Artigos de revistas sobre o tema "Underground thermal storage"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Underground thermal storage".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Barros-Enriquez, Jose David, Milton Ivan Villafuerte Lopez, Angel Moises Avemañay Morocho e Edgar Gabriel Valencia Rodriguez. "Design of a cooling system from underground thermal energy storage (UTES, Underground) Thermal Energy Storage) based on experimental results". Brazilian Journal of Development 10, n.º 1 (11 de janeiro de 2024): 873–84. http://dx.doi.org/10.34117/bjdv10n1-056.
Texto completo da fonteGonet, Andrzej, Tomasz Śliwa, Daniel Skowroński, Aneta Sapińska-Śliwa e Andrzej Gonet. "Rock mass thermal analysis in underground thermal energy storage (UTES)". AGH Drilling,Oil,Gas 29, n.º 2 (2012): 375. http://dx.doi.org/10.7494/drill.2012.29.2.375.
Texto completo da fonteNhut, Le Minh, Waseem Raza e Youn Cheol Park. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank". Sustainability 12, n.º 20 (20 de outubro de 2020): 8686. http://dx.doi.org/10.3390/su12208686.
Texto completo da fonteGonzalez-Ayala, J., C. Sáez Blázquez, S. Lagüela e I. Martín Nieto. "Assesment for optimal underground seasonal thermal energy storage". Energy Conversion and Management 308 (maio de 2024): 118394. http://dx.doi.org/10.1016/j.enconman.2024.118394.
Texto completo da fonteJin, Guolong, Xiongyao Xie, Pan Li, Hongqiao Li, Mingrui Zhao e Meitao Zou. "Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank". Energies 17, n.º 13 (2 de julho de 2024): 3246. http://dx.doi.org/10.3390/en17133246.
Texto completo da fonteJones, Frank E. "LIMITATIONS ON UNDERGROUND STORAGE TANK LEAK DETECTION SYSTEMS". International Oil Spill Conference Proceedings 1989, n.º 1 (1 de fevereiro de 1989): 3–5. http://dx.doi.org/10.7901/2169-3358-1989-1-3.
Texto completo da fonteSipkova, Veronika, Jiri Labudek e Otakar Galas. "Low Energy Source Synthetic Thermal Energy Storage (STES)". Advanced Materials Research 899 (fevereiro de 2014): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.899.143.
Texto completo da fonteTutumlu, Hakan, Recep Yumrutaş e Murtaza Yildirim. "Investigating thermal performance of an ice rink cooling system with an underground thermal storage tank". Energy Exploration & Exploitation 36, n.º 2 (31 de agosto de 2017): 314–34. http://dx.doi.org/10.1177/0144598717723644.
Texto completo da fonteZhou, Xuezhi, Yujie Xu, Xinjing Zhang, Dehou Xu, Youqiang Linghu, Huan Guo, Ziyi Wang e Haisheng Chen. "Large scale underground seasonal thermal energy storage in China". Journal of Energy Storage 33 (janeiro de 2021): 102026. http://dx.doi.org/10.1016/j.est.2020.102026.
Texto completo da fonteBeaufait, Robert, Willy Villasmil, Sebastian Ammann e Ludger Fischer. "Techno-Economic Analysis of a Seasonal Thermal Energy Storage System with 3-Dimensional Horizontally Directed Boreholes". Thermo 2, n.º 4 (16 de dezembro de 2022): 453–81. http://dx.doi.org/10.3390/thermo2040030.
Texto completo da fonteLu, Fang, Xin Jiang Du, Yan Zhou e Yang Yang Du. "New Progress of Study in Energy Storage Area of Volcanic Rocks". Advanced Materials Research 616-618 (dezembro de 2012): 100–103. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.100.
Texto completo da fonteOcłoń, Paweł, Maciej Ławryńczuk e Marek Czamara. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation". Energies 14, n.º 16 (20 de agosto de 2021): 5137. http://dx.doi.org/10.3390/en14165137.
Texto completo da fonteVillasmil, Willy, Marcel Troxler, Reto Hendry, Philipp Schuetz e Jörg Worlitschek. "Parametric Cost Optimization of Solar Systems with Seasonal Thermal Energy Storage for Buildings". E3S Web of Conferences 246 (2021): 03003. http://dx.doi.org/10.1051/e3sconf/202124603003.
