Artigos de revistas sobre o tema "TurboID"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "TurboID".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cho, Kelvin F., Tess C. Branon, Sanjana Rajeev, Tanya Svinkina, Namrata D. Udeshi, Themis Thoudam, Chulhwan Kwak et al. "Split-TurboID enables contact-dependent proximity labeling in cells". Proceedings of the National Academy of Sciences 117, n.º 22 (18 de maio de 2020): 12143–54. http://dx.doi.org/10.1073/pnas.1919528117.
Texto completo da fonteCho, Kelvin F., Tess C. Branon, Namrata D. Udeshi, Samuel A. Myers, Steven A. Carr e Alice Y. Ting. "Proximity labeling in mammalian cells with TurboID and split-TurboID". Nature Protocols 15, n.º 12 (2 de novembro de 2020): 3971–99. http://dx.doi.org/10.1038/s41596-020-0399-0.
Texto completo da fonteMay, Danielle G., Kelsey L. Scott, Alexandre R. Campos e Kyle J. Roux. "Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation". Cells 9, n.º 5 (25 de abril de 2020): 1070. http://dx.doi.org/10.3390/cells9051070.
Texto completo da fonteDoerr, Allison. "Proximity labeling with TurboID". Nature Methods 15, n.º 10 (outubro de 2018): 764. http://dx.doi.org/10.1038/s41592-018-0158-0.
Texto completo da fonteGarloff, Vera, e Ignacio Rubio. "Schneller, weiter, TurboID – Modulation einer übereifrigen Biotin-Ligase". BIOspektrum 29, n.º 3 (maio de 2023): 273–75. http://dx.doi.org/10.1007/s12268-023-1943-6.
Texto completo da fonteMakhsatova, S. A., A. B. Kurmanbay, I. A. Akhmetollayev e A. T. Kulyyassov. "ASSEMBLING THE TURBOID-CONTAINING PLASMID CONSTRUCT FOR INVESTIGATING THE IN VIVO PROTEIN-PROTEIN INTERACTIONS". Eurasian Journal of Applied Biotechnology, n.º 3S (12 de setembro de 2024): 47. http://dx.doi.org/10.11134/btp.3s.2024.35.
Texto completo da fonteTakano, Tetsuya. "Comprehensive identification of molecules at synapses and non-synaptic cell-adhesion structure". Impact 2023, n.º 3 (21 de setembro de 2023): 46–48. http://dx.doi.org/10.21820/23987073.2023.3.46.
Texto completo da fonteRabinovich-Ernst, Orna, Clinton Bradfield, SungHwan Yoon, Anthony Armstrong, Samuel Katz, Aleksandra Nita-Lazar e Iain Fraser. "TurboID biotin-tagging mass spectrometry identifies specific caspase-11-associated proteins regulating non-canonical inflammasome activation". Journal of Immunology 206, n.º 1_Supplement (1 de maio de 2021): 15.06. http://dx.doi.org/10.4049/jimmunol.206.supp.15.06.
Texto completo da fonteKim, Han Byeol, e Kwang-eun Kim. "Precision proteomics with TurboID: mapping the suborganelle landscape". Korean Journal of Physiology & Pharmacology 28, n.º 6 (1 de novembro de 2024): 495–501. http://dx.doi.org/10.4196/kjpp.2024.28.6.495.
Texto completo da fonteGurung, Sadeechya. "Abstract 998: Extracellular proximity labeling (ePL) as a tool to identify protein-protein interactions in the tumor microenvironment". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 998. http://dx.doi.org/10.1158/1538-7445.am2022-998.
Texto completo da fonteTeplova, Anastasia D., Marina V. Serebryakova, Raisa A. Galiullina, Nina V. Chichkova e Andrey B. Vartapetian. "Identification of Phytaspase Interactors via the Proximity-Dependent Biotin-Based Identification Approach". International Journal of Molecular Sciences 22, n.º 23 (4 de dezembro de 2021): 13123. http://dx.doi.org/10.3390/ijms222313123.
Texto completo da fonteHolzer, Elisabeth, Cornelia Rumpf-Kienzl, Sebastian Falk e Alexander Dammermann. "A modified TurboID approach identifies tissue-specific centriolar components in C. elegans". PLOS Genetics 18, n.º 4 (20 de abril de 2022): e1010150. http://dx.doi.org/10.1371/journal.pgen.1010150.
