Artigos de revistas sobre o tema "Underwater and ultrasonic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Underwater and ultrasonic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wu, Zheng Long, Jie Li e Zhen Yu Guan. "Feature Extraction of Underwater Target Ultrasonic Echo Based on Wavelet Transform". Applied Mechanics and Materials 599-601 (agosto de 2014): 1517–22. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1517.
Texto completo da fonteSonomatic Ltd. "Underwater ultrasonic corrosion mapping system". NDT International 23, n.º 1 (fevereiro de 1990): 58–59. http://dx.doi.org/10.1016/0308-9126(90)91593-i.
Texto completo da fonteSonomatic Ltd. "Underwater ultrasonic corrosion mapping system". NDT & E International 23, n.º 1 (fevereiro de 1990): 58–59. http://dx.doi.org/10.1016/0963-8695(90)90857-f.
Texto completo da fonteNagashima, Yutaka, Takakazu Ishimatsu e Jamal Tariq Mian. "AUV with Variable Vector Propeller". Journal of Robotics and Mechatronics 12, n.º 1 (20 de fevereiro de 2000): 60–65. http://dx.doi.org/10.20965/jrm.2000.p0060.
Texto completo da fonteWidjaja, Raden Sjarief, Dedi Budi Purwanto, Andi Trimulyono e Muhammad Nur Abdullah Hafizh. "Design of Remotely Operated Underwater Vehicle (ROUV) for Underwater Metal Detection". Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 21, n.º 2 (29 de maio de 2024): 73–80. http://dx.doi.org/10.14710/kapal.v21i2.62767.
Texto completo da fonteHong, Xiaobin, Liuwei Huang, Shifeng Gong e Guoquan Xiao. "Shedding Damage Detection of Metal Underwater Pipeline External Anticorrosive Coating by Ultrasonic Imaging Based on HOG + SVM". Journal of Marine Science and Engineering 9, n.º 4 (29 de março de 2021): 364. http://dx.doi.org/10.3390/jmse9040364.
Texto completo da fonteZhu, Jie, Jia Cheng Guo, Wei Wang e Jia You Wang. "Effect of Arc Current Ultrasonic-Frequency Pulsation on Underwater Wet Arc Welding Quality". Advanced Materials Research 763 (setembro de 2013): 174–78. http://dx.doi.org/10.4028/www.scientific.net/amr.763.174.
Texto completo da fonteNagashima, Yutaka, Nobuyoshi Taguchi, Takakazu Ishimatsu e Hirofumi Inoue. "Development of a Compact Autonomous Underwater vehicle Using Varivec Propeller". Journal of Robotics and Mechatronics 14, n.º 2 (20 de abril de 2002): 112–17. http://dx.doi.org/10.20965/jrm.2002.p0112.
Texto completo da fonteSHIRAI, Kazuhiro. "Development of Underwater Ultrasonic Positioning System". Journal of the Marine Acoustics Society of Japan 31, n.º 4 (2004): 233–40. http://dx.doi.org/10.3135/jmasj.31.233.
Texto completo da fonteInoue, Takeshi, e Takatoshi Nada. "Underwater low‐frequency ultrasonic wave transmitter". Journal of the Acoustical Society of America 83, n.º 6 (junho de 1988): 2470. http://dx.doi.org/10.1121/1.396290.
Texto completo da fonteISHIDA, Takehiro, Yuji ISHINO, Masaya TAKASAKI e Takeshi MIZUNO. "Underwater ultrasonic motor with suspended rotor". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2022 (2022): 2A2—M12. http://dx.doi.org/10.1299/jsmermd.2022.2a2-m12.
Texto completo da fonteSmagowska, Bożena. "Ultrasonic Noise Sources in a Work Environment". Archives of Acoustics 38, n.º 2 (1 de junho de 2013): 169–76. http://dx.doi.org/10.2478/aoa-2013-0019.
Texto completo da fonteLu, Xiaolong, Zhiwen Wang, Hui Shen, Kangdong Zhao, Tianyue Pan, Dexu Kong e Jens Twiefel. "A Novel Dual-Rotor Ultrasonic Motor for Underwater Propulsion". Applied Sciences 10, n.º 1 (19 de dezembro de 2019): 31. http://dx.doi.org/10.3390/app10010031.
