Artigos de revistas sobre o tema "Ultra-reliable"

Siga este link para ver outros tipos de publicações sobre o tema: Ultra-reliable.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ultra-reliable".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Jones, Harry. "Ultra Reliable Space Life Support Systems". SAE International Journal of Aerospace 1, n.º 1 (29 de junho de 2008): 482–98. http://dx.doi.org/10.4271/2008-01-2160.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Husain, Syed S., Andreas Kunz, Athul Prasad, Emmanouil Pateromichelakis e Konstantinos Samdanis. "Ultra-High Reliable 5G V2X Communications". IEEE Communications Standards Magazine 3, n.º 2 (junho de 2019): 46–52. http://dx.doi.org/10.1109/mcomstd.2019.1900008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Daniel Sheu, D. "An ultra-reliable board identification system". Journal of Manufacturing Systems 15, n.º 2 (janeiro de 1996): 84–94. http://dx.doi.org/10.1016/0278-6125(96)82334-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Park, Jihong, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, Takayuki Nishio, Anis Elgabli e Mehdi Bennis. "Extreme ultra-reliable and low-latency communication". Nature Electronics 5, n.º 3 (março de 2022): 133–41. http://dx.doi.org/10.1038/s41928-022-00728-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Soldani, David, Y. Jay Guo, Bernard Barani, Preben Mogensen, Chih-Lin I e Sajal K. Das. "5G for Ultra-Reliable Low-Latency Communications". IEEE Network 32, n.º 2 (março de 2018): 6–7. http://dx.doi.org/10.1109/mnet.2018.8329617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Zemen, Thomas. "Wireless 5G ultra reliable low latency communications". e & i Elektrotechnik und Informationstechnik 135, n.º 7 (2 de outubro de 2018): 445–48. http://dx.doi.org/10.1007/s00502-018-0645-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lezzar, Mohamed Yacine, e Mustafa Mehmet-Ali. "Optimization of ultra-reliable low-latency communication systems". Computer Networks 197 (outubro de 2021): 108332. http://dx.doi.org/10.1016/j.comnet.2021.108332.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Eggers, Patrick C. F., Marko Angjelichinoski e Petar Popovski. "Wireless Channel Modeling Perspectives for Ultra-Reliable Communications". IEEE Transactions on Wireless Communications 18, n.º 4 (abril de 2019): 2229–43. http://dx.doi.org/10.1109/twc.2019.2901788.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Elbamby, Mohammed S., Cristina Perfecto, Mehdi Bennis e Klaus Doppler. "Toward Low-Latency and Ultra-Reliable Virtual Reality". IEEE Network 32, n.º 2 (março de 2018): 78–84. http://dx.doi.org/10.1109/mnet.2018.1700268.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Nielsen, Jimmy Jessen, Rongkuan Liu e Petar Popovski. "Ultra-Reliable Low Latency Communication Using Interface Diversity". IEEE Transactions on Communications 66, n.º 3 (março de 2018): 1322–34. http://dx.doi.org/10.1109/tcomm.2017.2771478.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wang, Hanqing, Wan-Ting Shih, Chao-Kai Wen e Shi Jin. "Reliable OFDM Receiver With Ultra-Low Resolution ADC". IEEE Transactions on Communications 67, n.º 5 (maio de 2019): 3566–79. http://dx.doi.org/10.1109/tcomm.2019.2894629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hagge, J. K. "Ultra-reliable packaging for silicon-on-silicon WSI". IEEE Transactions on Components, Hybrids, and Manufacturing Technology 12, n.º 2 (junho de 1989): 170–79. http://dx.doi.org/10.1109/33.31421.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bottosso, Claudia, Wenjun Tao, Xiuxiang Wang, Li Ma e Marco Galiazzo. "Reliable Metallization Process for Ultra Fine Line Printing". Energy Procedia 43 (2013): 80–85. http://dx.doi.org/10.1016/j.egypro.2013.11.091.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Hammett, R. C. "Ultra-reliable real-time control systems-future trends". IEEE Aerospace and Electronic Systems Magazine 14, n.º 8 (1999): 31–36. http://dx.doi.org/10.1109/62.784047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wang, Dan, Aravindkumar Rajendiran, Sundaram Ananthanarayanan, Hiren Patel, Mahesh V. Tripunitara e Siddharth Garg. "Reliable Computing with Ultra-Reduced Instruction Set Coprocessors". IEEE Micro 34, n.