Artigos de revistas sobre o tema "Two-Phase Reactive Flow"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Two-Phase Reactive Flow".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cheng, Cheng, e Xiaobing Zhang. "Numerical simulation of two-phase reactive flow with moving boundary". International Journal of Numerical Methods for Heat & Fluid Flow 23, n.º 8 (28 de outubro de 2013): 1277–90. http://dx.doi.org/10.1108/hff-11-2011-0242.
Texto completo da fonteGeiss, S., A. Dreizler, Z. Stojanovic, M. Chrigui, A. Sadiki e J. Janicka. "Investigation of turbulence modification in a non-reactive two-phase flow". Experiments in Fluids 36, n.º 2 (1 de fevereiro de 2004): 344–54. http://dx.doi.org/10.1007/s00348-003-0729-3.
Texto completo da fonteRai, Nirmal K., e Tariq D. Aslam. "Evaluation of thermodynamic closure models for partially reacted two-phase mixture of condensed phase explosives". Journal of Applied Physics 131, n.º 18 (14 de maio de 2022): 185902. http://dx.doi.org/10.1063/5.0085208.
Texto completo da fonteSengupta, Rajarshi, Mukul D. Tikekar, James V. Raj, Kris T. Delaney, Michael C. Villet e Glenn H. Fredrickson. "Phase-field simulations of morphology development in reactive polymer blending". Journal of Rheology 67, n.º 1 (janeiro de 2023): 1–14. http://dx.doi.org/10.1122/8.0000523.
Texto completo da fonteXue, She Sheng. "Modeling and Numerical Simulation of a Gas/Drop Flow". Applied Mechanics and Materials 444-445 (outubro de 2013): 1503–7. http://dx.doi.org/10.4028/www.scientific.net/amm.444-445.1503.
Texto completo da fonteCheng, Cheng, e Xiaobing Zhang. "Numerical investigation of two-phase reactive flow with two moving boundaries in a two-stage combustion system". Applied Thermal Engineering 156 (junho de 2019): 422–31. http://dx.doi.org/10.1016/j.applthermaleng.2019.04.061.
Texto completo da fonteOliver, J. M. "Thin-film theories for two-phase reactive flow models of active cell motion". Mathematical Medicine and Biology 22, n.º 1 (1 de março de 2005): 53–98. http://dx.doi.org/10.1093/imammb/dqh022.
Texto completo da fonteHannebique, Gregory, Patricia Sierra, Eleonore Riber e Bénédicte Cuenot. "Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner". Flow, Turbulence and Combustion 90, n.º 2 (9 de outubro de 2012): 449–69. http://dx.doi.org/10.1007/s10494-012-9416-x.
Texto completo da fonteSin, Irina, Vincent Lagneau e Jérôme Corvisier. "Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator". Advances in Water Resources 100 (fevereiro de 2017): 62–77. http://dx.doi.org/10.1016/j.advwatres.2016.11.014.
Texto completo da fonteKeller, Tobias, e Jenny Suckale. "A continuum model of multi-phase reactive transport in igneous systems". Geophysical Journal International 219, n.º 1 (25 de junho de 2019): 185–222. http://dx.doi.org/10.1093/gji/ggz287.
Texto completo da fonteXue, Tao, Xiaobing Zhang e K. K. Tamma. "An in-depth study on the implementation aspect of unified time integrators in reactive two-phase flows with consistent time level". International Journal of Numerical Methods for Heat & Fluid Flow 29, n.º 2 (4 de fevereiro de 2019): 617–39. http://dx.doi.org/10.1108/hff-04-2018-0173.
Texto completo da fonteZamuner, B., P. Gilbank, D. Bissières e C. Berat. "Numerical simulation of the reactive two-phase flow in a kerosene/air tubular combustor". Aerospace Science and Technology 6, n.º 7 (novembro de 2002): 521–29. http://dx.doi.org/10.1016/s1270-9638(02)01190-2.
Texto completo da fonteBougamra, Ahmed, e Huilin Lu. "Interior Ballistics Two-Phase Reactive Flow Model Applied to Small Caliber Projectile-Gun System". Propellants, Explosives, Pyrotechnics 40, n.º 5 (13 de março de 2015): 720–28. http://dx.doi.org/10.1002/prep.201400268.
