Literatura científica selecionada sobre o tema "Unknown classes detection (Open-Set Recognition)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Unknown classes detection (Open-Set Recognition)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Unknown classes detection (Open-Set Recognition)"
Xu, Baile, Furao Shen e Jian Zhao. "Contrastive Open Set Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 9 (26 de junho de 2023): 10546–56. http://dx.doi.org/10.1609/aaai.v37i9.26253.
Texto completo da fonteXia, Ziheng, Penghui Wang e Hongwei Liu. "Radar HRRP Open Set Target Recognition Based on Closed Classification Boundary". Remote Sensing 15, n.º 2 (12 de janeiro de 2023): 468. http://dx.doi.org/10.3390/rs15020468.
Texto completo da fonteHalász, András Pál, Nawar Al Hemeary, Lóránt Szabolcs Daubner, Tamás Zsedrovits e Kálmán Tornai. "Improving the Performance of Open-Set Recognition with Generated Fake Data". Electronics 12, n.º 6 (9 de março de 2023): 1311. http://dx.doi.org/10.3390/electronics12061311.
Texto completo da fonteZhang, Yuhang, Yue Yao, Xuannan Liu, Lixiong Qin, Wenjing Wang e Weihong Deng. "Open-Set Facial Expression Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de março de 2024): 646–54. http://dx.doi.org/10.1609/aaai.v38i1.27821.
Texto completo da fonteZhou, Yu, Song Shang, Xing Song, Shiyu Zhang, Tianqi You e Linrang Zhang. "Intelligent Radar Jamming Recognition in Open Set Environment Based on Deep Learning Networks". Remote Sensing 14, n.º 24 (8 de dezembro de 2022): 6220. http://dx.doi.org/10.3390/rs14246220.
Texto completo da fonteVázquez-Santiago, Diana-Itzel, Héctor-Gabriel Acosta-Mesa e Efrén Mezura-Montes. "Vehicle Make and Model Recognition as an Open-Set Recognition Problem and New Class Discovery". Mathematical and Computational Applications 28, n.º 4 (3 de julho de 2023): 80. http://dx.doi.org/10.3390/mca28040080.
Texto completo da fonteCai, Jiarui, Yizhou Wang, Hung-Min Hsu, Jenq-Neng Hwang, Kelsey Magrane e Craig S. Rose. "LUNA: Localizing Unfamiliarity Near Acquaintance for Open-Set Long-Tailed Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 1 (28 de junho de 2022): 131–39. http://dx.doi.org/10.1609/aaai.v36i1.19887.
Texto completo da fonteYou, Jie, e Joonwhoan Lee. "Open-Set Recognition of Pansori Rhythm Patterns Based on Audio Segmentation". Applied Sciences 14, n.º 16 (6 de agosto de 2024): 6893. http://dx.doi.org/10.3390/app14166893.
Texto completo da fonteCi, Wenyan, Tianxiang Xu, Runze Lin e Shan Lu. "A Novel Method for Unexpected Obstacle Detection in the Traffic Environment Based on Computer Vision". Applied Sciences 12, n.º 18 (6 de setembro de 2022): 8937. http://dx.doi.org/10.3390/app12188937.
Texto completo da fonteDale, John M., e Leon N. Klatt. "Principal Component Analysis of Diffuse Near-Infrared Reflectance Data from Paper Currency". Applied Spectroscopy 43, n.º 8 (novembro de 1989): 1399–405. http://dx.doi.org/10.1366/0003702894204470.
Texto completo da fonteTeses / dissertações sobre o assunto "Unknown classes detection (Open-Set Recognition)"
Christoffel, Quentin. "Apprentissage de représentation différenciées dans des modèles d’apprentissage profond : détection de classes inconnues et interprétabilité". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD027.
Texto completo da fonteDeep learning, and particularly convolutional neural networks, has revolutionized numerous fields such as computer vision. However, these models remain limited when encountering data from unknown classes (never seen during training) and often suffer from a lack of interpretability. We proposed a method aimed at directly optimizing the representation space learned by the model. Each dimension of the representation is associated with a known class. A dimension is activated with a specific value when the model faces the associated class, meaning that certain features have been detected in the image. This allows the model to detect unknown data by their distinct representation from known data, as they should not share the same features. Our approach also promotes semantic relationships within the representation space by allocating a subspace to each known class. Moreover, a degree of interpretability is achieved by analysing the activated dimensions for a given image, enabling an understanding of which features of which class are detected. This thesis details the development and evaluation of our method across multiple iterations, each aimed at improving performance and addressing identified limitations through interpretability, such as the correlation of extracted features. The results obtained on an unknown class detection benchmark show a notable improvement in performance between our versions, although they remain below the state-of-the-art
Capítulos de livros sobre o assunto "Unknown classes detection (Open-Set Recognition)"
Kao, Hao, Thanh-Tuan Nguyen, Chin-Shiuh Shieh, Mong-Fong Horng, Lee Yu Xian e Denis Miu. "Unknown DDoS Attack Detection Using Open-Set Recognition Technology and Fuzzy C-Means Clustering". In Lecture Notes in Electrical Engineering, 366–80. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9412-0_38.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Unknown classes detection (Open-Set Recognition)"
Brignac, Daniel, e Abhijit Mahalanobis. "Cascading Unknown Detection With Known Classification For Open Set Recognition". In 2024 IEEE International Conference on Image Processing (ICIP), 652–58. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10648239.
Texto completo da fonteChe, Yongjuan, Yuexuan An e Hui Xue. "Boosting Few-Shot Open-Set Recognition with Multi-Relation Margin Loss". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/390.
Texto completo da fonteHaoyang, Liu, Yaojin Lin, Peipei Li, Jun Hu e Xuegang Hu. "Class-Specific Semantic Generation and Reconstruction Learning for Open Set Recognition". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/226.
Texto completo da fonteXu, Shuyuan, Linsen Li, Hangjun Yang e Junhua Tang. "KCC Method: Unknown Intrusion Detection Based on Open Set Recognition". In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2021. http://dx.doi.org/10.1109/ictai52525.2021.00213.
Texto completo da fonteYang, Haifeng, Chuanxing Geng, Pong C. Yuen e Songcan Chen. "Dynamic against Dynamic: An Open-Set Self-Learning Framework". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/587.
Texto completo da fonteZhang, Qin, Zelin Shi, Xiaolin Zhang, Xiaojun Chen, Philippe Fournier-Viger e Shirui Pan. "G2Pxy: Generative Open-Set Node Classification on Graphs with Proxy Unknowns". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/509.
Texto completo da fonteLoboda, Igor, Juan Luis Pérez-Ruiz, Sergiy Yepifanov e Roman Zelenskyi. "Comparative Analysis of Two Gas Turbine Diagnosis Approaches". In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91644.
Texto completo da fonteNunes, Ian, Hugo Oliveira e Marcus Poggi. "Open-set semantic segmentation for remote sensing images". In Anais Estendidos da Conference on Graphics, Patterns and Images, 22–28. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/sibgrapi.est.2024.31640.
Texto completo da fonteLiu, Jiaming, Yangqiming Wang, Tongze Zhang, Yulu Fan, Qinli Yang e Junming Shao. "Open-world Semi-supervised Novel Class Discovery". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/445.
Texto completo da fonte