º 6 (novembro de 2014): 86–94. http://dx.doi.org/10.1109/mm.2013.130.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Rayapati, Venkatapathi Naidu, e Dinkar Mukedkhar. "Ultra high reliable spacecraft computer system design considerations". Microelectronics Reliability 32, n.º 1-2 (janeiro de 1992): 133–42. http://dx.doi.org/10.1016/0026-2714(92)90093-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Shariatmadari, Hamidreza, Ruifeng Duan, Sassan Iraji, Zexian Li, Mikko A. Uusitalo e Riku Jäntti. "Resource Allocations for Ultra-Reliable Low-Latency Communications". International Journal of Wireless Information Networks 24, n.º 3 (29 de maio de 2017): 317–27. http://dx.doi.org/10.1007/s10776-017-0360-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Boyd, Christopher, Roope Vehkalahti e Olav Tirkkonen. "Interference Cancelling Codes for Ultra-Reliable Random Access". International Journal of Wireless Information Networks 25, n.º 4 (18 de julho de 2018): 422–33. http://dx.doi.org/10.1007/s10776-018-0411-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Jha, Mayuri, Rahul Gogna, Gurjot Singh Gaba e Rajan Miglani. "An Ultra Wideband, Novel and Reliable RF MEMS Switch". Transactions on Electrical and Electronic Materials 17, n.º 4 (25 de agosto de 2016): 183–88. http://dx.doi.org/10.4313/teem.2016.17.4.183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Hu, Yulin, M. Cenk Gursoy e Anke Schmeink. "Relaying-Enabled Ultra-Reliable Low-Latency Communications in 5G". IEEE Network 32, n.º 2 (março de 2018): 62–68. http://dx.doi.org/10.1109/mnet.2018.1700252.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Azari, Mohammad Mahdi, Fernando Rosas, Kwang-Cheng Chen e Sofie Pollin. "Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity". IEEE Transactions on Communications 66, n.º 1 (janeiro de 2018): 330–44. http://dx.doi.org/10.1109/tcomm.2017.2746105.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Popovski, Petar, Cedomir Stefanovic, Jimmy J. Nielsen, Elisabeth de Carvalho, Marko Angjelichinoski, Kasper F. Trillingsgaard e Alexandru-Sabin Bana. "Wireless Access in Ultra-Reliable Low-Latency Communication (URLLC)". IEEE Transactions on Communications 67, n.º 8 (agosto de 2019): 5783–801. http://dx.doi.org/10.1109/tcomm.2019.2914652.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Ge, Xiaohu. "Ultra-Reliable Low-Latency Communications in Autonomous Vehicular Networks". IEEE Transactions on Vehicular Technology 68, n.º 5 (maio de 2019): 5005–16. http://dx.doi.org/10.1109/tvt.2019.2903793.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Xiao, Chiyang, Jie Zeng, Wei Ni, Xin Su, Ren Ping Liu, Tiejun Lv e Jing Wang. "Downlink MIMO-NOMA for Ultra-Reliable Low-Latency Communications". IEEE Journal on Selected Areas in Communications 37, n.º 4 (abril de 2019): 780–94. http://dx.doi.org/10.1109/jsac.2019.2898785.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Ohmi, Kazuyuki, Toshiyuki Iwamoto, Tatuhiro Yabune, Toshiki Miyake e Tadahiro Ohmi. "Formation Process of Highly Reliable Ultra-Thin Gate Oxide". Japanese Journal of Applied Physics 35, Part 1, No. 2B (28 de fevereiro de 1996): 1531–34. http://dx.doi.org/10.1143/jjap.35.1531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Lyubinetsky, IV, PV Mel'nik, NG Nakhodkin e AE Anisimov. "A reliable compact ultra-high vacuum scanning tunneling microscope". Vacuum 46, n.º 3 (março de 1995): 219–22. http://dx.doi.org/10.1016/0042-207x(94)00047-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Gomes, André, Jacek Kibiłda, Nicola Marchetti e Luiz A. DaSilva. "Dimensioning Spectrum to Support Ultra-Reliable Low-Latency Communication". IEEE Communications Standards Magazine 7, n.º 1 (março de 2023): 88–93. http://dx.doi.org/10.1109/mcomstd.0004.2100107.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Osama, Mohamed, Abdelhamied A. Ateya, Shaimaa Ahmed Elsaid e Ammar Muthanna. "Ultra-Reliable Low-Latency Communications: Unmanned Aerial Vehicles Assisted Systems". Information 13, n.º 9 (12 de setembro de 2022): 430. http://dx.doi.org/10.3390/info13090430.