Texto completo da fonteShabanian, Jaber, e Jamal Chaouki. "Performance of a Catalytic Gas–Solid Fluidized Bed Reactor in the Presence of Interparticle Forces". International Journal of Chemical Reactor Engineering 14, n.º 1 (1 de fevereiro de 2016): 433–44. http://dx.doi.org/10.1515/ijcre-2014-0106.
Texto completo da fonteRashad, M., X. Zhang e H. El Sadek. "Interior Ballistics Two-Phase Reactive Flow Model Applied to Large Caliber Guided Projectile-Gun System". Advances in Mechanical Engineering 6 (12 de fevereiro de 2015): 698032. http://dx.doi.org/10.1155/2014/698032.
Texto completo da fonteJones, W. P., A. J. Marquis e D. Noh. "A stochastic breakup model for Large Eddy Simulation of a turbulent two-phase reactive flow". Proceedings of the Combustion Institute 36, n.º 2 (2017): 2559–66. http://dx.doi.org/10.1016/j.proci.2016.06.033.
Texto completo da fonteKaradimitriou, N. K., V. Joekar-Niasar, S. M. Hassanizadeh, P. J. Kleingeld e L. J. Pyrak-Nolte. "A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments". Lab on a Chip 12, n.º 18 (2012): 3413. http://dx.doi.org/10.1039/c2lc40530j.
Texto completo da fonteSiratarnsophon, Piyapath, Vinicius C. Cunha, Nicholas G. Barry e Surya Santoso. "Interphase Power Flow Control via Single-Phase Elements in Distribution Systems". Clean Technologies 3, n.º 1 (13 de janeiro de 2021): 37–58. http://dx.doi.org/10.3390/cleantechnol3010003.
Texto completo da fonteBelhachmi, Z., Z. Mghazli e S. Ouchtout. "A coupled compressible two-phase flow with the biological dynamics modeling the anaerobic biodegradation process of waste in a landfill". Mathematical Modeling and Computing 9, n.º 3 (2022): 483–500. http://dx.doi.org/10.23939/mmc2022.03.483.
Texto completo da fonteZaretskiy, Yan, Sebastian Geiger e Ken Sorbie. "Direct numerical simulation of pore-scale reactive transport: applications to wettability alteration during two-phase flow". International Journal of Oil, Gas and Coal Technology 5, n.º 2/3 (2012): 142. http://dx.doi.org/10.1504/ijogct.2012.046318.
Texto completo da fonteTatomir, Alexandru, Dejian Zhou, Huhao Gao, Alexandru-Nicolae Dimache, Iulian Iancu e Martin Sauter. "Modelling of kinetic interface sensitive tracers reactive transport in 2D two-phase flow heterogeneous porous media". E3S Web of Conferences 85 (2019): 07003. http://dx.doi.org/10.1051/e3sconf/20198507003.
Texto completo da fonteSchwendeman, D. W., A. K. Kapila e W. D. Henshaw. "A study of detonation diffraction and failure for a model of compressible two-phase reactive flow". Combustion Theory and Modelling 14, n.º 3 (9 de julho de 2010): 331–66. http://dx.doi.org/10.1080/13647830.2010.489955.
Texto completo da fonteSchwendeman, D. W., C. W. Wahle e A. K. Kapila. "A study of detonation evolution and structure for a model of compressible two-phase reactive flow". Combustion Theory and Modelling 12, n.º 1 (18 de dezembro de 2007): 159–204. http://dx.doi.org/10.1080/13647830701564538.
Texto completo da fonteCheng, Cheng, e Xiaobing Zhang. "Numerical modeling and investigation of two-phase reactive flow in a high-low pressure chambers system". Applied Thermal Engineering 99 (abril de 2016): 244–52. http://dx.doi.org/10.1016/j.applthermaleng.2016.01.046.
Texto completo da fonteBazdidi-Tehrani, Farzad, e Hamed Zeinivand. "Presumed PDF modeling of reactive two-phase flow in a three dimensional jet-stabilized model combustor". Energy Conversion and Management 51, n.º 1 (janeiro de 2010): 225–34. http://dx.doi.org/10.1016/j.enconman.2009.09.020.
