Literatura científica selecionada sobre o tema "Underwater and ultrasonic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Underwater and ultrasonic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Underwater and ultrasonic"
Wu, Zheng Long, Jie Li e Zhen Yu Guan. "Feature Extraction of Underwater Target Ultrasonic Echo Based on Wavelet Transform". Applied Mechanics and Materials 599-601 (agosto de 2014): 1517–22. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1517.
Texto completo da fonteSonomatic Ltd. "Underwater ultrasonic corrosion mapping system". NDT International 23, n.º 1 (fevereiro de 1990): 58–59. http://dx.doi.org/10.1016/0308-9126(90)91593-i.
Texto completo da fonteSonomatic Ltd. "Underwater ultrasonic corrosion mapping system". NDT & E International 23, n.º 1 (fevereiro de 1990): 58–59. http://dx.doi.org/10.1016/0963-8695(90)90857-f.
Texto completo da fonteNagashima, Yutaka, Takakazu Ishimatsu e Jamal Tariq Mian. "AUV with Variable Vector Propeller". Journal of Robotics and Mechatronics 12, n.º 1 (20 de fevereiro de 2000): 60–65. http://dx.doi.org/10.20965/jrm.2000.p0060.
Texto completo da fonteWidjaja, Raden Sjarief, Dedi Budi Purwanto, Andi Trimulyono e Muhammad Nur Abdullah Hafizh. "Design of Remotely Operated Underwater Vehicle (ROUV) for Underwater Metal Detection". Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 21, n.º 2 (29 de maio de 2024): 73–80. http://dx.doi.org/10.14710/kapal.v21i2.62767.
Texto completo da fonteHong, Xiaobin, Liuwei Huang, Shifeng Gong e Guoquan Xiao. "Shedding Damage Detection of Metal Underwater Pipeline External Anticorrosive Coating by Ultrasonic Imaging Based on HOG + SVM". Journal of Marine Science and Engineering 9, n.º 4 (29 de março de 2021): 364. http://dx.doi.org/10.3390/jmse9040364.
Texto completo da fonteZhu, Jie, Jia Cheng Guo, Wei Wang e Jia You Wang. "Effect of Arc Current Ultrasonic-Frequency Pulsation on Underwater Wet Arc Welding Quality". Advanced Materials Research 763 (setembro de 2013): 174–78. http://dx.doi.org/10.4028/www.scientific.net/amr.763.174.
Texto completo da fonteNagashima, Yutaka, Nobuyoshi Taguchi, Takakazu Ishimatsu e Hirofumi Inoue. "Development of a Compact Autonomous Underwater vehicle Using Varivec Propeller". Journal of Robotics and Mechatronics 14, n.º 2 (20 de abril de 2002): 112–17. http://dx.doi.org/10.20965/jrm.2002.p0112.
Texto completo da fonteSHIRAI, Kazuhiro. "Development of Underwater Ultrasonic Positioning System". Journal of the Marine Acoustics Society of Japan 31, n.º 4 (2004): 233–40. http://dx.doi.org/10.3135/jmasj.31.233.
Texto completo da fonteInoue, Takeshi, e Takatoshi Nada. "Underwater low‐frequency ultrasonic wave transmitter". Journal of the Acoustical Society of America 83, n.º 6 (junho de 1988): 2470. http://dx.doi.org/10.1121/1.396290.
Texto completo da fonteTeses / dissertações sobre o assunto "Underwater and ultrasonic"
Wylie, Stephen Robert. "An underwater ultrasonic imaging system". Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266220.
Texto completo da fonteSalido, Monzú David, e Sánchez Oliver Roldán. "Robot Positioning System : Underwater Ultrasonic Measurement". Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5817.
Texto completo da fonteThis document provides a description about how the problem of the detection of thecenter of a defined geometry object was solved.This named object has been placed in an experimental environment surrounded bywater to be explored using microwaves under the water, to try to find a possibletumor. The receiver antenna is fixed in the tip of the tool of an ABB robot.Due to this working method, it was necessary to locate the center of this object tomake correctly the microwave scanning turning always around the actual center. Thiswork not only consist in give a hypothetic solution to the people who gave us theresponsibility of solve their problem, it is also to actually develop a system whichcarries out the function explained before.For the task of measuring the distance between the tip of the tool where themicrowave antenna is, ultrasonic sensors has been used, as a complement of acomplete system of communication between the sensor and finally the robot handler,using Matlab as the main controller of the whole system.One of these sensors will work out of water, measuring the zone of the object which isout of the water. In the other hand, as the researching side of the thesis, a completeultrasonic sensor will be developed to work under water, and the results obtained willbe shown as the conclusion of our investigation.The document provides a description about how the hardware and software necessaryto implement the system mentioned and some equipment more which were essentialto the final implementation was developed step by step.
