ground vehicles". Proceedings of the Estonian Academy of Sciences 68, n.º 1 (2019): 55. http://dx.doi.org/10.3176/proc.2019.1.04.
Texto completo da fonteHester, Geoff, Chris Smith, Pete Day e Antony Waldock. "The Next Generation of Unmanned Ground Vehicles". Measurement and Control 45, n.º 4 (maio de 2012): 117–21. http://dx.doi.org/10.1177/002029401204500404.
Texto completo da fonteLiu, Sheng, Jingxiang Yu, Zhenghao Ke, Fengji Dai e Yibin Chen. "Aerial–ground collaborative 3D reconstruction for fast pile volume estimation with unexplored surroundings". International Journal of Advanced Robotic Systems 17, n.º 2 (1 de março de 2020): 172988142091994. http://dx.doi.org/10.1177/1729881420919948.
Texto completo da fonteFabris, Eduardo Jose, Vicenzo Abichequer Sangalli, Leonardo Pavanatto Soares e Márcio Sarroglia Pinho. "Immersive telepresence on the operation of unmanned vehicles". International Journal of Advanced Robotic Systems 18, n.º 1 (1 de janeiro de 2021): 172988142097854. http://dx.doi.org/10.1177/1729881420978544.
Texto completo da fonteMiteva, Rositsa, Todor Kunchev, Svetoslav Zabunov, Garo Mardirossian e Roxandra Pamukoff-Michelson. "Ionizing Radiation Sensor for Nanosatellites, Microdrones and Small Unmanned Ground Vehicles". Aerospace Research in Bulgaria 34 (2022): 56–65. http://dx.doi.org/10.3897/arb.v34.e04.
Texto completo da fontePalacios, Filiberto Muñoz, Eduardo Steed Espinoza Quesada, Guillaume Sanahuja, Sergio Salazar, Octavio Garcia Salazar e Luis Rodolfo Garcia Carrillo. "Test bed for applications of heterogeneous unmanned vehicles". International Journal of Advanced Robotic Systems 14, n.º 1 (1 de janeiro de 2017): 172988141668711. http://dx.doi.org/10.1177/1729881416687111.
Texto completo da fonteLiu, Jun, Pengliang Yang, Mingming Lu, Lei Sun e He Huang. "Research on the reconstruction configuration and motion behavior of unmanned metamorphic vehicle". International Journal of Advanced Robotic Systems 19, n.º 1 (1 de janeiro de 2022): 172988142210759. http://dx.doi.org/10.1177/17298814221075931.
Texto completo da fonteParfiryev, A. V., O. V. Parfiryeva e A. V. Dushkin. "Optimization of the algorithm of information analysis and processing in the optoelectronic system". Proceedings of Universities. Electronics 27, n.º 1 (fevereiro de 2022): 106–19. http://dx.doi.org/10.24151/1561-5405-2022-27-1-106-119.
Texto completo da fonteShuang, Xuecheng, e Yan Zhang. "Design of Unmanned Wing-in-ground Effect Vehicle with Tri-fold Main Wing". E3S Web of Conferences 248 (2021): 02062. http://dx.doi.org/10.1051/e3sconf/202124802062.
Texto completo da fonteChen, Yingjue, Yingnan Gu, Panfeng Li e Feng Lin. "Minimizing the number of wireless charging PAD for unmanned aerial vehicle–based wireless rechargeable sensor networks". International Journal of Distributed Sensor Networks 17, n.º 12 (dezembro de 2021): 155014772110559. http://dx.doi.org/10.1177/15501477211055958.
Texto completo da fonteNagy, Dávid, e Péter Gáspár. "Active suspension control design for unmanned ground vehicles". Periodica Polytechnica Transportation Engineering 40, n.º 1 (2012): 27. http://dx.doi.org/10.3311/pp.tr.2012-1.05.
Texto completo da fontePAILLAT, Jean-Luc, Philippe LUCIDARME e Laurent HARDOUIN. "Evolutionnary stair climbing controler for Unmanned Ground Vehicles". IFAC Proceedings Volumes 42, n.º 16 (2009): 131–36. http://dx.doi.org/10.3182/20090909-4-jp-2010.00024.
Texto completo da fonteAkopov, A. S., L. A. Beklaryan, N. K. Khachatryan, A. L. Beklaryan e E. V. Kuznetsova. "Multi-Agent Control System for Unmanned Ground Vehicles". Informacionnye tehnologii 26, n.º 6 (23 de junho de 2020): 342–53. http://dx.doi.org/10.17587/it.26.342-353.
Texto completo da fonteRucco, Alessandro, P. B. Sujit, A. Pedro Aguiar, Joao Borges de Sousa e F. Lobo Pereira. "Optimal Rendezvous Trajectory for Unmanned Aerial-Ground Vehicles". IEEE Transactions on Aerospace and Electronic Systems 54, n.º 2 (abril de 2018): 834–47. http://dx.doi.org/10.1109/taes.2017.2767958.
Texto completo da fonteEvans, William A., e Susan G. Hill. "Investigating Operator Aids for Autonomous Unmanned Ground Vehicles". Proceedings of the Human Factors and Ergonomics Society Annual Meeting 59, n.º 1 (setembro de 2015): 1032–36. http://dx.doi.org/10.1177/1541931215591292.