Texto completo da fonteAkmal Zuhdi, Muhammad, e Faiz Husnayain. "Power Flow Analysis in Unbalanced Three-Phase Distribution Systems using Backward/Forward Sweep and Current Injection Methods". ELKHA 16, n.º 2 (21 de outubro de 2024): 107. http://dx.doi.org/10.26418/elkha.v16i2.82179.
Texto completo da fonteLOGAN, J. DAVID, e THOMAS S. SHORES. "ON A SYSTEM OF NONLINEAR HYPERBOLIC CONSERVATION LAWS WITH SOURCES". Mathematical Models and Methods in Applied Sciences 03, n.º 03 (junho de 1993): 341–58. http://dx.doi.org/10.1142/s0218202593000187.
Texto completo da fontePeskova, E. E., e V. N. Snytnikov. "Mathematical Modelling of the Impact of IR Laser Radiation on an Oncoming Flow of Nanoparticles with Methane". Computational Mathematics and Information Technologies 8, n.º 3 (8 de outubro de 2024): 34–42. http://dx.doi.org/10.23947/2587-8999-2024-8-3-34-42.
Texto completo da fonteAhusborde, E., e M. El Ossmani. "A sequential approach for numerical simulation of two-phase multicomponent flow with reactive transport in porous media". Mathematics and Computers in Simulation 137 (julho de 2017): 71–89. http://dx.doi.org/10.1016/j.matcom.2016.11.007.
Texto completo da fonteRaju, M. S., e W. A. Sirignano. "Spray Computations in a Centerbody Combustor". Journal of Engineering for Gas Turbines and Power 111, n.º 4 (1 de outubro de 1989): 710–18. http://dx.doi.org/10.1115/1.3240317.
Texto completo da fonteGharde, Mr Rahul, e Dr Prashant Thakre. "“Enhance the Power Quality of the Smart Grid System by Using Advance UPQC.”". International Journal for Research in Applied Science and Engineering Technology 10, n.º 5 (31 de maio de 2022): 2778–85. http://dx.doi.org/10.22214/ijraset.2022.42837.
Texto completo da fonteZhou, Chongbo, Lingyi Guo, Li Chen, Xin Tian, Tiefeng He e Qinghua Yang. "Pore-Scale Modeling of Air–Water Two Phase Flow and Oxygen Transport in Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell". Energies 14, n.º 13 (24 de junho de 2021): 3812. http://dx.doi.org/10.3390/en14133812.
Texto completo da fonteZhang, Xinying, Runze Fan, Miao Qi, Xinyi Zhao, Jin Zhang, Dehui Xu e Yanjie Yang. "Studies on a sinusoidally driven gas–liquid two-phase plasma discharge and its application to sterilization". AIP Advances 12, n.º 11 (1 de novembro de 2022): 115218. http://dx.doi.org/10.1063/5.0100815.
Texto completo da fonteKiełczyński, Piotr. "Relation between Mass Sensitivity and Complex Power Flow in Love Wave Sensors". Sensors 22, n.º 16 (15 de agosto de 2022): 6100. http://dx.doi.org/10.3390/s22166100.
Texto completo da fonteSauni Camposano, Yesenia Haydee, Sascha Sebastian Riegler, Konrad Jaekel, Jörg Schmauch, Christoph Pauly, Christian Schäfer, Heike Bartsch, Frank Mücklich, Isabella Gallino e Peter Schaaf. "Phase Transformation and Characterization of 3D Reactive Microstructures in Nanoscale Al/Ni Multilayers". Applied Sciences 11, n.º 19 (7 de outubro de 2021): 9304. http://dx.doi.org/10.3390/app11199304.
Texto completo da fonteSalmerón, Patricio, Juan L. Flores-Garrido e Juan A. Gómez-Galán. "Instantaneous Reactive Power Theory in the Geometric Algebra Framework". Applied Sciences 13, n.º 3 (30 de janeiro de 2023): 1796. http://dx.doi.org/10.3390/app13031796.
Texto completo da fonteRadwan, Eyad, Mutasim Nour, Ali Baniyounes, Khalid S. Al Olimat e Emad Awada. "Direct control of active and reactive power for a grid-connected single-phase photovoltaic inverter". International Journal of Power Electronics and Drive Systems (IJPEDS) 12, n.º 1 (1 de março de 2021): 139. http://dx.doi.org/10.11591/ijpeds.v12.i1.pp139-150.
