Literatura científica selecionada sobre o tema "Unmanned ground vehicles"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Unmanned ground vehicles".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Unmanned ground vehicles"
Gorsky, Alexander, Vitaliy Demyanov e Alexander Zhukov. "Problem of creation ground robotics vehicle". Robotics and Technical Cybernetics 10, n.º 2 (junho de 2022): 154–60. http://dx.doi.org/10.31776/rtcj.10209.
Texto completo da fonteChang, Bao Rong, Hsiu-Fen Tsai, Jyong-Lin Lyu e Chien-Feng Huang. "Distributed sensing units deploying on group unmanned vehicles". International Journal of Distributed Sensor Networks 17, n.º 7 (julho de 2021): 155014772110368. http://dx.doi.org/10.1177/15501477211036877.
Texto completo da fonteLi, Xin, Guang Ming Xiong, Yang Sun, Shao Bin Wu, Jian Wei Gong, Hui Yan Chen e Li Gao. "Design on Hierarchical Testing System for Unmanned Ground Vehicles". Advanced Materials Research 346 (setembro de 2011): 817–22. http://dx.doi.org/10.4028/www.scientific.net/amr.346.817.
Texto completo da fonteHay, A., C. Samson, L. Tuck e A. Ellery. "Magnetic surveying with an unmanned ground vehicle". Journal of Unmanned Vehicle Systems 6, n.º 4 (1 de dezembro de 2018): 249–66. http://dx.doi.org/10.1139/juvs-2018-0013.
Texto completo da fonteAli, Ali M., Md Asri Ngadi, Rohana Sham e Israa Ibraheem Al_Barazanchi. "Enhanced QoS Routing Protocol for an Unmanned Ground Vehicle, Based on the ACO Approach". Sensors 23, n.º 3 (28 de janeiro de 2023): 1431. http://dx.doi.org/10.3390/s23031431.
Texto completo da fonteAl-Bkree, Mahmod. "Optimizing Perimeter Surveillance Drones to enhance the security system of unmanned aerial vehicles". Security science journal 2, n.º 2 (13 de dezembro de 2021): 105–15. http://dx.doi.org/10.37458/ssj.2.2.7.
Texto completo da fonteZhang, Xin, Yan An Zhao, Li Gao e Dong Hao Hao. "Evaluation Framework and Method of the Intelligent Behaviors of Unmanned Ground Vehicles Based on AHP Scheme". Applied Mechanics and Materials 721 (dezembro de 2014): 476–80. http://dx.doi.org/10.4028/www.scientific.net/amm.721.476.
Texto completo da fonteLiu, Qi, Zirui Li, Shihua Yuan, Yuzheng Zhu e Xueyuan Li. "Review on Vehicle Detection Technology for Unmanned Ground Vehicles". Sensors 21, n.º 4 (14 de fevereiro de 2021): 1354. http://dx.doi.org/10.3390/s21041354.
Texto completo da fonteShipov, Il’ya, e Evgeniy Vetoshkin. "Integrated navigation of unmanned ground vehicles". Robotics and Technical Cybernetics 9, n.º 2 (30 de junho de 2021): 127–32. http://dx.doi.org/10.31776/rtcj.9207.
Texto completo da fonteMuangmin, Kamonwan, e Thanapat Wanichanon. "Formation keeping of unmanned ground vehicles". MATEC Web of Conferences 95 (2017): 09006. http://dx.doi.org/10.1051/matecconf/20179509006.
Texto completo da fonteTeses / dissertações sobre o assunto "Unmanned ground vehicles"
Kirchhoff, Allan Richard. "Text Localization for Unmanned Ground Vehicles". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/52569.
Texto completo da fonteMaster of Science
Umansky, Mark. "A Prototype Polarimetric Camera for Unmanned Ground Vehicles". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23724.
Texto completo da fonteMaster of Science
Rodriguez, Uriel. "Miniaturization of ground station for unmanned air vehicles". [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0008480.
Texto completo da fonteKirsch, Patricia Jean. "Autonomous swarms of unmanned vehicles software control system and ground vehicle testing /". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2993.
Texto completo da fonteThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Olsson, Martin. "Obstacle detection using stereo vision for unmanned ground vehicles". Thesis, Linköping University, Department of Science and Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18255.
Texto completo da fonteHenderson, Harold Paulk Bevly David M. "Relative positioning of unmanned ground vehicles using ultrasonic sensors". Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mechanical_Engineering/Thesis/Henderson_Harold_55.pdf.