Texto completo da fonteRíos-Arriola, Juan, Nicolás Velázquez-Limón, Jesús Armando Aguilar-Jiménez, Saúl Islas, Juan Daniel López-Sánchez, Francisco Javier Caballero-Talamantes, José Armando Corona-Sánchez e Cristian Ascención Cásares-De la Torre. "Comparison between Air-Exposed and Underground Thermal Energy Storage for Solar Cooling Applications". Processes 11, n.º 8 (10 de agosto de 2023): 2406. http://dx.doi.org/10.3390/pr11082406.
Texto completo da fonteMohd Apandi, Nazirah. "Optimization of Phase Change Materials as Backfill Materials for Underground Cable". Scientific Research Journal 21, n.º 2 (1 de setembro de 2024): 119–34. http://dx.doi.org/10.24191/srj.v21i2.26990.
Texto completo da fontePark, Dohyun, Dong-Woo Ryu, Byung-Hee Choi, Choon Sunwoo e Kong-Chang Han. "Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes". Journal of Korean Society For Rock Mechanics 23, n.º 4 (31 de agosto de 2013): 308–18. http://dx.doi.org/10.7474/tus.2013.23.4.308.
Texto completo da fonteNassar, Y., A. ElNoaman, A. Abutaima, S. Yousif e A. Salem. "Evaluation of the underground soil thermal storage properties in Libya". Renewable Energy 31, n.º 5 (abril de 2006): 593–98. http://dx.doi.org/10.1016/j.renene.2005.08.001.
Texto completo da fonteZhang, Ying-nan, Yan-guang Liu, Kai Bian, Guo-qiang Zhou, Xin Wang e Mei-hua Wei. "Development status and prospect of underground thermal energy storage technology". Journal of Groundwater Science and Engineering 12, n.º 1 (março de 2024): 92–108. http://dx.doi.org/10.26599/jgse.2024.9280008.
Texto completo da fonteOosterbaan, Harm, Mateusz Janiszewski, Lauri Uotinen, Topias Siren e Mikael Rinne. "Numerical Thermal Back-calculation of the Kerava Solar Village Underground Thermal Energy Storage". Procedia Engineering 191 (2017): 352–60. http://dx.doi.org/10.1016/j.proeng.2017.05.191.
Texto completo da fonteZimmels, Y., F. Kirzhner e B. Krasovitski. "Design Criteria for Compressed Air Storage in Hard Rock". Energy & Environment 13, n.º 6 (novembro de 2002): 851–72. http://dx.doi.org/10.1260/095830502762231313.
Texto completo da fonteStricker, Kai, Jens C. Grimmer, Robert Egert, Judith Bremer, Maziar Gholami Korzani, Eva Schill e Thomas Kohl. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems". Energies 13, n.º 24 (9 de dezembro de 2020): 6510. http://dx.doi.org/10.3390/en13246510.
Texto completo da fonteHyrzyński, Rafał, Paweł Ziółkowski, Sylwia Gotzman, Bartosz Kraszewski e Janusz Badur. "Thermodynamic analysis of the Compressed Air Energy Storage system coupled with the Underground Thermal Energy Storage". E3S Web of Conferences 137 (2019): 01023. http://dx.doi.org/10.1051/e3sconf/201913701023.
Texto completo da fonteQin, Xiangxi, Yazhou Zhao, Chengjun Dai, Jian Wei e Dahai Xue. "Thermal Performance Analysis on the Seasonal Heat Storage by Deep Borehole Heat Exchanger with the Extended Finite Line Source Model". Energies 15, n.º 22 (9 de novembro de 2022): 8366. http://dx.doi.org/10.3390/en15228366.
Texto completo da fonteKortiš, Ján, e Michal Gottwald. "Numerical Simulation of Thermal Energy Storage in Underground Soil Heat Accumulator". Civil and Environmental Engineering 10, n.º 2 (1 de dezembro de 2014): 93–97. http://dx.doi.org/10.2478/cee-2014-0017.
Texto completo da fonteZhu, Jiayin, Yingfang Liu, Ruixin Li, Bin Chen, Yu Chen e Jifu Lu. "Thermal Storage Performance of Underground Cave Dwellings under Kang Intermittent Heating: A Case Study of Northern China". Processes 10, n.º 3 (18 de março de 2022): 595. http://dx.doi.org/10.3390/pr10030595.