Koosha, Abdolrahim. "Ultrasonic transducers for air and underwater communication". Thesis, Kingston University, 1991. http://eprints.kingston.ac.uk/20553/.
Texto completo da fonteJohansson, Patrick. "Capacitive Micromachined Ultrasonic Transducers for Underwater Applications". Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447067.
Texto completo da fonteMoya, Jorge A. Salcedo. "Ultrasonic inspection of underwater piping system with thick coatings". Connect to resource, 1994. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1260632892.
Texto completo da fonteFloyd, Charles Alan. "Design and implementation of a collision avoidance system for the NPS Autonomous Underwater Vehicle (AUV II) utilizing ultrasonic sensors". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28100.
Texto completo da fonteAnderson, Shaun David. "Space-time-frequency processing from the analysis of bistatic scattering for simple underwater targets". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45771.
Texto completo da fonteReal, Gaultier. "An ultrasonic testbench for reproducing the degradation of sonar performance in fluctuating ocean". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4753/document.
Texto completo da fonteThe ocean medium is subject to many sources of fluctuations. The most critical ones were found to be internal waves, occurring frequently and inducing fluctuations of the spatial distribution of the sound speed field. Because of the fairly long period of this phenomenon as compared to the propagation time of acoustic waves for sonar applications, the process can be considered frozen in time for each stochastic realization of the medium. The development of testbenches allowing to reproduce the effect of atmospheric turbulence on optic waves propagation under laboratory conditions lead to considerable advancements in the field of adaptive optics. We therefore see a vivid interest in being able to reproduce the effects of internal waves on sound propagation in controlled environments. An experimental protocol in a water tank is proposed: an ultrasonic wave is transmitted through a randomly rough acoustic lens, producing distortions of the received wavefront. The induced signal fluctuations are controlled by tuning the statistical parameters of the roughness of the lens. Especially, they are linked to dimensional parameters allowing to classify the configurations into regimes of fluctuations and to predict the statistical moment of the acoustic pressure up to the fourth order. A remarkable relevance of our experimental scheme is found when compared to theoretical and simulation results. The degradation of classical signal processing techniques when applied to our acquired data highlights the need for corrective detection techniques. A review of the existing techniques in other domains is proposed
Kourchi, Hasna. "Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Texto completo da fonteA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Pierce, Robert S. "Signal enhancement of laser generated ultrasound for non-destructive testing". Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/18395.
Texto completo da fonteLivros sobre o assunto "Underwater and ultrasonic"
Kucharski, William M. Underwater inspection of coastal structures using commercially available sonars. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1990.
Encontre o texto completo da fonteKucharski, William M. Underwater inspection of coastal structures using commercially available sonars. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1990.
Encontre o texto completo da fonteFloyd, Charles Alan. Design and implementation of a collision avoidance system for the NPS Autonomous Underwater Vehicle (AUV II) utilizing ultrasonic sensors. Monterey, Calif: Naval Postgraduate School, 1991.
Encontre o texto completo da fonteStroud, John Steven. Twinkling of underwater sound reflected by one realization from a Gaussian spectrum population of corrugated surfaces: Experiments and comparisons with a catastrophe theory approximation. 1995.
Encontre o texto completo da fonteUrick, Robert J. Principles of underwater sound. 3a ed. Peninsula, 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Underwater and ultrasonic"
Ye, Jianxiong, Zhigang Li, Xingling Peng, Jinlan Zhou e Bo Guo. "Study of Ultrasonic Phased Array in Underwater Welding". In Transactions on Intelligent Welding Manufacturing, 175–82. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7043-3_13.
Texto completo da fonteTalmant, Maryline, e Gérard Quentin. "Study of the Pseudo — Lamb Wave So Generated in Thin Cylindrical Shells Insonified by Short Ultrasonic Pulses in Water". In Progress in Underwater Acoustics, 137–44. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_17.
Texto completo da fonteVoloshchenko, Vadim Yu, e Elizaveta V. Voloshchenko. "The Underwater Ultrasonic Equipment with the Nonlinear Acoustics Effect's Application". In Exploration and Monitoring of the Continental Shelf Underwater Environment, 211–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119488309.ch7.
Texto completo da fonteCrowther, P. A., e A. Hansla. "The Lifetimes, Velocities and Probable Origin of Sonic and Ultrasonic Noise Sources on the Sea Surface". In Natural Physical Sources of Underwater Sound, 379–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_30.