Texto completo da fonteDaily, Robert L. Bevly David M. "Stream function path planning and control for unmanned ground vehicles". Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Mechanical_Engineering/Dissertation/Daily_Robert_45.pdf.
Texto completo da fonteBayar, Gokhan. "Trajectory Tracking Control Of Unmanned Ground Vehicles In Mixed Terrain". Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615105/index.pdf.
Texto completo da fontei.e, traction, rolling and lateral. A new methodology to represent the effects of lateral wheel force is proposed. An estimation procedure to estimate the parameters of external wheel forces is also introduced. Moreover, a modeling study that is related to show the effects of surface inclination on tracking performance is performed and the system model of the differential drive mobile robot is updated accordingly. In order to accomplish better trajectory tracking performance and accuracy for a steerable four-wheeled mobile robot, a modeling work that includes a desired trajectory generator and trajectory tracking controller is implemented. The slippage is defined via the slip velocities of steerable front and motorized rear wheels of the mobile robot. These slip velocities are obtained by using the proposed slippage estimation procedure. The estimated slippage information is then comprised into the system model so as to increase the performance and accuracy of the trajectory tracking tasks. All the modeling studies proposed in this study are tested by using simulations and verified on experimental platforms.
Omelchenko, Alexander 1968. "Avionics systems design for cooperative unmanned air and ground vehicles". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17789.
Texto completo da fonte"June 2004."
Includes bibliographical references (p. 95).
This thesis summarizes the results of the design of avionics systems intended for use onboard unmanned air and ground vehicles, that are parts of a multi-vehicle system whose primary mission objective is to provide up-close surveillance capability from a large stand-off distance. Different types of cooperative action between air and ground vehicles, that can help to enhance the overall system surveillance capability, are analyzed, including communication relay, simultaneous visual surveillance of ground objects from air and ground vehicles, and visual coverage of ground vehicles from air vehicles. Both hardware and software design as well as practical implementation of the designed avionics systems are discussed, and results of field tests are presented.
by Alexander Omelchenko.
S.M.and E.A.A.
Spenko, Matthew J. (Matthew Julius) 1976. "Hazard avoidance for high-speed rough-terrain unmanned ground vehicles". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32389.
Texto completo da fonte"June 2005."
Includes bibliographical references (p. 111-116).
High-speed unmanned ground vehicles have important applications in rough-terrain. In these applications unexpected and dangerous situations can occur that require rapid hazard avoidance maneuvers. At high speeds, there is limited time to perform navigation and hazard avoidance calculations based on detailed vehicle and terrain models. Furthermore, detailed models often do not accurately predict the robot's performance due to model parameter and sensor uncertainty. This thesis presents the development and analysis of a novel method for high speed navigation and hazard avoidance. The method is based on the two dimensional "trajectory space," which is a compact model-based representation of a robot's dynamic performance limits on natural terrain. This method allows a vehicle to perform dynamically feasible hazard avoidance maneuvers in a computationally efficient manner. This thesis also presents a novel method for trajectory replanning, based on a "curvature matching" technique. This method quickly generates a path connects the end of the path generated by a hazard avoidance maneuver to the nominal desired path. Simulation and experimental results with a small gasoline-powered high-speed unmanned ground vehicle verify the effectiveness of these algorithms. The experimental results demonstrate the ability of the algorithm to account for multiple hazards, varying terrain inclination, and terrain roughness. The experimental vehicle attained speeds of 8 m/s (18 mph) on flat and sloped terrain and 7 m/s (16 mph) on rough terrain.
by Matthew J. Spenko.
Ph.D.
Livros sobre o assunto "Unmanned ground vehicles"
Hebert, Martial H., Charles Thorpe e Anthony Stentz, eds. Intelligent Unmanned Ground Vehicles. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9.
Texto completo da fonteNational Research Council (U.S.). Committee on Army Unmanned Ground Vehicle Technology. e National Research Council (U.S.). Board on Army Science and Technology., eds. Technology development for Army unmanned ground vehicles. Washington, D.C: National Academies Press, 2002.
Encontre o texto completo da fonteHebert, Martial H. Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon. Boston, MA: Springer US, 1997.
Encontre o texto completo da fonteIntroduction to unmanned systems: Air, ground, sea & space : technologies and commercial applications. [Phoenix, AZ]: Unmanned Vehicle University Press, 2013.
