Artigos de revistas sobre o tema "Ubiquitine ligases"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ubiquitine ligases".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
de Palma, Luigi, Mario Marinelli, Matteo Pavan e Alessandro Orazi. "Rôle des ubiquitine ligases MuRF1 et MAFbx dans l’atrophie musculaire chez l’homme". Revue du Rhumatisme 75, n.º 1 (janeiro de 2008): 56–60. http://dx.doi.org/10.1016/j.rhum.2007.04.021.
Texto completo da fonteReboud-Ravaux, Michèle. "Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique". Biologie Aujourd’hui 215, n.º 1-2 (2021): 25–43. http://dx.doi.org/10.1051/jbio/2021007.
Texto completo da fonteDumétier, Baptiste, Aymeric Zadoroznyj e Laurence Dubrez. "IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling". Cells 9, n.º 5 (30 de abril de 2020): 1118. http://dx.doi.org/10.3390/cells9051118.
Texto completo da fonteTaillandier, Daniel. "Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique". Biologie Aujourd’hui 215, n.º 1-2 (2021): 45–57. http://dx.doi.org/10.1051/jbio/2021006.
Texto completo da fonteLee, Jaeseok, Youngjun Lee, Young Mee Jung, Ju Hyun Park, Hyuk Sang Yoo e Jongmin Park. "Discovery of E3 Ligase Ligands for Target Protein Degradation". Molecules 27, n.º 19 (2 de outubro de 2022): 6515. http://dx.doi.org/10.3390/molecules27196515.
Texto completo da fonteDel Prete, Dolores, Richard C. Rice, Anjali M. Rajadhyaksha e Luciano D'Adamio. "Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration". Journal of Biological Chemistry 291, n.º 33 (20 de junho de 2016): 17209–27. http://dx.doi.org/10.1074/jbc.m116.733626.
Texto completo da fonteKim, Jong Hum, Seok Keun Cho, Tae Rin Oh, Moon Young Ryu, Seong Wook Yang e Woo Taek Kim. "MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana". Proceedings of the National Academy of Sciences 114, n.º 46 (30 de outubro de 2017): E10009—E10017. http://dx.doi.org/10.1073/pnas.1713574114.
Texto completo da fonteWindheim, Mark, Mark Peggie e Philip Cohen. "Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology". Biochemical Journal 409, n.º 3 (15 de janeiro de 2008): 723–29. http://dx.doi.org/10.1042/bj20071338.
Texto completo da fonteTracz, Michał, Ireneusz Górniak, Andrzej Szczepaniak e Wojciech Białek. "E3 Ubiquitin Ligase SPL2 Is a Lanthanide-Binding Protein". International Journal of Molecular Sciences 22, n.º 11 (27 de maio de 2021): 5712. http://dx.doi.org/10.3390/ijms22115712.
Texto completo da fonteQian, Hao, Ying Zhang, Boquan Wu, Shaojun Wu, Shilong You, Naijin Zhang e Yingxian Sun. "Structure and function of HECT E3 ubiquitin ligases and their role in oxidative stress". Journal of Translational Internal Medicine 8, n.º 2 (30 de junho de 2020): 71–79. http://dx.doi.org/10.2478/jtim-2020-0012.
Texto completo da fonteKelley, Dior R. "E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants". Molecular & Cellular Proteomics 17, n.º 6 (7 de março de 2018): 1047–54. http://dx.doi.org/10.1074/mcp.mr117.000476.
Texto completo da fonteMartin-Serrano, Juan, Scott W. Eastman, Wayne Chung e Paul D. Bieniasz. "HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway". Journal of Cell Biology 168, n.º 1 (28 de dezembro de 2004): 89–101. http://dx.doi.org/10.1083/jcb.200408155.
Texto completo da fonteMarblestone, Jeffrey G., K. G. Suresh Kumar, Michael J. Eddins, Craig A. Leach, David E. Sterner, Michael R. Mattern e Benjamin Nicholson. "Novel Approach for Characterizing Ubiquitin E3 Ligase Function". Journal of Biomolecular Screening 15, n.º 10 (23 de setembro de 2010): 1220–28. http://dx.doi.org/10.1177/1087057110380456.
Texto completo da fonteYoshida, Yukiko, Yasushi Saeki, Arisa Murakami, Junko Kawawaki, Hikaru Tsuchiya, Hidehito Yoshihara, Mayumi Shindo e Keiji Tanaka. "A comprehensive method for detecting ubiquitinated substrates using TR-TUBE". Proceedings of the National Academy of Sciences 112, n.º 15 (31 de março de 2015): 4630–35. http://dx.doi.org/10.1073/pnas.1422313112.