Texto completo da fonteBranon, Tess C., Justin A. Bosch, Ariana D. Sanchez, Namrata D. Udeshi, Tanya Svinkina, Steven A. Carr, Jessica L. Feldman, Norbert Perrimon e Alice Y. Ting. "Efficient proximity labeling in living cells and organisms with TurboID". Nature Biotechnology 36, n.º 9 (outubro de 2018): 880–87. http://dx.doi.org/10.1038/nbt.4201.
Texto completo da fontePeeney, David, Sadeechya Gurung, Josh Rich, Sasha Coates-Park, Yueqin Liu e William G. Stetler-Stevenson. "Abstract 2348: Mapping the interactome of matrisome targets using extracellular proximity labeling (ePL)". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 2348. http://dx.doi.org/10.1158/1538-7445.am2023-2348.
Texto completo da fonteArtan, Murat, Stephen Barratt, Sean M. Flynn, Farida Begum, Mark Skehel, Armel Nicolas e Mario de Bono. "Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling". Journal of Biological Chemistry 297, n.º 3 (setembro de 2021): 101094. http://dx.doi.org/10.1016/j.jbc.2021.101094.
Texto completo da fonteSmirnova, Evgeniya V., Tatiana V. Rakitina, Rustam H. Ziganshin, George A. Saratov, Georgij P. Arapidi, Alexey A. Belogurov e Anna A. Kudriaeva. "Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics". Cells 12, n.º 6 (20 de março de 2023): 944. http://dx.doi.org/10.3390/cells12060944.
Texto completo da fonteFujimoto, Shintaro, Shinya Tashiro e Yasushi Tamura. "Complementation Assay Using Fusion of Split-GFP and TurboID (CsFiND) Enables Simultaneous Visualization and Proximity Labeling of Organelle Contact Sites in Yeast". Contact 6 (janeiro de 2023): 251525642311536. http://dx.doi.org/10.1177/25152564231153621.
Texto completo da fonteArtan, Murat, Stephen Barratt, Sean M. Flynn, Farida Begum, Mark Skehel, Armel Nicolas e Mario de Bono. "Correction: Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling". Journal of Biological Chemistry 298, n.º 6 (junho de 2022): 102081. http://dx.doi.org/10.1016/j.jbc.2022.102081.
Texto completo da fonteBranon, Tess C., Justin A. Bosch, Ariana D. Sanchez, Namrata D. Udeshi, Tanya Svinkina, Steven A. Carr, Jessica L. Feldman, Norbert Perrimon e Alice Y. Ting. "Author Correction: Efficient proximity labeling in living cells and organisms with TurboID". Nature Biotechnology 38, n.º 1 (20 de novembro de 2019): 108. http://dx.doi.org/10.1038/s41587-019-0355-0.
Texto completo da fonteWang, Chenyu, e Laidong Yu. "TurboID Proximity Labeling of a Protocadherin Protein to Characterize Interacting Protein Complex". American Journal of Molecular Biology 13, n.º 04 (2023): 213–26. http://dx.doi.org/10.4236/ajmb.2023.134015.
Texto completo da fonteWei, Xia-fei, Shan Li e Jie-li Hu. "A TurboID-based proximity labelling approach for identifying the DNA-binding proteins". STAR Protocols 4, n.º 1 (março de 2023): 102139. http://dx.doi.org/10.1016/j.xpro.2023.102139.
Texto completo da fonteSchaan Profes, Marcos, Araven Tiroumalechetty, Neel Patel, Stephanie S. Lauar, Simone Sidoli e Peri T. Kurshan. "Characterization of the intracellular neurexin interactome by in vivo proximity ligation suggests its involvement in presynaptic actin assembly". PLOS Biology 22, n.º 1 (22 de janeiro de 2024): e3002466. http://dx.doi.org/10.1371/journal.pbio.3002466.
Texto completo da fonteKanzler, Charlotte R., Michael Donohue, Megan E. Dowdle e Michael D. Sheets. "TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos". Developmental Biology 492 (dezembro de 2022): 133–38. http://dx.doi.org/10.1016/j.ydbio.2022.10.005.
Texto completo da fonteHolzer, Elisabeth, Cornelia Rumpf-Kienzl, Sebastian Falk e Alexander Dammermann. "Correction: A modified TurboID approach identifies tissue-specific centriolar components in C. elegans". PLOS Genetics 19, n.º 2 (13 de fevereiro de 2023): e1010645. http://dx.doi.org/10.1371/journal.pgen.1010645.
Texto completo da fonteLarochelle, Marc, Danny Bergeron, Bruno Arcand e François Bachand. "Proximity-dependent biotinylation mediated by TurboID to identify protein–protein interaction networks in yeast". Journal of Cell Science 132, n.º 11 (7 de maio de 2019): jcs232249. http://dx.doi.org/10.1242/jcs.232249.
