Literatura científica selecionada sobre o tema "Uniformly accurate numerical methods"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Uniformly accurate numerical methods".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Uniformly accurate numerical methods"
Chartier, Philippe, Loïc Le Treust e Florian Méhats. "Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation". ESAIM: Mathematical Modelling and Numerical Analysis 53, n.º 2 (março de 2019): 443–73. http://dx.doi.org/10.1051/m2an/2018060.
Texto completo da fonteShishkin, G. I. "ROBUST NOVEL HIGH-ORDER ACCURATE NUMERICAL METHODS FOR SINGULARLY PERTURBED CONVECTION‐DIFFUSION PROBLEMS". Mathematical Modelling and Analysis 10, n.º 4 (31 de dezembro de 2005): 393–412. http://dx.doi.org/10.3846/13926292.2005.9637296.
Texto completo da fonteSu, Chunmei, e Xiaofei Zhao. "On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential". ESAIM: Mathematical Modelling and Numerical Analysis 54, n.º 5 (26 de junho de 2020): 1491–508. http://dx.doi.org/10.1051/m2an/2020006.
Texto completo da fonteDEBELA, HABTAMU GAROMA, e GEMECHIS FILE DURESSA. "Fitted Operator Finite Difference Method for Singularly Perturbed Differential Equations with Integral Boundary Condition". Kragujevac Journal of Mathematics 47, n.º 4 (2003): 637–51. http://dx.doi.org/10.46793/kgjmat2304.637d.
Texto completo da fonteDebela, Habtamu Garoma, e Gemechis File Duressa. "Uniformly Convergent Nonpolynomial Spline Method for Singularly Perturbed Robin-Type Boundary Value Problems with Discontinuous Source Term". Abstract and Applied Analysis 2021 (22 de outubro de 2021): 1–12. http://dx.doi.org/10.1155/2021/7569209.
Texto completo da fonteCai, Yongyong, e Yan Wang. "A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime". ESAIM: Mathematical Modelling and Numerical Analysis 52, n.º 2 (março de 2018): 543–66. http://dx.doi.org/10.1051/m2an/2018015.
Texto completo da fonteYoon, Daegeun, e Donghyun You. "An adaptive memory method for accurate and efficient computation of the Caputo fractional derivative". Fractional Calculus and Applied Analysis 24, n.º 5 (1 de outubro de 2021): 1356–79. http://dx.doi.org/10.1515/fca-2021-0058.
Texto completo da fonteA.B., Kerimov,. "Accuracy comparison of signal recognition methods on the example of a family of successively horizontally displaced curves". Informatics and Control Problems, n.º 2(6) (18 de novembro de 2022): 80–91. http://dx.doi.org/10.54381/icp.2022.2.10.
Texto completo da fonteXu, Jian-Zhong, e Wen-Sheng Yu. "On the Slightly Reduced Navier-Stokes Equations". Journal of Fluids Engineering 119, n.º 1 (1 de março de 1997): 90–95. http://dx.doi.org/10.1115/1.2819124.
Texto completo da fonteHan, Houde, Min Tang e Wenjun Ying. "Two Uniform Tailored Finite Point Schemes for the Two Dimensional Discrete Ordinates Transport Equations with Boundary and Interface Layers". Communications in Computational Physics 15, n.º 3 (março de 2014): 797–826. http://dx.doi.org/10.4208/cicp.130413.010813a.
Texto completo da fonteTeses / dissertações sobre o assunto "Uniformly accurate numerical methods"
Bouchereau, Maxime. "Modélisation de phénomènes hautement oscillants par réseaux de neurones". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Texto completo da fonteThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Baumstark, Simon [Verfasser]. "Uniformly Accurate Methods for Klein-Gordon type Equations / Simon Baumstark". Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1171315880/34.
Texto completo da fonteStewart, Dawn L. "Numerical Methods for Accurate Computation of Design Sensitivities". Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30561.
Texto completo da fontePh. D.