Texto completo da fonteGorsich, David J., Paramsothy Jayakumar, Michael P. Cole, Cory M. Crean, Abhinandan Jain e Tulga Ersal. "Evaluating mobility vs. latency in unmanned ground vehicles". Journal of Terramechanics 80 (dezembro de 2018): 11–19. http://dx.doi.org/10.1016/j.jterra.2018.10.001.
Texto completo da fonteSONG, XIAOJING, LAKMAL D. SENEVIRATNE, KASPAR ALTHOEFER e ZIBIN SONG. "VISION-BASED VELOCITY ESTIMATION FOR UNMANNED GROUND VEHICLES". International Journal of Information Acquisition 04, n.º 04 (dezembro de 2007): 303–15. http://dx.doi.org/10.1142/s021987890700137x.
Texto completo da fonteSadrpour, Amir, Jionghua Jin, A. Galip Ulsoy e Hyo Jong Lee. "Simulation-based acceptance testing for unmanned ground vehicles". International Journal of Vehicle Autonomous Systems 11, n.º 1 (2013): 62. http://dx.doi.org/10.1504/ijvas.2013.052274.
Texto completo da fonteBartnicki, Adam. "Teleoperation in Remote Steering System Built in Unmanned Land Vehicles". Solid State Phenomena 223 (novembro de 2014): 333–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.223.333.
Texto completo da fonteАрешев, Д. С. "Quality assessment of digital processing of images obtained by aerial photography with unmanned aerial vehicles". Informacionno-technologicheskij vestnik, n.º 4(30) (15 de dezembro de 2021): 83–88. http://dx.doi.org/10.21499/2409-1650-30-4-83-88.
Texto completo da fonteTsarichenko, Sergey, Evgeniy Antokhin, Leonid Voronin e Sergey Zhdanov. "Basic requirements for complexes with unmanned aerial vehicles intended for inclusion in the combat equipment of military personnel". Robotics and Technical Cybernetics 9, n.º 4 (30 de dezembro de 2022): 252–59. http://dx.doi.org/10.31776/rtcj.9402.
Texto completo da fonteVäljaots, Eero, Raivo Sell e Mati Kaeeli. "Motion and Energy Efficiency Parameters of the Unmanned Ground Vehicle". Solid State Phenomena 220-221 (janeiro de 2015): 934–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.220-221.934.
Texto completo da fonteCantieri, Alvaro, Matheus Ferraz, Guido Szekir, Marco Antônio Teixeira, José Lima, André Schneider Oliveira e Marco Aurélio Wehrmeister. "Cooperative UAV–UGV Autonomous Power Pylon Inspection: An Investigation of Cooperative Outdoor Vehicle Positioning Architecture". Sensors 20, n.º 21 (9 de novembro de 2020): 6384. http://dx.doi.org/10.3390/s20216384.
Texto completo da fonteAli, Zain Anwar, e Xinde Li. "Modeling and controlling of quadrotor aerial vehicle equipped with a gripper". Measurement and Control 52, n.º 5-6 (16 de abril de 2019): 577–87. http://dx.doi.org/10.1177/0020294019834040.
Texto completo da fonteOh, Hyondong, Seungkeun Kim, Hyo-Sang Shin, Antonios Tsourdos e Brian A. White. "Behaviour recognition of ground vehicle using airborne monitoring of unmanned aerial vehicles". International Journal of Systems Science 45, n.º 12 (4 de março de 2013): 2499–514. http://dx.doi.org/10.1080/00207721.2013.772677.
Texto completo da fonteXu, Fengtong, Tao Hong, Jingcheng Zhao e Tao Yang. "Detection and identification technology of rotor unmanned aerial vehicles in 5G scene". International Journal of Distributed Sensor Networks 15, n.º 6 (junho de 2019): 155014771985399. http://dx.doi.org/10.1177/1550147719853990.
Texto completo da fontePrajwal Shenoy, T., K. Praveen Shenoy, Lukhman Khan, Sabdar Aziz, Sayed Afran e Kamlesh Kumar. "Design and development of a novel triphibian quadcopter". International Journal of Engineering & Technology 7, n.º 2.21 (20 de abril de 2018): 1. http://dx.doi.org/10.14419/ijet.v7i2.21.11822.
Texto completo da fonteSchenkel, Jared, Paul Taele, Daniel Goldberg, Jennifer Horney e Tracy Hammond. "Identifying Potential Mosquito Breeding Grounds: Assessing the Efficiency of UAV Technology in Public Health". Robotics 9, n.º 4 (11 de novembro de 2020): 91. http://dx.doi.org/10.3390/robotics9040091.
Texto completo da fonteSell, Raivo, e Priit Leomar. "Universal Navigation Algorithm Planning Platform for Unmanned Systems". Solid State Phenomena 164 (junho de 2010): 405–10. http://dx.doi.org/10.4028/www.scientific.net/ssp.164.405.
Texto completo da fonteAkopov, A. S., N. K. Khachatryan, L. A. Beklaryan e A. L. Beklaryan. "UNMANNED VEHICLE CONTROL SYSTEM BASED ON FUZZY CLUSTERING. PART 1. VEHICLE MOVEMENT MODEL". Vestnik komp'iuternykh i informatsionnykh tekhnologii, n.º 195 (setembro de 2020): 3–12. http://dx.doi.org/10.14489/vkit.2020.09.pp.003-012.
Texto completo da fonte