Texto completo da fonte
Resumo:
Ultra-reliable low-latency communication (uRLLC) is a group of fifth-generation and sixth-generation (5G/6G) cellular applications with special requirements regarding latency, reliability, and availability. Most of the announced 5G/6G applications are uRLLC that require an end-to-end latency of milliseconds and ultra-high reliability of communicated data. Such systems face many challenges since traditional networks cannot meet such requirements. Thus, novel network structures and technologies have been introduced to enable such systems. Since uRLLC is a promising paradigm that covers many applications, this work considers reviewing the current state of the art of the uRLLC. This includes the main applications, specifications, and main requirements of ultra-reliable low-latency (uRLL) applications. The design challenges of uRLLC systems are discussed, and promising solutions are introduced. The virtual and augmented realities (VR/AR) are considered the main use case of uRLLC, and the current proposals for VR and AR are discussed. Moreover, unmanned aerial vehicles (UAVs) are introduced as enablers of uRLLC. The current research directions and the existing proposals are discussed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wu, Weihua, Runzi Liu, Qinghai Yang, Hangguan Shan e Tony Q. S. Quek. "Learning-Based Robust Resource Allocation for Ultra-Reliable V2X Communications". IEEE Transactions on Wireless Communications 20, n.º 8 (agosto de 2021): 5199–211. http://dx.doi.org/10.1109/twc.2021.3065996.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Adhikari, Mainak, e Abhishek Hazra. "6G-Enabled Ultra-Reliable Low-Latency Communication in Edge Networks". IEEE Communications Standards Magazine 6, n.º 1 (março de 2022): 67–74. http://dx.doi.org/10.1109/mcomstd.0001.2100098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Adhikari, Mainak, e Abhishek Hazra. "6G-Enabled Ultra-Reliable Low-Latency Communication in Edge Networks". IEEE Communications Standards Magazine 6, n.º 1 (março de 2022): 67–74. http://dx.doi.org/10.1109/mcomstd.0001.2100098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Uusitalo, Mikko A., Harish Viswanathan, Heli Kokkoniemi-Tarkkanen, Artjom Grudnitsky, Martti Moisio, Teemu Harkonen, Pekka Yli-Paunu, Seppo Horsmanheimo e Dragan Samardzija. "Ultra-Reliable and Low-Latency 5G Systems for Port Automation". IEEE Communications Magazine 59, n.º 8 (agosto de 2021): 114–20. http://dx.doi.org/10.1109/mcom.011.2001060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sun, Zhen, Zhao Chen, Liuguo Yin e Jianhua Lu. "Design of LDBCH Codes for Ultra Reliable Low Latency Communications". IEEE Communications Letters 25, n.º 9 (setembro de 2021): 2800–2804. http://dx.doi.org/10.1109/lcomm.2021.3092629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Ji, Hyoungju, Sunho Park e Byonghyo Shim. "Sparse Vector Coding for Ultra Reliable and Low Latency Communications". IEEE Transactions on Wireless Communications 17, n.º 10 (outubro de 2018): 6693–706. http://dx.doi.org/10.1109/twc.2018.2863286.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Sachs, Joachim, Gustav Wikstrom, Torsten Dudda, Robert Baldemair e Kittipong Kittichokechai. "5G Radio Network Design for Ultra-Reliable Low-Latency Communication". IEEE Network 32, n.º 2 (março de 2018): 24–31. http://dx.doi.org/10.1109/mnet.2018.1700232.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Park, Hyun-Seo, Yuro Lee, Tae-Joong Kim, Byung-Chul Kim e Jae-Yong Lee. "Handover Mechanism in NR for Ultra-Reliable Low-Latency Communications". IEEE Network 32, n.º 2 (março de 2018): 41–47. http://dx.doi.org/10.1109/mnet.2018.1700235.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Sutton, Gordon J., Jie Zeng, Ren Ping Liu, Wei Ni, Diep N. Nguyen, Beeshanga A. Jayawickrama, Xiaojing Huang, Mehran Abolhasan e Zhang Zhang. "Enabling Ultra-Reliable and Low-Latency Communications through Unlicensed Spectrum". IEEE Network 32, n.º 2 (março de 2018): 70–77. http://dx.doi.org/10.1109/mnet.2018.1700253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