Encontre o texto completo da fonteR, Gerhart Grant, Shoemaker Chuck M, Gage Douglas W. 1945- e Society of Photo-optical Instrumentation Engineers., eds. Unmanned ground vehicle technology V: 22-23 April, 2003, Orlando, Florida, USA. Bellingham, Wash: SPIE, 2003.
Encontre o texto completo da fonteHume, David B. Integration of weaponized unmanned aircraft into the air-to-ground system. Maxwell Air Force Base, Ala: Air University Press, 2007.
Encontre o texto completo da fonteNeta, Beny. Benefit of sound cueing in combat simulation. Monterey, Calif: Naval Postgraduate School, 1993.
Encontre o texto completo da fonteCersovsky, Donald D. Mathematical model and analysis of the Tactical Unmanned Ground Vehicle (TUGV) using computer simulation. Monterey, Calif: Naval Postgraduate School, 1993.
Encontre o texto completo da fonteNi, Jun, Jibin Hu e Changle Xiang. Design and Advanced Robust Chassis Dynamics Control for X-by-Wire Unmanned Ground Vehicle. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01496-3.
Texto completo da fonteDubanov, Aleksandr. Computer simulation in pursuit problems. ru: Publishing Center RIOR, 2022. http://dx.doi.org/10.29039/02102-6.
Texto completo da fonteCapítulos de livros sobre o assunto "Unmanned ground vehicles"
Hebert, Martial, Charles E. Thorpe e Anthony Stentz. "Introduction". In Intelligent Unmanned Ground Vehicles, 1–17. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_1.
Texto completo da fonteKay, Jennifer, e Charles E. Thorpe. "STRIPE: Low-Bandwidth and High-Latency Teleoperation". In Intelligent Unmanned Ground Vehicles, 187–202. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_10.
Texto completo da fonteStentz, Anthony. "Optimal and Efficient Path Planning for Partially Known Environments". In Intelligent Unmanned Ground Vehicles, 203–20. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_11.
Texto completo da fonteBrumitt, Barry, e Anthony Stentz. "Dynamic Mission Planning for Multiple Mobile Robots". In Intelligent Unmanned Ground Vehicles, 221–34. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_12.
Texto completo da fonteThorpe, Charles E., Omead Amidi, Jay Gowdy, Martial Hebert e Dean Pomerleau. "Integrating Position Estimation and Perception for Navigation". In Intelligent Unmanned Ground Vehicles, 235–57. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_13.
Texto completo da fonteLanger, Dirk, Julio K. Rosenblatt e Martial Hebert. "An Integrated System for Autonomous Off-Road Navigation". In Intelligent Unmanned Ground Vehicles, 259–75. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_14.
Texto completo da fonteStentz, Anthony, e Martial Hebert. "A Navigation System for Goal Acquisition in Unknown Environments". In Intelligent Unmanned Ground Vehicles, 277–306. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_15.
Texto completo da fonteRosenblatt, Julio K., e Charles E. Thorpe. "A Behavior-based Architecture for Mobile Navigation". In Intelligent Unmanned Ground Vehicles, 19–32. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_2.
Texto completo da fonteGowdy, Jay. "SAUSAGES: Between Planning and Action". In Intelligent Unmanned Ground Vehicles, 33–52. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_3.
Texto completo da fontePomerleau, Dean. "Neural Network Vision for Robot Driving". In Intelligent Unmanned Ground Vehicles, 53–72. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6325-9_4.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Unmanned ground vehicles"
Jaczkowski, J., G. Hudas, J. Overholt, E. Hall, M. Ghaffari, J. Lane, B. Brendle e C. Ka. "Intelligent unmanned ground vehicles". In Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems. IEEE, 2004. http://dx.doi.org/10.1109/itsc.2004.1399033.
Texto completo da fonteEbken, John, Mike Bruch e Jason Lum. "Applying unmanned ground vehicle technologies to unmanned surface vehicles". In Defense and Security, editado por Grant R. Gerhart, Charles M. Shoemaker e Douglas W. Gage. SPIE, 2005. http://dx.doi.org/10.1117/12.605254.
Texto completo da fonteLarsen, Karin R., e Keith Olson. "Intersection navigation for unmanned ground vehicles". In Aerospace/Defense Sensing and Controls, editado por Scott A. Speigle. SPIE, 1996. http://dx.doi.org/10.1117/12.241077.