Texto completo da fonteSUZUKI, Daisuke, Michihiko SIBUE, Shun MIKAMI, Kaoru YASUHARA, Takao YOKOYAMA e Yoshito HORINO. "512 Heat pump using underground thermal storage of Launcher-typed well". Proceedings of Autumn Conference of Tohoku Branch 2005.41 (2005): 199–200. http://dx.doi.org/10.1299/jsmetohoku.2005.41.199.
Texto completo da fonteJiang, Yan, Qing Gao, Lihua Wang e Ming Li. "Energy Transfer Effect of Dynamic Load on Underground Thermal Energy Storage". Procedia Environmental Sciences 12 (2012): 659–65. http://dx.doi.org/10.1016/j.proenv.2012.01.332.
Texto completo da fonteNi, Zhuobiao, Pauline van Gaans, Martijn Smit, Huub Rijnaarts e Tim Grotenhuis. "Biodegradation ofcis-1,2-Dichloroethene in Simulated Underground Thermal Energy Storage Systems". Environmental Science & Technology 49, n.º 22 (4 de novembro de 2015): 13519–27. http://dx.doi.org/10.1021/acs.est.5b03068.
Texto completo da fonteNisar, Shahim. "Analysis of Thermal Energy Storage to a Combined Heat and Power Plant". International Journal for Research in Applied Science and Engineering Technology 9, n.º 9 (30 de setembro de 2021): 1313–20. http://dx.doi.org/10.22214/ijraset.2021.38182.
Texto completo da fonteCarlsson, Anders E. "Coarse-Grained Model of Underground Thermal Energy Storage Applied to Efficiency Optimization". Energies 13, n.º 8 (14 de abril de 2020): 1918. http://dx.doi.org/10.3390/en13081918.
Texto completo da fonteDerii, Volodymyr, e Oleksandr Zgurovets. "Heat energy storages". System Research in Energy 2023, n.º 3 (25 de agosto de 2023): 4–14. http://dx.doi.org/10.15407/srenergy2023.03.004.
Texto completo da fonteMesserklinger, Sophie, Mikkel Smaadahl e Carlo Rabaiotti. "Large thermal heat storages in rock caverns – numerical simulation of heat losses". Geomechanics and Tunnelling 17, n.º 1 (fevereiro de 2024): 64–70. http://dx.doi.org/10.1002/geot.202300050.
Texto completo da fontePokhrel, Sajjan, Ali Fahrettin Kuyuk, Hosein Kalantari e Seyed Ali Ghoreishi-Madiseh. "Techno-Economic Trade-Off between Battery Storage and Ice Thermal Energy Storage for Application in Renewable Mine Cooling System". Applied Sciences 10, n.º 17 (31 de agosto de 2020): 6022. http://dx.doi.org/10.3390/app10176022.
Texto completo da fonteSağlam, Özdamar, Seyit Özdamar e Suha Mert. "Simulation and modeling of a solar-aided underground energy storage system". Thermal Science, n.º 00 (2023): 25. http://dx.doi.org/10.2298/tsci220913025s.
Texto completo da fonteRotta Loria, Alessandro F. "The thermal energy storage potential of underground tunnels used as heat exchangers". Renewable Energy 176 (outubro de 2021): 214–27. http://dx.doi.org/10.1016/j.renene.2021.05.076.
Texto completo da fonteISHIZUKA, Yoshio, Naoto KINOSHITA e Tetsuo OKUNO. "Stability of a rock cavern for underground LPG storage under thermal stresses." Doboku Gakkai Ronbunshu, n.º 370 (1986): 243–50. http://dx.doi.org/10.2208/jscej.1986.370_243.
Texto completo da fonteKozai, T. "THERMAL PERFORMANCE OF A SOLAR GREENHOUSE WITH AN UNDERGROUND HEAT STORAGE SYSTEM". Acta Horticulturae, n.º 257 (dezembro de 1989): 169–82. http://dx.doi.org/10.17660/actahortic.1989.257.20.
Texto completo da fonteCetin, Aysegul, Yusuf Kagan Kadioglu e Halime Paksoy. "Underground thermal heat storage and ground source heat pump activities in Turkey". Solar Energy 200 (abril de 2020): 22–28. http://dx.doi.org/10.1016/j.solener.2018.12.055.
Texto completo da fonteXie, Kun, Yong-Le Nian e Wen-Long Cheng. "Analysis and optimization of underground thermal energy storage using depleted oil wells". Energy 163 (novembro de 2018): 1006–16. http://dx.doi.org/10.1016/j.energy.2018.08.189.