She, Changyang, Chenyang Yang e Tony Q. S. Quek. "Radio Resource Management for Ultra-Reliable and Low-Latency Communications". IEEE Communications Magazine 55, n.º 6 (2017): 72–78. http://dx.doi.org/10.1109/mcom.2017.1601092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Angjelichinoski, Marko, Kasper Floe Trillingsgaard e Petar Popovski. "A Statistical Learning Approach to Ultra-Reliable Low Latency Communication". IEEE Transactions on Communications 67, n.º 7 (julho de 2019): 5153–66. http://dx.doi.org/10.1109/tcomm.2019.2907241.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Samarakoon, Sumudu, Mehdi Bennis, Walid Saad e Merouane Debbah. "Distributed Federated Learning for Ultra-Reliable Low-Latency Vehicular Communications". IEEE Transactions on Communications 68, n.º 2 (fevereiro de 2020): 1146–59. http://dx.doi.org/10.1109/tcomm.2019.2956472.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yuan, Zhenhui, Jie Jin, Lingling Sun, Kwan-Wu Chin e Gabriel-Miro Muntean. "Ultra-Reliable IoT Communications with UAVs: A Swarm Use Case". IEEE Communications Magazine 56, n.º 12 (dezembro de 2018): 90–96. http://dx.doi.org/10.1109/mcom.2018.1800161.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Shirvanimoghaddam, Mahyar, Mohammad Sadegh Mohammadi, Rana Abbas, Aleksandar Minja, Chentao Yue, Balazs Matuz, Guojun Han et al. "Short Block-Length Codes for Ultra-Reliable Low Latency Communications". IEEE Communications Magazine 57, n.º 2 (fevereiro de 2019): 130–37. http://dx.doi.org/10.1109/mcom.2018.1800181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Chen, Riqing, Chunhui Li, Shihao Yan, Robert Malaney e Jinhong Yuan. "Physical Layer Security for Ultra-Reliable and Low-Latency Communications". IEEE Wireless Communications 26, n.º 5 (outubro de 2019): 6–11. http://dx.doi.org/10.1109/mwc.001.1900051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Zhang, Meilin, Vladimir M. Stojanovic e Paul Ampadu. "Reliable Ultra-Low-Voltage Cache Design for Many-Core Systems". IEEE Transactions on Circuits and Systems II: Express Briefs 59, n.º 12 (dezembro de 2012): 858–62. http://dx.doi.org/10.1109/tcsii.2012.2231013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Alcaraz Lopez, Onel L., Evelio Martin Garcia Fernandez, Richard Demo Souza e Hirley Alves. "Ultra-Reliable Cooperative Short-Packet Communications With Wireless Energy Transfer". IEEE Sensors Journal 18, n.º 5 (1 de março de 2018): 2161–77. http://dx.doi.org/10.1109/jsen.2018.2789480.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Zhang, Yu, Bin Li, Feifei Gao e Zhu Han. "A Robust Design for Ultra Reliable Ambient Backscatter Communication Systems". IEEE Internet of Things Journal 6, n.º 5 (outubro de 2019): 8989–99. http://dx.doi.org/10.1109/jiot.2019.2925843.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Singh, Bikramjit, Olav Tirkkonen, Zexian Li e Mikko A. Uusitalo. "Contention-Based Access for Ultra-Reliable Low Latency Uplink Transmissions". IEEE Wireless Communications Letters 7, n.º 2 (abril de 2018): 182–85. http://dx.doi.org/10.1109/lwc.2017.2763594.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kountouris, Marios, Petar Popovski, I.-Hong Hou, Stefano Buzzi, Andreas Muller, Stefania Sesia e Robert W. Heath. "Guest Editorial Ultra-Reliable Low-Latency Communications in Wireless Networks". IEEE Journal on Selected Areas in Communications 37, n.º 4 (abril de 2019): 701–4. http://dx.doi.org/10.1109/jsac.2019.2902262.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Kallehauge, Tobias, Anders E. Kalør, Pablo Ramírez-Espinosa, Maxime Guillaud e Petar Popovski. "Delivering Ultra-Reliable Low-Latency Communications via Statistical Radio Maps". IEEE Wireless Communications 30, n.º 2 (abril de 2023): 14–20. http://dx.doi.org/10.1109/mwc.002.2200372.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Varga, József, Attila Hilt, József Bíró, Csaba Rotter e Gábor Járó. "Reducing operational costs of ultra-reliable low latency services in 5G". Infocommunications journal, n.º 4 (2018): 37–45. http://dx.doi.org/10.36244/icj.2018.4.6.

Texto completo da fonte
Resumo:
Ultra-reliable low latency (uRLL) communication in 5G dictates the deployment of distributed infrastructure with numerous datacenters for low latency, while hosting ultra-reliable services mandates attended datacenters. This would boost the operational costs of 5G network operators planning country-wide coverage for uRLL services. This paper examines how these operational expenses dominated by administrative costs can be reduced without impacting the quality of the provided uRLL service. Our results indicate that hosting uRLL services in unattended datacenters with increased hardware redundancy schemes can produce significant cost savings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia