Literatura científica selecionada sobre o tema "Unit multiple interval graphs"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Unit multiple interval graphs".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Unit multiple interval graphs"
Ardévol Martínez, Virginia, Romeo Rizzi, Florian Sikora e Stéphane Vialette. "Recognizing unit multiple interval graphs is hard". Discrete Applied Mathematics 360 (janeiro de 2025): 258–74. http://dx.doi.org/10.1016/j.dam.2024.09.011.
Texto completo da fonteCardoza, Jacqueline E., Carina J. Gronlund, Justin Schott, Todd Ziegler, Brian Stone e Marie S. O’Neill. "Heat-Related Illness Is Associated with Lack of Air Conditioning and Pre-Existing Health Problems in Detroit, Michigan, USA: A Community-Based Participatory Co-Analysis of Survey Data". International Journal of Environmental Research and Public Health 17, n.º 16 (7 de agosto de 2020): 5704. http://dx.doi.org/10.3390/ijerph17165704.
Texto completo da fonteRautenbach, Dieter, e Jayme L. Szwarcfiter. "Unit Interval Graphs". Electronic Notes in Discrete Mathematics 38 (dezembro de 2011): 737–42. http://dx.doi.org/10.1016/j.endm.2011.10.023.
Texto completo da fonteDourado, Mitre C., Van Bang Le, Fábio Protti, Dieter Rautenbach e Jayme L. Szwarcfiter. "Mixed unit interval graphs". Discrete Mathematics 312, n.º 22 (novembro de 2012): 3357–63. http://dx.doi.org/10.1016/j.disc.2012.07.037.
Texto completo da fonteGrippo, Luciano N. "Characterizing interval graphs which are probe unit interval graphs". Discrete Applied Mathematics 262 (junho de 2019): 83–95. http://dx.doi.org/10.1016/j.dam.2019.02.022.
Texto completo da fonteKulik, Anatoliy, Sergey Pasichnik e Dmytro Sokol. "MODELING OF PHYSICAL PROCESSES OF ENERGY CONVERSION IN SMALL-SIZED VORTEX ENERGY SEPARATORS". Aerospace technic and technology, n.º 1 (26 de fevereiro de 2021): 20–30. http://dx.doi.org/10.32620/aktt.2021.1.03.
Texto completo da fonteLe, Van Bang, e Dieter Rautenbach. "Integral mixed unit interval graphs". Discrete Applied Mathematics 161, n.º 7-8 (maio de 2013): 1028–36. http://dx.doi.org/10.1016/j.dam.2012.09.013.
Texto completo da fonteJinjiang, Yuan, e Zhou Sanming. "Optimal labelling of unit interval graphs". Applied Mathematics 10, n.º 3 (setembro de 1995): 337–44. http://dx.doi.org/10.1007/bf02662875.
Texto completo da fonteMarx, Dániel. "Precoloring extension on unit interval graphs". Discrete Applied Mathematics 154, n.º 6 (abril de 2006): 995–1002. http://dx.doi.org/10.1016/j.dam.2005.10.008.
Texto completo da fonteLin, Min Chih, Francisco J. Soulignac e Jayme L. Szwarcfiter. "Short Models for Unit Interval Graphs". Electronic Notes in Discrete Mathematics 35 (dezembro de 2009): 247–55. http://dx.doi.org/10.1016/j.endm.2009.11.041.
Texto completo da fonteTeses / dissertações sobre o assunto "Unit multiple interval graphs"
Ardevol, martinez Virginia. "Structural and algorithmic aspects of (multiple) interval graphs". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD028.
Texto completo da fonteMultiple interval graphs are a well-known generalization of interval graphs, where each vertex of a graph is represented by a d-interval (the union of d intervals) for some natural number d > 1, and there exists an edge between two vertices if and only if their corresponding d-intervals intersect. In particular, a d-interval graph is unit if all the intervals on the representation have unit length. In this thesis, we study unit d-interval graphs from a structural and an algorithmic perspective. In the first part, we tryto generalize Roberts characterization of unit interval graphs, which states that a graph is unit interval if and only if it is interval and it does not contain the complete bipartite graph K1,3 as an induced subgraph. Then, we move on to studythe complexity of recognizing unit multiple interval graphs. We prove that given a graph G it is NP-hard to determine whether G is a unit d-interval graph, and then extend this hardness result to other subclasses of unit d-interval graphs. Inthe last part of this manuscript, we focus on the PIG-completion problem, where given an interval graph G, we are asked to find the minimum number of edges that we need to add to G so that it becomes a proper interval graph. We obtain apolynomial algorithm when G contains a vertex that is adjacent to every other vertex of the graph, and an XP algorithm parameterized by a structural property of the graph
Vestin, Albin, e Gustav Strandberg. "Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms". Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Texto completo da fonteTu, Yuan-Lung, e 塗元龍. "A Study on Unit Interval Graphs". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/76002582966141739137.
Texto completo da fonte輔仁大學
數學系碩士班
101
The purpose of this thesis is to study some characterizations of unit interval graphs and an algorithm that are used to recognize whethere a given graph is a unit interval graph or not. The former is based on the book ”Introduction to graph theory” written by D. B. West; and the latter is based on the paper ”A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs” by D. G. Corneil.
Williams, Aaron Michael. "Shift gray codes". Thesis, 2009. http://hdl.handle.net/1828/1966.
Texto completo da fonteLivros sobre o assunto "Unit multiple interval graphs"
Wijdicks, Eelco F. M., e Sarah L. Clark. Neurocritical Care Pharmacotherapy. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190684747.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "Unit multiple interval graphs"
Le, Van Bang, e Dieter Rautenbach. "Integral Mixed Unit Interval Graphs". In Lecture Notes in Computer Science, 495–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32241-9_42.
Texto completo da fonteJoos, Felix. "A Characterization of Mixed Unit Interval Graphs". In Graph-Theoretic Concepts in Computer Science, 324–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12340-0_27.
Texto completo da fonteJiang, Minghui, e Yong Zhang. "Parameterized Complexity in Multiple-Interval Graphs: Domination". In Parameterized and Exact Computation, 27–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28050-4_3.
Texto completo da fonteTalon, Alexandre, e Jan Kratochvil. "Completion of the Mixed Unit Interval Graphs Hierarchy". In Lecture Notes in Computer Science, 284–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17142-5_25.
Texto completo da fonteAlam, M. J., S. G. Kobourov, S. Pupyrev e J. Toeniskoetter. "Weak Unit Disk and Interval Representation of Graphs". In Graph-Theoretic Concepts in Computer Science, 237–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53174-7_17.
Texto completo da fonteCao, Yixin. "Recognizing (Unit) Interval Graphs by Zigzag Graph Searches". In Symposium on Simplicity in Algorithms (SOSA), 92–106. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021. http://dx.doi.org/10.1137/1.9781611976496.11.
Texto completo da fonteKlavík, Pavel, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell e Tomáš Vyskočil. "Extending Partial Representations of Proper and Unit Interval Graphs". In Algorithm Theory – SWAT 2014, 253–64. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08404-6_22.
Texto completo da fonteJiang, Minghui, e Yong Zhang. "Parameterized Complexity in Multiple-Interval Graphs: Partition, Separation, Irredundancy". In Lecture Notes in Computer Science, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22685-4_6.
Texto completo da fonteFrancis, Mathew C., Daniel Gonçalves e Pascal Ochem. "The Maximum Clique Problem in Multiple Interval Graphs (Extended Abstract)". In Graph-Theoretic Concepts in Computer Science, 57–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34611-8_9.
Texto completo da fonteZhou, Yunhong. "Improved Multi-unit Auction Clearing Algorithms with Interval (Multiple-Choice) Knapsack Problems". In Algorithms and Computation, 494–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11940128_50.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Unit multiple interval graphs"
Sampaio Jr., Moysés S., Fabiano S. Oliveira e Jayme L. Szwarcfiter. "Sobre Finura Própria de Grafos". In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3165.
Texto completo da fonteEisenstat, David, e Philip N. Klein. "Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs". In the 45th annual ACM symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2488608.2488702.
Texto completo da fonteSun, M., Z. X. Yang, N. Guo e R. J. Jardine. "Three-Dimensional DEM Simulation of Plugging Behaviour of Small-Diameter Open-Ended Model Piles Penetrating Into Sand". In Innovative Geotechnologies for Energy Transition. Society for Underwater Technology, 2023. http://dx.doi.org/10.3723/joia5398.
Texto completo da fonteCampanari, Stefano, Luca Boncompagni e Ennio Macchi. "Microturbines and Trigeneration: Optimization Strategies and Multiple Engine Configuration Effects". In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30417.
Texto completo da fontePatrão, Caroline, Luis Kowada, Diane Castonguay, André Ribeiro e Celina Figueiredo. "Some exact values for the diameter in Cayley graph Hl,p". In IV Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/etc.2019.6395.
Texto completo da fonteMellal, I., V. Rasouli, A. Dehdouh, A. Letrache, C. Abdelhamid, M. L. Malki e O. Bakelli. "Formation Evaluation Challenges of Tight and Shale Reservoirs. A Case Study of the Bakken Petroleum System". In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0894.
Texto completo da fonteZeng, Qingna, Donghui Wang, Fenggang Zang, Yixiong Zhang, Bihao Wang e Zhihao Yuan. "Disorders in Fluid Filled Pipeline Structure With Elastic Helmholtz Resonators". In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93421.
Texto completo da fonteBartkowiak, Tomasz. "Characterization of 3D Surface Texture Directionality Using Multi-Scale Curvature Tensor Analysis". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71609.
Texto completo da fonteEnikov, Eniko T., Péter P. Polyvás, Gholam Peyman e Sean Mccafferty. "Tactile Eye Pressure Measurement Through the Eyelid". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50875.
Texto completo da fonteMatzenauer, Mônica, Renata Reiser e Helida Santos. "An approach for consensual analysis on Typical Hesitant Fuzzy Sets via extended aggregations and fuzzy implications based on admissible orders". In Workshop-Escola de Informática Teórica. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/weit.2021.18937.
Texto completo da fonte