Texto completo da fonteIbarra, Rebeca, Heather R. Borror, Bryce Hart, Richard G. Gardner e Gary Kleiger. "The San1 Ubiquitin Ligase Avidly Recognizes Misfolded Proteins through Multiple Substrate Binding Sites". Biomolecules 11, n.º 11 (2 de novembro de 2021): 1619. http://dx.doi.org/10.3390/biom11111619.
Texto completo da fonteSievers, Quinlan, Jessica Gasser, Glenn Cowley, John G. Doench, Eric Fischer e Benjamin L. Ebert. "Genome-Scale Screen Reveals Genes Required for Lenalidomide-Mediated Degradation of Aiolos By CRL4-CRBN". Blood 128, n.º 22 (2 de dezembro de 2016): 5139. http://dx.doi.org/10.1182/blood.v128.22.5139.5139.
Texto completo da fonteHorn-Ghetko, Daniel, David T. Krist, J. Rajan Prabu, Kheewoong Baek, Monique P. C. Mulder, Maren Klügel, Daniel C. Scott, Huib Ovaa, Gary Kleiger e Brenda A. Schulman. "Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly". Nature 590, n.º 7847 (3 de fevereiro de 2021): 671–76. http://dx.doi.org/10.1038/s41586-021-03197-9.
Texto completo da fonteWang, Jinnan, Tianye Zhang, Aizhu Tu, Haoxin Xie, Haichao Hu, Jianping Chen e Jian Yang. "Genome-Wide Identification and Analysis of APC E3 Ubiquitin Ligase Genes Family in Triticum aestivum". Genes 15, n.º 3 (21 de fevereiro de 2024): 271. http://dx.doi.org/10.3390/genes15030271.
Texto completo da fonteSaravanan, Konda Mani, Muthu Kannan, Prabhakar Meera, Nagaraj Bharathkumar e Thirunavukarasou Anand. "E3 ligases: a potential multi-drug target for different types of cancers and neurological disorders". Future Medicinal Chemistry 14, n.º 3 (janeiro de 2022): 187–201. http://dx.doi.org/10.4155/fmc-2021-0157.
Texto completo da fonteBhaduri, Utsa, e Giuseppe Merla. "Ubiquitination, Biotech Startups, and the Future of TRIM Family Proteins: A TRIM-Endous Opportunity". Cells 10, n.º 5 (25 de abril de 2021): 1015. http://dx.doi.org/10.3390/cells10051015.
Texto completo da fonteRothweiler, Elisabeth M., Paul E. Brennan e Kilian V. M. Huber. "Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators". Biological Chemistry 403, n.º 4 (23 de fevereiro de 2022): 391–402. http://dx.doi.org/10.1515/hsz-2021-0396.
Texto completo da fonteSung, George. "Similar but Different: RBR E3 Ligases and their Domains that are Crucial for Function". McGill Science Undergraduate Research Journal 12, n.º 1 (9 de abril de 2017): 50–53. http://dx.doi.org/10.26443/msurj.v12i1.45.
Texto completo da fonteConway, James A., Grant Kinsman e Edgar R. Kramer. "The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease". Genes 13, n.º 3 (14 de março de 2022): 513. http://dx.doi.org/10.3390/genes13030513.
Texto completo da fonteRittinger, Katrin. "Ubiquitin-dependent regulation of immune and inflammatory signaling pathways". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C241. http://dx.doi.org/10.1107/s2053273314097587.
Texto completo da fontePu, Zuo-Xian, Jun-Li Wang, Yu-Yang Li, Luo-Yu Liang, Yi-Ting Tan, Ze-Hui Wang, Bao-Lin Li, Guang-Qin Guo, Li Wang e Lei Wu. "A Bacterial Platform for Studying Ubiquitination Cascades Anchored by SCF-Type E3 Ubiquitin Ligases". Biomolecules 14, n.º 10 (25 de setembro de 2024): 1209. http://dx.doi.org/10.3390/biom14101209.
Texto completo da fonteZhu, Liguo, Ying Li, Longyuan Zhou, Guang Yang, Ying Wang, Jing Han, Li Li e Shenghong Zhang. "Role of RING-Type E3 Ubiquitin Ligases in Inflammatory Signalling and Inflammatory Bowel Disease". Mediators of Inflammation 2020 (10 de agosto de 2020): 1–10. http://dx.doi.org/10.1155/2020/5310180.