Pasdunkorale, Arachchige Jayantha. "Accurate finite volume methods for the numerical simulation of transport in highly anistropic media". Thesis, Queensland University of Technology, 2003.
Encontre o texto completo da fonteHübner, Thomas [Verfasser]. "A monolithic, off-lattice approach to the discrete Boltzmann equation with fast and accurate numerical methods / Thomas Hübner". Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2011. http://d-nb.info/1011570777/34.
Texto completo da fonteZhao, Wei [Verfasser], Martin [Akademischer Betreuer] Stoll, Martin [Gutachter] Stoll e Benny Y. C. [Akademischer Betreuer] Hon. "Accurate and efficient numerical methods for nonlocal problems / Wei Zhao ; Gutachter: Martin Stoll ; Martin Stoll, Benny Y.C. Hon". Chemnitz : Technische Universität Chemnitz, 2019. http://d-nb.info/1215909780/34.
Texto completo da fonteSharify, Meisam. "Scaling Algorithms and Tropical Methods in Numerical Matrix Analysis : Application to the Optimal Assignment Problem and to the Accurate Computation of Eigenvalues". Palaiseau, Ecole polytechnique, 2011. http://pastel.archives-ouvertes.fr/docs/00/64/38/36/PDF/thesis.pdf.
Texto completo da fonteTropical algebra, which can be considered as a relatively new field in Mathematics, emerged in several branches of science such as optimization, synchronization of production and transportation, discrete event systems, optimal control, operations research, etc. The first part of this manuscript is devoted to the study of the numerical applications of tropical algebra. We start by considering the classical problem of estimating the roots of a univariate complex polynomial. We prove several new bounds for the modulus of the roots of a polynomial exploiting tropical methods. These results are specially useful when considering polynomials whose coefficients have different orders of magnitude. We next consider the problem of computing the eigenvalues of a matrix polynomial. Here, we introduce a general scaling technique, based on tropical algebra, which applies in particular to the companion form. This scaling is based on the construction of an auxiliary tropical polynomial function, depending only on the norms of the matrices. The roots (non-differentiability points) of this tropical polynomial provide a priori estimates of the modulus of the eigenvalues. This is justified in particular by a new location result, showing that under assumption involving condition numbers, there is one group of large eigenvalues, which have a maximal order of magnitude, given by the largest root of the auxiliary tropical polynomial. A similar result holds for a group of small eigenvalues. We show experimentally that this scaling improves the backward stability of the computations, particularly in situations when the data have various orders of magnitude. We also study the problem of computing the tropical eigenvalues (non-differentiability points of the characteristic polynomial) of a tropical matrix polynomial. From the combinatorial perspective, this problem can be interpreted as finding the maximum weighted matching function in a bipartite graph whose arcs are valued by convex piecewise linear functions. We developed an algorithm which computes the tropical eigenvalues in polynomial time. In the second part of this thesis, we consider the problem of solving very large instances of the optimal assignment problems (so that standard sequential algorithms cannot be used). We propose a new approach exploiting the connection between the optimal assignment problem and the entropy maximization problem. This approach leads to a preprocessing algorithm for the optimal assignment problem which is based on an iterative method that eliminates the entries not belonging to an optimal assignment. We consider two variants of the preprocessing algorithm, one by using the Sinkhorn iteration and the other by using Newton iteration. This preprocessing algorithm can reduce the initial problem to a much smaller problem in terms of memory requirements. We also introduce a new iterative method based on a modification of the Sinkhorn scaling algorithm, in which a deformation parameter is slowly increased We prove that this iterative method, referred to as the deformed-Sinkhorn iteration, converges to a matrix whose nonzero entries are exactly those belonging to the optimal permutations. An estimation of the rate of convergence is also presented
Zhao, Wei. "Accurate and efficient numerical methods for nonlocal problems". 2018. https://monarch.qucosa.de/id/qucosa%3A33818.
Texto completo da fonte(8718126), Duo Cao. "Efficient and accurate numerical methods for two classes of PDEs with applications to quasicrystals". Thesis, 2020.