Texto completo da fonteWang, Michael Y., Mythili Thevamaran, Michael Sabatini Mattei, Brandon G. Hacha, Gerardo Andres Mazzei Capote, Zongfu Yu, Tim Osswald, Randall H. Goldsmith, Dan J. Thoma e Chu Ma. "Underwater ultrasonic topological waveguides by metal additive manufacturing". Applied Physics Letters 120, n.º 14 (4 de abril de 2022): 141702. http://dx.doi.org/10.1063/5.0086951.
Texto completo da fonteNa, Won-Bae, e Tribikram Kundu. "Underwater Pipeline Inspection Using Guided Waves". Journal of Pressure Vessel Technology 124, n.º 2 (1 de maio de 2002): 196–200. http://dx.doi.org/10.1115/1.1466456.
Texto completo da fonteLiu, Zhongzheng, Tao Zhang, Yazhen Yuan, Yuhang Li e Yanzhang Geng. "Evaluation Method for Underwater Ultrasonic Energy Radiation Performance Based on the Spatial Distribution Characteristics of Acoustic Power". Sensors 24, n.º 12 (18 de junho de 2024): 3942. http://dx.doi.org/10.3390/s24123942.
Texto completo da fonteWang, Hongliang, Yunfei Lv, Chaojie Wang, Xiangjun Wang, Changde He, Chenyang Xue e Shuang He. "Simulation Analysis and Performance Testing Investigation of Capacitive Micromachined Ultrasonic Transducer". International Journal of Pattern Recognition and Artificial Intelligence 32, n.º 09 (27 de maio de 2018): 1858004. http://dx.doi.org/10.1142/s0218001418580041.
Texto completo da fonteSaotome, Rie, Tran Minh Hai, Yasuto Matsuda, Taisaku Suzuki e Tomohisa Wada. "An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network". Scientific World Journal 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/841750.
Texto completo da fonteSuzuki, Hiroshi, Ken-ya Hashimoto e Masatsune Yamaguchi. "ZnO-Film/Si-Diaphragm Underwater Ultrasonic Transducers". Japanese Journal of Applied Physics 28, S1 (1 de janeiro de 1989): 63. http://dx.doi.org/10.7567/jjaps.28s1.63.
Texto completo da fonteChen, Jian, e Zheng Fan. "Ultra-compact ultrasonic metalens for underwater focusing". Journal of the Acoustical Society of America 146, n.º 4 (outubro de 2019): 3002–3. http://dx.doi.org/10.1121/1.5137397.
Texto completo da fonteHasegawa, Daiki, Hiroshi Inoue e Kenji Murata. "Impulsive Ultrasonic Measurement for Underwater Shockwave Detection". Japanese Journal of Applied Physics 44, n.º 6B (24 de junho de 2005): 4694–95. http://dx.doi.org/10.1143/jjap.44.4694.
Texto completo da fonteCharee, W., V. Tangwarodomnukun e C. Dumkum. "Ultrasonic-assisted underwater laser micromachining of silicon". Journal of Materials Processing Technology 231 (maio de 2016): 209–20. http://dx.doi.org/10.1016/j.jmatprotec.2015.12.031.
Texto completo da fonteChen, Bo, e Ji Cai Feng. "A Survey of Underwater Wet Weld Seam Tracking Based on Ultrasonic Sensor". Applied Mechanics and Materials 433-435 (outubro de 2013): 2227–30. http://dx.doi.org/10.4028/www.scientific.net/amm.433-435.2227.
Texto completo da fonteLin, Jinuan, e Chu Ma. "Ultrasonic subwavelength imaging with blind structured illumination". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A29. http://dx.doi.org/10.1121/10.0018042.
Texto completo da fonteKihara, Sumitaka. "Underwater Ultrasonic Three-Dimensional Measurement and Image Processing for Offshore Underwater Constructions". IEEJ Transactions on Electronics, Information and Systems 109, n.º 3 (1989): 131–38. http://dx.doi.org/10.1541/ieejeiss1987.109.3_131.