Texto completo da fonteGiardina, Sarah F., Elena Valdambrini, Michael Peel, Manny D. Bacolod, Mace L. Rothenberg, Richard B. Lanman, J. David Warren e Francis Barany. "Cure-PROs: Next-generation targeted protein degraders." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junho de 2023): e15101-e15101. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e15101.
Texto completo da fonteSpratt, Donald E., Helen Walden e Gary S. Shaw. "RBR E3 ubiquitin ligases: new structures, new insights, new questions". Biochemical Journal 458, n.º 3 (28 de fevereiro de 2014): 421–37. http://dx.doi.org/10.1042/bj20140006.
Texto completo da fonteTan, Xu, e Ning Zheng. "Hormone signaling through protein destruction: a lesson from plants". American Journal of Physiology-Endocrinology and Metabolism 296, n.º 2 (fevereiro de 2009): E223—E227. http://dx.doi.org/10.1152/ajpendo.90807.2008.
Texto completo da fonteCooper, Jonathan A., Tomonori Kaneko e Shawn S. C. Li. "Cell Regulation by Phosphotyrosine-Targeted Ubiquitin Ligases". Molecular and Cellular Biology 35, n.º 11 (16 de março de 2015): 1886–97. http://dx.doi.org/10.1128/mcb.00098-15.
Texto completo da fonteZhang, Ting, Yue Xu, Yanfen Liu e Yihong Ye. "gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum". Molecular Biology of the Cell 26, n.º 24 (dezembro de 2015): 4438–50. http://dx.doi.org/10.1091/mbc.e15-06-0354.
Texto completo da fonteLi, Zhongyan, Jingting Wan, Shangfu Li, Yun Tang, Yang-Chi-Dung Lin, Jie Ni, Xiaoxuan Cai, Jinhan Yu, Hsien-Da Huang e Tzong-Yi Lee. "Multi-Omics Characterization of E3 Regulatory Patterns in Different Cancer Types". International Journal of Molecular Sciences 25, n.º 14 (11 de julho de 2024): 7639. http://dx.doi.org/10.3390/ijms25147639.
Texto completo da fonteFredrickson, Eric K., Joel C. Rosenbaum, Melissa N. Locke, Thomas I. Milac e Richard G. Gardner. "Exposed hydrophobicity is a key determinant of nuclear quality control degradation". Molecular Biology of the Cell 22, n.º 13 (julho de 2011): 2384–95. http://dx.doi.org/10.1091/mbc.e11-03-0256.
Texto completo da fonteLukashchuk, Natalia, e Karen H. Vousden. "Ubiquitination and Degradation of Mutant p53". Molecular and Cellular Biology 27, n.º 23 (1 de outubro de 2007): 8284–95. http://dx.doi.org/10.1128/mcb.00050-07.
Texto completo da fonteMintis, Dimitris G., Anastasia Chasapi, Konstantinos Poulas, George Lagoumintzis e Christos T. Chasapis. "Assessing the Direct Binding of Ark-Like E3 RING Ligases to Ubiquitin and Its Implication on Their Protein Interaction Network". Molecules 25, n.º 20 (19 de outubro de 2020): 4787. http://dx.doi.org/10.3390/molecules25204787.
Texto completo da fonteFuseya, Yasuhiro, e Kazuhiro Iwai. "Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase". Cells 10, n.º 10 (9 de outubro de 2021): 2706. http://dx.doi.org/10.3390/cells10102706.
Texto completo da fonteRen, Jihui, Younghoon Kee, Jon M. Huibregtse e Robert C. Piper. "Hse1, a Component of the Yeast Hrs-STAM Ubiquitin-sorting Complex, Associates with Ubiquitin Peptidases and a Ligase to Control Sorting Efficiency into Multivesicular Bodies". Molecular Biology of the Cell 18, n.º 1 (janeiro de 2007): 324–35. http://dx.doi.org/10.1091/mbc.e06-06-0557.
Texto completo da fonteAntoniou, Nikolaos, Nefeli Lagopati, Dimitrios Ilias Balourdas, Michail Nikolaou, Alexandros Papalampros, Panagiotis V. S. Vasileiou, Vassilios Myrianthopoulos et al. "The Role of E3, E4 Ubiquitin Ligase (UBE4B) in Human Pathologies". Cancers 12, n.º 1 (24 de dezembro de 2019): 62. http://dx.doi.org/10.3390/cancers12010062.