Encontre o texto completo da fonteIn second part, we propose a method suitable for the computation of quasiperiodic interface, and apply it to simulate the interface between ordered phases in Lifschitz-Petrich model, which can be quasiperiodic. The function space, initial and boundary conditions are carefully chosen such that it fix the relative orientation and displacement, and we follow a gradient flow to let the interface and its optimal structure. The gradient flow is discretized by the scalar auxiliary variable (SAV) approach in time, and spectral method in space using quasiperiodic Fourier series and generalized Jacobi
polynomials. We use the method to study interface between striped, hexagonal and dodecagonal phases, especially when the interface is quasiperiodic. The numerical examples show that our method is efficient and accurate to successfully capture the interfacial structure.
Jaisankar, S. "Accurate Computational Algorithms For Hyperbolic Conservation Laws". Thesis, 2008. https://etd.iisc.ac.in/handle/2005/905.
Texto completo da fonteLivros sobre o assunto "Uniformly accurate numerical methods"
Li, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43432-1.
Texto completo da fonteLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer Berlin / Heidelberg, 2014.
Encontre o texto completo da fonteLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer, 2016.
Encontre o texto completo da fonteLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer London, Limited, 2014.
Encontre o texto completo da fonteFontanarosa, Phil B., e Stacy Christiansen. Units of Measure. Oxford University Press, 2009. http://dx.doi.org/10.1093/jama/9780195176339.003.0018.
Texto completo da fonteCoolen, A. C. C., A. Annibale e E. S. Roberts. Graphs with hard constraints: further applications and extensions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0007.
Texto completo da fonteКоллектив, авторов. Труды Физико-технологического института. T. 29: Квантовые компьютеры, микро- и наноэлектроника: физика, технология, диагностика и моделирование. ФГУП «Издательство «Наука», 2020. http://dx.doi.org/10.7868/9785020408081.
Texto completo da fonteCapítulos de livros sobre o assunto "Uniformly accurate numerical methods"
Brayanov, Iliya, e Ivanka Dimitrova. "Uniformly Convergent High-Order Schemes for a 2D Elliptic Reaction-Diffusion Problem with Anisotropic Coefficients". In Numerical Methods and Applications, 395–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36487-0_44.
Texto completo da fonteHafeez, Muhammad Ali, Tetsunori Inoue, Hiroki Matsumoto, Tomoyuki Sato e Yoshitaka Matsuzaki. "Application of Building Cube Method to Reproduce High-Resolution Hydrodynamics of a Dredged Borrow Pit in Osaka Bay, Japan". In Lecture Notes in Civil Engineering, 289–98. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7409-2_26.
Texto completo da fonteFilbet, Francis, e Giovanni Russo. "Accurate numerical methods for the Boltzmann equation". In Modeling and Computational Methods for Kinetic Equations, 117–45. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8200-2_4.
Texto completo da fonteRoos, H. G., D. Adam e A. Felgenhauer. "A Nonconforming Uniformly Convergent Finite Element Method in Two Dimensions". In Numerical methods for the Navier-Stokes equations, 217–27. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_22.
Texto completo da fonteBradji, Abdallah. "A Second Order Time Accurate SUSHI Method for the Time-Fractional Diffusion Equation". In Numerical Methods and Applications, 197–206. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10692-8_22.
Texto completo da fontevan Buuren, R., J. G. M. Kuerten, B. J. Geurts e P. J. Zandbergen. "Time accurate simulations of supersonic unsteady flow". In Sixteenth International Conference on Numerical Methods in Fluid Dynamics, 326–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0106603.
Texto completo da fonteKoren, B., e H. T. M. van der Maarel. "Monotone, higher-order accurate, multi-dimensional upwinding". In Thirteenth International Conference on Numerical Methods in Fluid Dynamics, 110–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56394-6_198.
Texto completo da fonteOsher, Stanley, e Chi-Wang Shu. "High Order Accurate Modern Numerical Methods Applicable to Stellar Pulsations". In The Numerical Modelling of Nonlinear Stellar Pulsations, 263–67. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0519-1_15.