Texto completo da fonteZhang, Rui, Wendong Zhang, Changde He, Jinlong Song, Linfeng Mu, Juan Cui, Yongmei Zhang e Chenyang Xue. "Design of capacitive micromachined ultrasonic transducer (CMUT) linear array for underwater imaging". Sensor Review 36, n.º 1 (18 de janeiro de 2016): 77–85. http://dx.doi.org/10.1108/sr-05-2015-0076.
Texto completo da fonteWang, Zhihao, Wendong Zhang, Renxin Wang, Changde He, Shurui Liu, Jingwen Wang, Zhaodong Li et al. "Investigation of Submerged MEMS Ultrasonic Sensors for Underwater Obstacle Avoidance Application". Remote Sensing 16, n.º 3 (28 de janeiro de 2024): 497. http://dx.doi.org/10.3390/rs16030497.
Texto completo da fonteCharee, Wisan, Viboon Tangwarodomnukun e Chaiya Dumkum. "Preliminary Study of Ultrasonic Assisted Underwater Laser Micromachining of Silicon". Applied Mechanics and Materials 835 (maio de 2016): 139–43. http://dx.doi.org/10.4028/www.scientific.net/amm.835.139.
Texto completo da fonteDuck, Francis. "Langevin’s ultrasonics". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A29—A30. http://dx.doi.org/10.1121/10.0015432.
Texto completo da fonteCobacho-Ruiz, Pablo, Francisco Javier Cañete, Eduardo Martos-Naya e Unai Fernández-Plazaola. "OFDM System Design for Measured Ultrasonic Underwater Channels". Sensors 22, n.º 15 (29 de julho de 2022): 5703. http://dx.doi.org/10.3390/s22155703.
Texto completo da fonteLiu, Chia‐Hung, e Pei‐Tai Chen. "Surface micromachined capacitive ultrasonic transducer for underwater imaging". Journal of the Chinese Institute of Engineers 30, n.º 3 (abril de 2007): 447–58. http://dx.doi.org/10.1080/02533839.2007.9671273.
Texto completo da fonteLopez-Fernandez, Jesus, Unai Fernandez-Plazaola, Jose F. Paris, Luis Diez e Eduardo Martos-Naya. "Wideband Ultrasonic Acoustic Underwater Channels: Measurements and Characterization". IEEE Transactions on Vehicular Technology 69, n.º 4 (abril de 2020): 4019–32. http://dx.doi.org/10.1109/tvt.2020.2973495.
Texto completo da fonteLu, Fu-Ming, e Chian-Jen Huang. "Automatic Potato Sorting System in Underwater Ultrasonic Instrumentation". IFAC Proceedings Volumes 34, n.º 28 (outubro de 2001): 27–37. http://dx.doi.org/10.1016/s1474-6670(17)32820-3.
Texto completo da fonteNowacki, Bartłomiej, Krystian Mistewicz, Sugato Hajra e Hoe Joon Kim. "3D printed triboelectric nanogenerator for underwater ultrasonic sensing". Ultrasonics 133 (agosto de 2023): 107045. http://dx.doi.org/10.1016/j.ultras.2023.107045.
Texto completo da fontePragathi, M., e R. Kumar. "Reduction of Data Transmission Time Delay with Object Detection in Underwater Acoustic Sensor Network". International Journal of Engineering & Technology 7, n.º 2.24 (25 de abril de 2018): 274. http://dx.doi.org/10.14419/ijet.v7i2.24.12063.
Texto completo da fonteRemizovsky, І. М. "Little-known facts of the creative way of the outstanding Ukrainian restorer OI Minzhulin: to the problem of restoration of objects of underwater archeology". Science and Education a New Dimension IX(258), n.º 47 (25 de setembro de 2021): 15–18. http://dx.doi.org/10.31174/send-hs2021-258ix47-03.
Texto completo da fonteRajput, Abhishek, Arun Panchal, Ravi Butola e Jitendra Kumar. "Mechanical and Micro structural Effect of Ultrasonic Welding: Review". International Journal of Advance Research and Innovation 5, n.º 2 (2017): 135–42. http://dx.doi.org/10.51976/ijari.521724.