Texto completo da fonteKelsall, Ian R., Jiazhen Zhang, Axel Knebel, J. Simon C. Arthur e Philip Cohen. "The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells". Proceedings of the National Academy of Sciences 116, n.º 27 (17 de junho de 2019): 13293–98. http://dx.doi.org/10.1073/pnas.1905873116.
Texto completo da fonteCabana, Valérie C., e Marc P. Lussier. "From Drosophila to Human: Biological Function of E3 Ligase Godzilla and Its Role in Disease". Cells 11, n.º 3 (23 de janeiro de 2022): 380. http://dx.doi.org/10.3390/cells11030380.
Texto completo da fonteMárquez-Cantudo, Laura, Ana Ramos, Claire Coderch e Beatriz de Pascual-Teresa. "Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs that Enable Degradation". Molecules 26, n.º 18 (15 de setembro de 2021): 5606. http://dx.doi.org/10.3390/molecules26185606.
Texto completo da fonteWei, Wei, Jian-ye Chen, Ze-xiang Zeng, Jian-fei Kuang, Wang-jin Lu e Wei Shan. "The Ubiquitin E3 Ligase MaLUL2 Is Involved in High Temperature-Induced Green Ripening in Banana Fruit". International Journal of Molecular Sciences 21, n.º 24 (9 de dezembro de 2020): 9386. http://dx.doi.org/10.3390/ijms21249386.
Texto completo da fontePalomba, Tommaso, Giusy Tassone, Carmine Vacca, Matteo Bartalucci, Aurora Valeri, Cecilia Pozzi, Simon Cross, Lydia Siragusa e Jenny Desantis. "Exploiting ELIOT for Scaffold-Repurposing Opportunities: TRIM33 a Possible Novel E3 Ligase to Expand the Toolbox for PROTAC Design". International Journal of Molecular Sciences 23, n.º 22 (17 de novembro de 2022): 14218. http://dx.doi.org/10.3390/ijms232214218.
Texto completo da fonteToma-Fukai, Sachiko, e Toshiyuki Shimizu. "Structural Diversity of Ubiquitin E3 Ligase". Molecules 26, n.º 21 (4 de novembro de 2021): 6682. http://dx.doi.org/10.3390/molecules26216682.
Texto completo da fonteOswald, Jessica, Mathew Constantine, Adedolapo Adegbuyi, Esosa Omorogbe, Anna J. Dellomo e Elana S. Ehrlich. "E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation". Viruses 15, n.º 9 (15 de setembro de 2023): 1935. http://dx.doi.org/10.3390/v15091935.
Texto completo da fonteZeng, Ruiyin, Yuan Xiong, Ze Lin, Adriana C. Panayi, Yun Sun, Faqi Cao e Guohui Liu. "E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration". Stem Cells International 2022 (27 de setembro de 2022): 1–13. http://dx.doi.org/10.1155/2022/6948367.
Texto completo da fonteFukumoto, Yasunori, Naoshi Dohmae e Fumio Hanaoka. "Schizosaccharomyces pombe Ddb1 Recruits Substrate-Specific Adaptor Proteins through a Novel Protein Motif, the DDB-Box". Molecular and Cellular Biology 28, n.º 22 (15 de setembro de 2008): 6746–56. http://dx.doi.org/10.1128/mcb.00757-08.
Texto completo da fonteMedvar, Barbara, Viswanathan Raghuram, Trairak Pisitkun, Abhijit Sarkar e Mark A. Knepper. "Comprehensive database of human E3 ubiquitin ligases: application to aquaporin-2 regulation". Physiological Genomics 48, n.º 7 (1 de julho de 2016): 502–12. http://dx.doi.org/10.1152/physiolgenomics.00031.2016.
Texto completo da fonteKolesar, Peter, Karel Stejskal, David Potesil, Johanne M. Murray e Jan J. Palecek. "Role of Nse1 Subunit of SMC5/6 Complex as a Ubiquitin Ligase". Cells 11, n.º 1 (4 de janeiro de 2022): 165. http://dx.doi.org/10.3390/cells11010165.
Texto completo da fonteZhang, Gui, Yunfang Zhang, Luxuan Chen, Langxia Liu e Xuejuan Gao. "E3 ubiquitin ligase-dependent regulatory mechanism of TRIM family in carcinogenesis". Cancer Insight 2, n.º 1 (28 de junho de 2023): 102–30. http://dx.doi.org/10.58567/ci02010007.
Texto completo da fonte