Texto completo da fonteCalcio Gaudino, Emanuela, Giorgio Grillo, Maela Manzoli, Silvia Tabasso, Simone Maccagnan e Giancarlo Cravotto. "Mechanochemical Applications of Reactive Extrusion from Organic Synthesis to Catalytic and Active Materials". Molecules 27, n.º 2 (10 de janeiro de 2022): 449. http://dx.doi.org/10.3390/molecules27020449.
Texto completo da fonteAhmed, E., e Y. Huang. "Flame volume prediction and validation for lean blow-out of gas turbine combustor". Aeronautical Journal 121, n.º 1236 (12 de janeiro de 2017): 237–62. http://dx.doi.org/10.1017/aer.2016.125.
Texto completo da fonteBaer, M. R., e J. W. Nunziato. "A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials". International Journal of Multiphase Flow 12, n.º 6 (novembro de 1986): 861–89. http://dx.doi.org/10.1016/0301-9322(86)90033-9.
Texto completo da fontePanariello, Luca, Gaowei Wu, Maximilian O. Besenhard, Katerina Loizou, Liudmyla Storozhuk, Nguyen Thi Kim Thanh e Asterios Gavriilidis. "A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration". Materials 13, n.º 4 (25 de fevereiro de 2020): 1019. http://dx.doi.org/10.3390/ma13041019.
Texto completo da fonteNie, Guo Zheng, Chun Liang Zhong, Lan E. Luo, Ren Long Zhou e Qiang Liu. "Effect of N2 Flow on Microstructure, Mechanical Properties and Oxidation Resistance of CrNx Coatings". Advanced Materials Research 750-752 (agosto de 2013): 2117–20. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.2117.
Texto completo da fonteAhusborde, Etienne, Michel Kern e Viatcheslav Vostrikov. "Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO2". ESAIM: Proceedings and Surveys 50 (março de 2015): 21–39. http://dx.doi.org/10.1051/proc/201550002.
Texto completo da fonteSin, Irina, Vincent Lagneau, Laurent De Windt e Jérôme Corvisier. "2D simulation of natural gas reservoir by two-phase multicomponent reactive flow and transport—Description of a benchmarking exercise". Mathematics and Computers in Simulation 137 (julho de 2017): 431–47. http://dx.doi.org/10.1016/j.matcom.2016.12.003.
Texto completo da fontePaul, Biplab, Jun Lu e Per Eklund. "Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO–CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering". Nanomaterials 9, n.º 3 (15 de março de 2019): 443. http://dx.doi.org/10.3390/nano9030443.
Texto completo da fonteSHORT, M., I. I. ANGUELOVA, T. D. ASLAM, J. B. BDZIL, A. K. HENRICK e G. J. SHARPE. "Stability of detonations for an idealized condensed-phase model". Journal of Fluid Mechanics 595 (8 de janeiro de 2008): 45–82. http://dx.doi.org/10.1017/s0022112007008750.
Texto completo da fonteEyenubo, OJ, e P. Oshevire. "IMPROVEMENT OF POWER SYSTEM QUALITY USING VSC-BASED HVDC TRANSMISSION". Nigerian Journal of Technology 36, n.º 3 (30 de junho de 2017): 889–96. http://dx.doi.org/10.4314/njt.v36i3.31.
Texto completo da fonteMurthy, G. V. K., Sowjan Kumar, B. Nagaraju, R. Shankar, C. Rajalingam e C. Rajaselvan. "Power Factor Compensation for a Single-Phase AC-DC Hybrid Micro-Grid". International Journal of Innovative Research in Engineering and Management 9, n.º 5 (26 de outubro de 2022): 327–30. http://dx.doi.org/10.55524/ijirem.2022.9.5.49.
Texto completo da fontePape, L., C. Ammann, A. Nyfeler-Brunner, C. Spirig, K. Hens e F. X. Meixner. "An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems". Biogeosciences Discussions 5, n.º 4 (12 de agosto de 2008): 3157–219. http://dx.doi.org/10.5194/bgd-5-3157-2008.
Texto completo da fontePape, L., C. Ammann, A. Nyfeler-Brunner, C. Spirig, K. Hens e F. X. Meixner. "An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems". Biogeosciences 6, n.º 3 (18 de março de 2009): 405–29. http://dx.doi.org/10.5194/bg-6-405-2009.
Texto completo da fonte