Texto completo da fonteWu, Cui Qin, Wei Ping Wang, Qi Gang Yuan, Yan Jun Li, Wei Zhang e Xiang Dong Zhang. "Infrared Thermography Non-Destructive Testing of Composite Materials". Advanced Materials Research 291-294 (julho de 2011): 1307–10. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.1307.
Texto completo da fonteGao, Bizhen, Sai Zhang, Changde He, Renxin Wang, Yuhua Yang, Licheng Jia, Zhihao Wang, Yang Wu, Shumin Hu e Wendong Zhang. "Research on Broadband Matching Method for Capacitive Micromachined Ultrasonic Transducers Based on PDMS/TiO2 Particles". Micromachines 13, n.º 11 (26 de outubro de 2022): 1827. http://dx.doi.org/10.3390/mi13111827.
Texto completo da fonteSong, Changhui, e Weicheng Cui. "Review of Underwater Ship Hull Cleaning Technologies". Journal of Marine Science and Application 19, n.º 3 (setembro de 2020): 415–29. http://dx.doi.org/10.1007/s11804-020-00157-z.
Texto completo da fonteChu, Dongkai, Xiaoyan Sun, Youwang Hu e Ji-An Duan. "Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment". Soft Matter 15, n.º 37 (2019): 7398–403. http://dx.doi.org/10.1039/c9sm01404g.
Texto completo da fonteEke, Zoltán, e István Havasi. "Development of Underwater Surface Measurement : Multibeam Sonar". Geosciences and Engineering 9, n.º 14 (2021): 81–95. http://dx.doi.org/10.33030/geosciences.2021.14.081.
Texto completo da fonteKuyama, Tamio. "New Research Fields of Ultrasonic Electronics and Underwater Acoustics". Japanese Journal of Applied Physics 29, S1 (1 de janeiro de 1990): 8. http://dx.doi.org/10.7567/jjaps.29s1.8.
Texto completo da fonteSong, Jinlong, Chenyang Xue, Changde He, Rui Zhang, Linfeng Mu, Juan Cui, Jing Miao, Yuan Liu e Wendong Zhang. "Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Underwater Imaging Applications". Sensors 15, n.º 9 (15 de setembro de 2015): 23205–17. http://dx.doi.org/10.3390/s150923205.
Texto completo da fonteWAKAYAMA, Yuki, e Atsushi SANADA. "Prototype of inexpensive underwater positioning system using ultrasonic waves". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2021 (2021): 1P1—B05. http://dx.doi.org/10.1299/jsmermd.2021.1p1-b05.
Texto completo da fontePistone, Elisabetta, e Piervincenzo Rizzo. "Ultrasonic waves for the inspection of underwater waveguide structures". Journal of the Acoustical Society of America 132, n.º 3 (setembro de 2012): 1933. http://dx.doi.org/10.1121/1.4755105.
Texto completo da fonteMiura, Hikaru, Makoto Takata, Daisuke Tajima e Kenichirou Tsuyuki. "Promotion of Methane Hydrate Dissociation by Underwater Ultrasonic Wave". Japanese Journal of Applied Physics 45, n.º 5B (25 de maio de 2006): 4816–23. http://dx.doi.org/10.1143/jjap.45.4816.
Texto completo da fonteLuo, Zhihua, Jun Chu, Lei Shen, Peng Hu, Hongmao Zhu e Lili Hu. "Measurement of underwater vibration by ultrasonic speckle stroboscopic technique". Measurement 47 (janeiro de 2014): 938–45. http://dx.doi.org/10.1016/j.measurement.2013.10.023.
Texto completo da fonteRoh, Y., e B. T. Khuri-Yakub. "Finite element analysis of underwater capacitor micromachined ultrasonic transducers". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 49, n.º 3 (março de 2002): 293–98. http://dx.doi.org/10.1109/58.990939.
Texto completo da fonteBurns, D., C. B. Queen e R. C. Chivers. "An ultrasonic signal processor for use in underwater acoustics". Ultrasonics 23, n.º 4 (julho de 1985): 189–91. http://dx.doi.org/10.1016/0041-624x(85)90029-0.
Texto completo da fonte