Literatura científica selecionada sobre o tema "Underground thermal storage"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Underground thermal storage".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Underground thermal storage"
Barros-Enriquez, Jose David, Milton Ivan Villafuerte Lopez, Angel Moises Avemañay Morocho e Edgar Gabriel Valencia Rodriguez. "Design of a cooling system from underground thermal energy storage (UTES, Underground) Thermal Energy Storage) based on experimental results". Brazilian Journal of Development 10, n.º 1 (11 de janeiro de 2024): 873–84. http://dx.doi.org/10.34117/bjdv10n1-056.
Texto completo da fonteGonet, Andrzej, Tomasz Śliwa, Daniel Skowroński, Aneta Sapińska-Śliwa e Andrzej Gonet. "Rock mass thermal analysis in underground thermal energy storage (UTES)". AGH Drilling,Oil,Gas 29, n.º 2 (2012): 375. http://dx.doi.org/10.7494/drill.2012.29.2.375.
Texto completo da fonteNhut, Le Minh, Waseem Raza e Youn Cheol Park. "A Parametric Study of a Solar-Assisted House Heating System with a Seasonal Underground Thermal Energy Storage Tank". Sustainability 12, n.º 20 (20 de outubro de 2020): 8686. http://dx.doi.org/10.3390/su12208686.
Texto completo da fonteGonzalez-Ayala, J., C. Sáez Blázquez, S. Lagüela e I. Martín Nieto. "Assesment for optimal underground seasonal thermal energy storage". Energy Conversion and Management 308 (maio de 2024): 118394. http://dx.doi.org/10.1016/j.enconman.2024.118394.
Texto completo da fonteJin, Guolong, Xiongyao Xie, Pan Li, Hongqiao Li, Mingrui Zhao e Meitao Zou. "Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank". Energies 17, n.º 13 (2 de julho de 2024): 3246. http://dx.doi.org/10.3390/en17133246.
Texto completo da fonteJones, Frank E. "LIMITATIONS ON UNDERGROUND STORAGE TANK LEAK DETECTION SYSTEMS". International Oil Spill Conference Proceedings 1989, n.º 1 (1 de fevereiro de 1989): 3–5. http://dx.doi.org/10.7901/2169-3358-1989-1-3.
Texto completo da fonteSipkova, Veronika, Jiri Labudek e Otakar Galas. "Low Energy Source Synthetic Thermal Energy Storage (STES)". Advanced Materials Research 899 (fevereiro de 2014): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.899.143.
Texto completo da fonteTutumlu, Hakan, Recep Yumrutaş e Murtaza Yildirim. "Investigating thermal performance of an ice rink cooling system with an underground thermal storage tank". Energy Exploration & Exploitation 36, n.º 2 (31 de agosto de 2017): 314–34. http://dx.doi.org/10.1177/0144598717723644.
Texto completo da fonteZhou, Xuezhi, Yujie Xu, Xinjing Zhang, Dehou Xu, Youqiang Linghu, Huan Guo, Ziyi Wang e Haisheng Chen. "Large scale underground seasonal thermal energy storage in China". Journal of Energy Storage 33 (janeiro de 2021): 102026. http://dx.doi.org/10.1016/j.est.2020.102026.
Texto completo da fonteBeaufait, Robert, Willy Villasmil, Sebastian Ammann e Ludger Fischer. "Techno-Economic Analysis of a Seasonal Thermal Energy Storage System with 3-Dimensional Horizontally Directed Boreholes". Thermo 2, n.º 4 (16 de dezembro de 2022): 453–81. http://dx.doi.org/10.3390/thermo2040030.
Texto completo da fonteTeses / dissertações sobre o assunto "Underground thermal storage"
Tomasetta, Camilla <1983>. "Life Cycle Assessment of Underground Thermal Energy Storage Systems: Aquifer Thermal Energy Storage verus Borehole Thermal Energy Storage". Master's Degree Thesis, Università Ca' Foscari Venezia, 2013. http://hdl.handle.net/10579/3476.
Texto completo da fonteSweet, Marshall. "Numerical Simulation of Underground Solar Thermal Energy Storage". VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2322.
Texto completo da fonteHe, Miaomiao. "Analysis of underground thermal energy storage systems with ground water advection in subtropical regions". Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38642761.
Texto completo da fonteHe, Miaomiao, e 何苗苗. "Analysis of underground thermal energy storage systems with ground water advection in subtropical regions". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38642761.
Texto completo da fonteNaser, Mohammad Yousef Mousa. "Computer Modeling of Solar Thermal System with Underground Storage Tank for Space Heating". Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1620875130064807.
Texto completo da fonteLeem, Junghun. "Micromechanical fracture modeling on underground nuclear waste storage: Coupled mechanical, thermal, and hydraulic effects". Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284062.
Texto completo da fonteBERLIN, DANIEL, e MARCUS DINGLE. "Investment framework for large scale underground thermal energy storage : A qualitative study of district heating companies in Sweden". Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212070.