Texto completo da fonteAzcuaga, Valery F. Godínez, Jorge Salcedo e Laszlo Adler. "Ultrasonic Inspection of an Underwater Piping System Covered with Thick Coating". In Review of Progress in Quantitative Nondestructive Evaluation, 1867–74. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0383-1_244.
Texto completo da fonteChaitanya, G. M. S. K., Govind Kumar Sharma, Anish Kumar e B. Purnachandra Rao. "Development of Automated Scanners for Underwater and Under-Sodium Ultrasonic Imaging". In Communications in Computer and Information Science, 109–17. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2845-8_9.
Texto completo da fonteVan Vinh, Phan, Nguyen Hoang Thoan, Nguyen Xuan Duong e Dang Duc Dung. "Fabrication of Underwater Ultrasonic Transducer by Using Lead-Free Piezoelectric Materials". In Lecture Notes in Mechanical Engineering, 683–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99666-6_99.
Texto completo da fonteVan Buren, A. L., e J. E. Blue. "Calibration of Underwater Acoustic Transducers at NRL/USRD". In Power Transducers for Sonics and Ultrasonics, 221–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76271-0_18.
Texto completo da fonte"Appendix: Ultrasonic Sensing Systems in the Air Medium". In Digital Underwater Acoustic Communications, 255–68. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803009-7.15001-9.
Texto completo da fonte"Ultrasonic monitoring of lab-scaled underwater landslides". In Landslides and Engineered Slopes. From the Past to the Future, Two Volumes + CD-ROM, 1341–44. CRC Press, 2008. http://dx.doi.org/10.1201/9780203885284-183.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Underwater and ultrasonic"
Vishwanatha, Meghana, Karman Selvam, Nooshin Saeidi, Maik Wiemer e Harald Kuhn. "Underwater sensing applications using Capacitive Micromachined Ultrasonic Transducers (CMUTs)". In 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), 1–4. IEEE, 2024. https://doi.org/10.1109/uffc-js60046.2024.10793795.
Texto completo da fonteLi, Yujia, King Shing Lo, Dongmei Huang, Chao Lu e P. K. A. Wai. "High-sensitivity, high-speed underwater ultrasonic detection based on time-stretched self-coherent detection". In CLEO: Applications and Technology, JTu2A.110. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.110.
Texto completo da fonteBakar, S. A. A., N. R. Ong, M. H. A. Aziz, J. B. Alcain, W. M. W. N. Haimi e Z. Sauli. "Underwater detection by using ultrasonic sensor". In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002499.
Texto completo da fonteThakare, Dhawal R., Prabhu Rajagopal e Pierre Belanger. "Ultrasonic guided waves in bone system with degradation". In 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000147.
Texto completo da fonteLeighton, Timothy G. "The acoustic bubble: Oceanic bubble acoustics and ultrasonic cleaning". In 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2015. http://dx.doi.org/10.1121/2.0000121.
Texto completo da fonteGerdt, David W., Martin C. Baruch e Charles M. Adkins. "Ultrasonic liquid crystal-based underwater acoustic imaging". In Electronic Imaging '99, editado por Ranganathan Shashidhar. SPIE, 1999. http://dx.doi.org/10.1117/12.343873.
Texto completo da fonteNorli, Petter, Emilie Vallée, Magne Aanes, Asbjørn Spilde, Henrik Duerud, Fabrice Prieur, Tore Bjåstad, Øyvind Standal e Martijn Frijlink. "Ultrasonic detection of stress corrosion cracks in gaseous atmosphere using Broadband transducers". In International Conference on Underwater Acoustics. ASA, 2019. http://dx.doi.org/10.1121/2.0001334.
Texto completo da fonteSAILLANT, JF, S. TRIGER, F. AFROUKH, J. WALLACE, L. WANG, S. COCHRAN e D. CUMMING. "MOSAIC: A SCALABLE, MODULAR SYSTEM FOR UNDERWATER ULTRASONIC IMAGING". In DETECTION & CLASSIFICATION OF UNDERWATER TARGETS 2007. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17797.
Texto completo da fonteKleiman, Jacob, Yuri Kudryavtsev e Alexander Lugovskoy. "Underwater Stress Relief and Fatigue Improvement by Ultrasonic Peening". In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83469.
Texto completo da fonteSCUDDER, LP, DA HUTCHINS e JT MOTTRAM. "THE ULTRASONIC IMPULSE RESPONSE OF UNIDIRECTIONAL CARBON FIBRE LAMINATES". In Acoustics of Advanced Materials for Underwater Applications 1993. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/20599.
Texto completo da fonte