Texto completo da fonteDolgun, Gülşah Karaca, Ali Keçebaş, Mustafa Ertürk e Ali Daşdemir. "Optimal insulation of underground spherical tanks for seasonal thermal energy storage applications". Journal of Energy Storage 69 (outubro de 2023): 107865. http://dx.doi.org/10.1016/j.est.2023.107865.
Texto completo da fonteEze, Fabian, Wang-je Lee, Young sub An, Hongjin Joo, Kyoung-ho Lee, Julius Ogola e Julius Mwabora. "Experimental and simulated evaluation of inverse model for shallow underground thermal storage". Case Studies in Thermal Engineering 59 (julho de 2024): 104535. http://dx.doi.org/10.1016/j.csite.2024.104535.
Texto completo da fonteBrown, C. S., I. Kolo, A. Lyden, L. Franken, N. Kerr, D. Marshall-Cross, S. Watson, G. Falcone, D. Friedrich e J. Diamond. "Assessing the technical potential for underground thermal energy storage in the UK". Renewable and Sustainable Energy Reviews 199 (julho de 2024): 114545. http://dx.doi.org/10.1016/j.rser.2024.114545.
Texto completo da fonteShi, Liang, Ming Qu, Xiaobing Liu, Tomas Pablo Venegas, Lingshi Wang, Jin Dong, Borui Cui, Haowen Xu, Xiaoli Liu e Yanfei Li. "Performance evaluation of underground thermal storage integrated dual-source heat pump systems". Energy and Buildings 316 (agosto de 2024): 114349. http://dx.doi.org/10.1016/j.enbuild.2024.114349.
Texto completo da fonteRapti, Dimitra, Francesco Tinti e Carlo Antonio Caputo. "Integrated Underground Analyses as a Key for Seasonal Heat Storage and Smart Urban Areas". Energies 17, n.º 11 (24 de maio de 2024): 2533. http://dx.doi.org/10.3390/en17112533.
Texto completo da fonteHuijun, Duan. "Underground Thermal Engermal Energy Storage Storage Concrete Piples Around the Simulation and Analysis of Temperature Fileds". IOP Conference Series: Earth and Environmental Science 791, n.º 1 (1 de junho de 2021): 012152. http://dx.doi.org/10.1088/1755-1315/791/1/012152.
Texto completo da fonteLi, Fuqing, Fufeng Li, Rui Sun, Jianjie Zheng, Xiaozhao Li, Lan Shen, Qiang Sun, Ying Liu, Yukun Ji e Yinhang Duan. "A Study on the Transient Response of Compressed Air Energy Storage in the Interaction between Gas Storage Chambers and Horseshoe-Shaped Tunnels in an Abandoned Coal Mine". Energies 17, n.º 4 (19 de fevereiro de 2024): 953. http://dx.doi.org/10.3390/en17040953.
Texto completo da fonteFikrət Seyfiyev, Fikrət Seyfiyev, e Kamran Muradov Kamran Muradov. "EFFECT OF NANOPARTICLES ON THE PROPERTIES OF CEMENT IN UGS WELLS". PAHTEI-Procedings of Azerbaijan High Technical Educational Institutions 28, n.º 05 (14 de abril de 2023): 85–91. http://dx.doi.org/10.36962/pahtei28052023-85.
Texto completo da fonteCui, Jun Kui, e Xin Lei Nan. "The Numerical Simulation of the Aquifer Thermal Energy Storage Technology". Advanced Materials Research 225-226 (abril de 2011): 390–94. http://dx.doi.org/10.4028/www.scientific.net/amr.225-226.390.
Texto completo da fonteXie, Peiling, Haoliang Huang, Yuchang He, Yueyue Zhang e Jiangxiong Wei. "Heat Storage of Paraffin-Based Composite Phase Change Materials and Their Temperature Regulation of Underground Power Cable Systems". Materials 14, n.º 4 (5 de fevereiro de 2021): 740. http://dx.doi.org/10.3390/ma14040740.
Texto completo da fontePark, Do-Hyun, Hyung-Mok Kim, Dong-Woo Ryu, Byung-Hee Choi, Choon SunWoo e Kong-Chang Han. "Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES)". Journal of Korean Society For Rock Mechanics 22, n.º 3 (30 de junho de 2012): 188–95. http://dx.doi.org/10.7474/tus.2012.22.3.188.
Texto completo da fonte