Texto completo da fonteGerhart, Grant R., e Gary Witus. "Sensor deployment on unmanned ground vehicles". In Optics/Photonics in Security and Defence, editado por Edward M. Carapezza. SPIE, 2007. http://dx.doi.org/10.1117/12.736109.
Texto completo da fonteHaas, Gary. "Test facility for unmanned ground vehicles". In Aerospace/Defense Sensing and Controls, editado por Grant R. Gerhart e Ben A. Abbott. SPIE, 1998. http://dx.doi.org/10.1117/12.317553.
Texto completo da fonteQian, Ying, Feitong Wang, Cheng Lin, Shengye Huang e Xuejia Guo. "Development of military unmanned ground vehicles". In Conference on Optical Sensing and Imaging Technology, editado por Yadong Jiang, Qunbo Lv, Bin Xue, Dengwei Zhang e Dong Liu. SPIE, 2021. http://dx.doi.org/10.1117/12.2601876.
Texto completo da fonteWang, Yunpeng, Long Cheng, Zeng-Guang Hou, Min Tan e Hongnian Yu. "Coordinated transportation of a group of unmanned ground vehicles". In 2015 34th Chinese Control Conference (CCC). IEEE, 2015. http://dx.doi.org/10.1109/chicc.2015.7260750.
Texto completo da fonteOliveira, Tiago, e Pedro Encarnação. "Ground Target Tracking for Unmanned Aerial Vehicles". In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-8082.
Texto completo da fonteHazra, Bani, Alok Mukherjee e Vishal Veer Singh. "A Communication Protocol for Unmanned Ground Vehicles". In Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2506095.2506143.
Texto completo da fonteMurphy, Karl N., e Steven Legowik. "GPS-aided retrotraverse for unmanned ground vehicles". In Aerospace/Defense Sensing and Controls, editado por Scott A. Speigle. SPIE, 1996. http://dx.doi.org/10.1117/12.241076.
Texto completo da fonteRelatórios de organizações sobre o assunto "Unmanned ground vehicles"
Ebken, John, Mike Bruch e Jason Lum. Applying Unmanned Ground Vehicle Technologies To Unmanned Surface Vehicles. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2005. http://dx.doi.org/10.21236/ada434099.
Texto completo da fonteSellers, D. P., A. J. Ramsbotham, Hal Bertrand e Nicholas Karvonides. International Assessment of Unmanned Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2008. http://dx.doi.org/10.21236/ada534965.
Texto completo da fonteRichmond, Paul W., George L. Mason, Barry A. Coutermarsh, Jason Pusey e Victoria D. Moore. Mobility Performance Algorithms for Small Unmanned Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, maio de 2009. http://dx.doi.org/10.21236/ada500849.
Texto completo da fonteRogers, Paul D. Army Support to Future Combat Systems Unmanned Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 2007. http://dx.doi.org/10.21236/ada466892.
Texto completo da fonteTurnage, Doris. Localization and mapping of unknown locations with unmanned ground vehicles. Engineer Research and Development Center (U.S.), março de 2019. http://dx.doi.org/10.21079/11681/32277.
Texto completo da fonteIagnemma, Karl. Design and Control of Omnidirectional Unmanned Ground Vehicles for Rough Terrain. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada580067.
Texto completo da fonteJones, Randolph M., Ron Arkin e Nahid Sidki. Intelligent Terrain Analysis and Tactical Support System (ITATSS) for Unmanned Ground Vehicles. Fort Belvoir, VA: Defense Technical Information Center, abril de 2005. http://dx.doi.org/10.21236/ada434526.
Texto completo da fonteIagnemma, Karl. Navigation and Hazard Avoidance for High-Speed Unmanned Ground Vehicles in Rough Terrain. Fort Belvoir, VA: Defense Technical Information Center, julho de 2008. http://dx.doi.org/10.21236/ada498562.
Texto completo da fonteShima, Tal, Pantelis Isaiah e Yoav Gottlieb. Motion Planning and Task Assignment for Unmanned Aerial Vehicles Cooperating with Unattended Ground Sensors. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2014. http://dx.doi.org/10.21236/ada619854.
Texto completo da fonteFields, MaryAnne, e Bailey T. Haug. Developing a Chemical Reconnaissance Behavior for Unmanned Ground Vehicles Using the OneSAF Battlefield Simulation Tool. Fort Belvoir, VA: Defense Technical Information Center, maio de 2003. http://dx.doi.org/10.21236/ada415682.
Texto completo da fonte