Texto completo da fonteSchöll, E., e H. H. Frühauf. "An Accurate and Efficient Implicit Upwind Solver for the Navier-Stokes Equations". In Numerical methods for the Navier-Stokes equations, 259–67. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_26.
Texto completo da fonteCatalano, L. A., P. De Palma, G. Pascazio e M. Napolitano. "Matrix fluctuation splitting schemes for accurate solutions to transonic flows". In Fifteenth International Conference on Numerical Methods in Fluid Dynamics, 328–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0107123.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Uniformly accurate numerical methods"
Xu, X. Y., T. Ma, M. Zeng e Q. W. Wang. "Numerical Study of the Effects of Different Buoyancy Models on Supercritical Flow and Heat Transfer". In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17295.
Texto completo da fonteKoo, P. C., F. H. Schlereth, R. L. Barbour e H. L. Graber. "Efficient Numerical Method for Quantifying Photon Distributions in the Interior of Thick Scattering Media". In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.ncpdir.187.
Texto completo da fonteYang, R. J., L. Gu, L. Liaw, C. Gearhart, C. H. Tho, X. Liu e B. P. Wang. "Approximations for Safety Optimization of Large Systems". In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/dac-14245.
Texto completo da fonteKalis, Harijs, Ilmars Kangro e Aivars Aboltins. "Numerical analysis for system of parabolic equations with periodic functions". In 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf157.
Texto completo da fonteThompson, Lonny L., e Yuhuan Tong. "Hybrid Least Squares Finite Element Methods for Reissner-Mindlin Plates". In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0185.
Texto completo da fonteLi, Like, Renwei Mei e James F. Klausner. "Heat Transfer in Thermal Lattice Boltzmann Equation Method". In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87990.
Texto completo da fonteZhang, J. "A coupled thermo-mechanical and neutron diffusion numerical model for irradiated concrete". In AIMETA 2022. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902431-4.
Texto completo da fonteChen, P. L., S. F. Chang, T. Y. Wu e Y. H. Hung. "A Thermal Network Approach for Predicting Thermal Characteristics of Three-Dimensional Electronic Packages". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13755.
Texto completo da fonteKim, C. M., e R. V. Ramaswamy. "Nonuniform Finite-Difference Method for Modeling of Quasi-TM Smal1-Mode-Size Ti:LiNbO3 Channel Waveguides". In Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.sc4.
Texto completo da fonteAndersen, Pål Østebø. "Intercept Method for Accurately Estimating Critical Fluid Saturation and Approximate Transient Solutions with Production Time Scales in Centrifuge Core Plug Experiments". In SPE EuropEC - Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214402-ms.
Texto completo da fonteRelatórios de organizações sobre o assunto "Uniformly accurate numerical methods"
Jenkins, Eleanor W. Air/Water Flow in Porous Media: A Comparison of Accurate and Efficient Numerical Methods. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2009. http://dx.doi.org/10.21236/ada518697.
Texto completo da fonteCobb, J. W. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems. Office of Scientific and Technical Information (OSTI), fevereiro de 1995. http://dx.doi.org/10.2172/29360.
Texto completo da fonteNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano e R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Texto completo da fonteLi, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed e Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), abril de 2024. http://dx.doi.org/10.21079/11681/48392.
Texto completo da fonteHart, Carl R., D. Keith Wilson, Chris L. Pettit e Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, julho de 2021. http://dx.doi.org/10.21079/11681/41182.
Texto completo da fonteEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak e Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, julho de 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Texto completo da fonteRusso, David, Daniel M. Tartakovsky e Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, dezembro de 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Texto completo da fonteZhang, Renduo, e David Russo. Scale-dependency and spatial variability of soil hydraulic properties. United States Department of Agriculture, novembro de 2004. http://dx.doi.org/10.32747/2004.7587220.bard.
Texto completo da fonteSECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, dezembro de 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.10.
Texto completo da fonte