Texto completo da fonteDe nuvarande miljöförändringar som världen står inför ställer krav på värmemarknaden att förändras till ökad användning av förnybara energikällor som bränsle. Fjärrvärme ses som en effektiv lösning för att åstadkomma detta i tätbebyggelse. Termiska energilager (TES) ses som en lösning för att hantera den ökande mängden intermittenta energikällor i energisystemet. För den svenska fjärrvärmen ses ett storskaligt underjordiskt TES (UTES) som en intressant lösning dels av denna anledning dels för att öka användningen av restvärme och värmen från underutnyttjade produktionsanläggningar. Hursomhelst så innebär den nuvarande komplexiteten att investera i storskalig UTES att utvecklingen för fjärrvärme begränsas. Syftet med denna rapport är därför att fylla den kunskapslucka som existerar gällande faktorer att analysera för en investering i ett storskaligt UTES. Ett investeringsramverk presenteras för att användas som beslutsunderlag för huvudsakligen beslutsfattare inom fjärrvärmeverksamheten, men som även kan vara av intresse för andra intressenter i fjärrvärmesystemet. De huvudsakliga upptäckterna från denna rapport är att det existerar nödvändiga förutsättningar för en investering i storskalig UTES och att kriterierna för utvärdering av en investering i storskalig UTES antingen är relaterade till ekonomi eller miljö. Vidare så är den huvudsakliga funktionen av ett storskaligt UTES säsongslagring eftersom denna funktion skapar lejonparten av inkomsten. Inkomsten skapas genom lagring av billig värme under perioder av låg efterfrågan på värme som ersätter dyr spetsproduktion under perioder av hög efterfrågan på värme. Beroende på storleken av den skapade inkomsten så kan ett storskaligt UTES potentiellt klara kravet på att vara lönsamt. Hursomhelst så visar denna rapport på att andra faktorer troligen också behöver tas hänsyn till för att ett storskaligt UTES ska bli lönsamt. Trots att det är nödvändigt så gör den osäkra framtiden för fjärrvärme det svårt att utvärdera en investering i storskalig UTES. Rekommendationerna för framtida studier fokuserar därför på att begränsa dessa osäkerheter genom ytterligare vetenskapligt stöd.
Bourhaleb, Houssine. "Etude et expérimentation d'une chaîne énergétique solaire avec capteur à air, stockage thermique souterrain et récupération par pompe à chaleur". Valenciennes, 1987. https://ged.uphf.fr/nuxeo/site/esupversions/69924e8c-5370-4c55-aef3-3e377d2fa6a1.
Texto completo da fonteBaudoin, André. "Stockage intersaisonnier de chaleur dans le sol par batterie d'echangeurs baionnette verticaux : modele de predimensionnement". Reims, 1988. http://www.theses.fr/1988REIMS004.
Texto completo da fonteSevi, Fébron Lionel Prince. "Étude numérique et expérimentale d'un système de valorisation de l'énergie solaire thermique des routes pour les besoins des bâtiments". Electronic Thesis or Diss., Chambéry, 2024. http://www.theses.fr/2024CHAMA005.
Texto completo da fonteReducing greenhouse gas emissions from fossil fuels combined with increasing global energy demand represents a major challenge for humanity. We will not be able to solve it without massive recourse to renewable energies. Solar energy is one of the most abundant and available forms of renewable energy. Various techniques are used to harness this energy, such as photovoltaic solar panels for electricity production and solar thermal collectors for heat production. Recently, another approach has emerged, that of asphalt solar collector, offering both transport infrastructure and solar energy capture capacities. In this context, this thesis proposes the study and development of a system energetically coupling a roadway to a building via thermal storage. The concept is based on recovering heat from the roadway during hot periods, via a heat transfer fluid circulating in a draining road surface placed under the wearing course. This heat is then stored in a thermal storage composed of sand saturated with water in the basement of the building in order to be mobilized later. Heating and domestic hot water production use a heat pump. A thermal and energy model has been developed for the entire system. The model predictions are compared to experimental results obtained using a demonstrator specifically developed for the needs of the study. Annual simulations show that it is possible to efficiently heat individual houses or small collectives meeting current energy regulations by using the thermal energy of the roads with an average coefficient of performance of the heat pump close to 6.5. A sensitivity study of the system showed that the surface area of the sensor, the storage volume and the location have an influence on the performance of the system
Livros sobre o assunto "Underground thermal storage"
Lee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4273-7.
Texto completo da fonteLee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013.
Encontre o texto completo da fonteBurkhard, Sanner, Germany. Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie. e IEA Programme for Energy Conservation through Energy Storage., eds. High temperature underground thermal energy storage: State-of-the-art and prospects. Giessen: Lenz-Verlag, 1999.
Encontre o texto completo da fonteUnderground Thermal Energy Storage. Springer, 2012.
Encontre o texto completo da fonteLee, Kun Sang. Underground Thermal Energy Storage. Springer, 2012.
Encontre o texto completo da fonteLee, Kun Sang. Underground Thermal Energy Storage. Springer, 2014.
Encontre o texto completo da fonteWolf, E. L. Prospects for Sustainable Power and Moderate Climate. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0012.
Texto completo da fonteGeological sequestration of carbon dioxide: Thermodynamics, kinetics, and reaction path modeling. Amsterdam: Elsevier, 2007.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Underground thermal storage"
Lee, Kun Sang. "Underground Thermal Energy Storage". In Underground Thermal Energy Storage, 15–26. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_2.
Texto completo da fonteLee, Kun Sang. "Aquifer Thermal Energy Storage". In Underground Thermal Energy Storage, 59–93. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_4.
Texto completo da fonteLee, Kun Sang. "Borehole Thermal Energy Storage". In Underground Thermal Energy Storage, 95–123. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_5.
Texto completo da fonteLee, Kun Sang. "Introduction". In Underground Thermal Energy Storage, 1–13. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_1.
Texto completo da fonteLee, Kun Sang. "Basic Theory and Ground Properties". In Underground Thermal Energy Storage, 27–58. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_3.
Texto completo da fonteLee, Kun Sang. "Cavern Thermal Energy Storage Systems". In Underground Thermal Energy Storage, 125–29. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_6.
Texto completo da fonteLee, Kun Sang. "Standing Column Well". In Underground Thermal Energy Storage, 131–38. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_7.
Texto completo da fonteLee, Kun Sang. "Modeling". In Underground Thermal Energy Storage, 139–51. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4273-7_8.
Texto completo da fonteMokhtarzadeh, Hamed, Shiva Gorjian, Yaghuob Molaie, Kamran Soleimani e Alireza Gorjian. "Underground Thermal Energy Storage Systems and Their Applications". In Thermal Energy, 58–82. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003345558-5.
Texto completo da fonteTomasetta, C., C. C. D. F. Van Ree e J. Griffioen. "Life Cycle Analysis of Underground Thermal Energy Storage". In Engineering Geology for Society and Territory - Volume 5, 1213–17. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09048-1_232.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Underground thermal storage"
Mahmud, Roohany, Mustafa Erguvan e David W. MacPhee. "Underground CSP Thermal Energy Storage". In ASME 2019 Power Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/power2019-1879.
Texto completo da fonteWenjie Liu, Xiaoping Miao, Jinsheng Wang, Xibin Ma e Jing Ding. "Thermal storage cooling tower for underground commercial building". In 2008 IEEE International Conference on Sustainable Energy Technologies (ICSET). IEEE, 2008. http://dx.doi.org/10.1109/icset.2008.4747003.
Texto completo da fonteMing, Li, Guo Qin, Gao Qing e Jiang Yan. "Thermal Analysis of Underground Thermal Energy Storage under Different Load Modes". In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.225.
Texto completo da fonteFraněk, J., J. Holeček, V. Hladík e K. Sosna. "Research on a Thermally Loaded Rock - Perspectives of Underground Thermal Energy Storage". In The Third Sustainable Earth Sciences Conference and Exhibition. Netherlands: EAGE Publications BV, 2015. http://dx.doi.org/10.3997/2214-4609.201414273.
Texto completo da fonteWong, Bill, Aart Snijders e Larry McClung. "Recent Inter-seasonal Underground Thermal Energy Storage Applications in Canada". In 2006 IEEE EIC Climate Change Conference. IEEE, 2006. http://dx.doi.org/10.1109/eicccc.2006.277232.
Texto completo da fonteMöri, A., J. Naftalski, T. Liardon, M. Talebkeikhah, B. Lecampion, G. Lu e J. Burghardt. "Experimental Study of Underground Heat Storage via Hydraulic Fractures". In 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0540.
Texto completo da fonteAbid, Khizar, Alberto Toledo Velazco, Catalin Teodoriu e Mahmood Amani. "Investigations on Cement Thermal Properties with Direct Application to Underground Energy Storage". In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0874.
Texto completo da fonteBonte, Matthijs, Gerard van den Berg, Margot de Cleen e Marleen van Rijswick. "Planning the underground: managing sustainable use of the Dutch underground with specific reference to aquifer thermal energy storage". In First International Conference on Frontiers in Shallow Subsurface Technology. European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609-pdb.150.b02.
Texto completo da fonteBayomy, A. M., Hiep V. Nguyen, Jun Wang e Seth B. Dworkin. "Performance analysis of a single underground thermal storage borehole using phase change material". In International Ground Source Heat Pump Association. International Ground Source Heat Pump Association, 2018. http://dx.doi.org/10.22488/okstate.18.000008.
Texto completo da fonteSaeidi, Negar, Alberto Romero, Lorrie Fava e Cheryl Allen. "Simulation of large-scale thermal storage in fragmented rock modelled as a discretised porous medium – application to the Natural Heat Exchange Area at Creighton Mine". In First International Conference on Underground Mining Technology. Australian Centre for Geomechanics, Perth, 2017. http://dx.doi.org/10.36487/acg_rep/1710_12_saeidi.
Texto completo da fonteRelatórios de organizações sobre o assunto "Underground thermal storage"
Zody, Zachary, e Viktoria Gisladottir. Shallow geothermal technology, opportunities in cold regions, and related data for deployment at Fort Wainwright. Engineer Research and Development Center (U.S.), março de 2023. http://dx.doi.org/10.21079/11681/46672.
Texto completo da fonte