Texto completo da fonteGottschalk, Robert, Leah Wachsmuth, Dingyin Tao, Sandeep Rana, Tino Sanchez, Yi-Han Lin, Ganesha Rai, Juan Marugan e Mark Henderson. "Abstract 2657: SNAP-TurboID: A Proximity-based Intracellular Tool for Small Molecule Target Identification". Journal of Biological Chemistry 299, n.º 3 (2023): S156. http://dx.doi.org/10.1016/j.jbc.2023.103345.
Texto completo da fonteNascari, David, Ryan Eghlimi, Angad Beniwal, Drake Alton, John Fryer e Nhan L. Tran. "Abstract 5562: Altered tumor microenvironment in animal model of concomitant GBM and Alzheimer's pathology". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 5562. http://dx.doi.org/10.1158/1538-7445.am2024-5562.
Texto completo da fonteKalkan, Batuhan, Can Ozcan, Enes Cicek e Ceyda Acilan. "Nek2A Prevents Centrosome Clustering and Induces Cell Death in Cancer Cells Via KIF2C Interaction". JCO Global Oncology 10, Supplement_1 (julho de 2024): 133. http://dx.doi.org/10.1200/go-24-10800.
Texto completo da fonteLi, Haorong, Ashley M. Frankenfield, Ryan Houston, Shiori Sekine e Ling Hao. "Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics". Journal of the American Society for Mass Spectrometry 32, n.º 9 (28 de abril de 2021): 2358–65. http://dx.doi.org/10.1021/jasms.1c00079.
Texto completo da fonteYan, Biao, Ting Zeng, Xiaoshan Liu, Yuanyuan Guo, Hongguang Chen, Shuang Guo e Wu Liu. "Study on the interaction protein of transcription factor Smad3 based on TurboID proximity labeling technology". Genomics 116, n.º 3 (maio de 2024): 110839. http://dx.doi.org/10.1016/j.ygeno.2024.110839.
Texto completo da fonteChevalier, Benoît, Nesrine Baatallah, Matthieu Najm, Solène Castanier, Vincent Jung, Iwona Pranke, Anita Golec et al. "Differential CFTR-Interactome Proximity Labeling Procedures Identify Enrichment in Multiple SLC Transporters". International Journal of Molecular Sciences 23, n.º 16 (11 de agosto de 2022): 8937. http://dx.doi.org/10.3390/ijms23168937.
Texto completo da fonteCiesla, Jessica, Kai-Lieh Huang, Eric J. Wagner e Joshua Munger. "A UL26-PIAS1 complex antagonizes anti-viral gene expression during Human Cytomegalovirus infection". PLOS Pathogens 20, n.º 5 (20 de maio de 2024): e1012058. http://dx.doi.org/10.1371/journal.ppat.1012058.
Texto completo da fonteShioya, Ryouhei, Kohdai Yamada, Kohki Kido, Hirotaka Takahashi, Akira Nozawa, Hidetaka Kosako e Tatsuya Sawasaki. "A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID". Biochemical and Biophysical Research Communications 592 (fevereiro de 2022): 54–59. http://dx.doi.org/10.1016/j.bbrc.2021.12.109.
Texto completo da fonteHu, Yaofang, Changsheng Jiang, Yueqiao Zhao, Hua Cao, Jingping Ren, Wei Zeng, Mengjia Zhang, Yongtao Li, Qigai He e Wentao Li. "TurboID screening of ApxI toxin interactants identifies host proteins involved in Actinobacillus pleuropneumoniae-induced apoptosis of immortalized porcine alveolar macrophages". Veterinary Research 54, n.º 1 (20 de julho de 2023). http://dx.doi.org/10.1186/s13567-023-01194-6.
Texto completo da fonteWang, Bo, Fan Yang, Wuqian Wang, Fei Zhao e Xiaofang Sun. "TurboID-mediated proximity labeling technologies to identify virus co-receptors". Frontiers in Cellular and Infection Microbiology 14 (27 de junho de 2024). http://dx.doi.org/10.3389/fcimb.2024.1371837.
Texto completo da fonteMair, Andrea, Shou-Ling Xu, Tess C. Branon, Alice Y. Ting e Dominique C. Bergmann. "Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID". eLife 8 (19 de setembro de 2019). http://dx.doi.org/10.7554/elife.47864.
Texto completo da fonteShafraz, Omer, Carolyn Marie Orduno Davis e Sanjeevi Sivasankar. "Light Activated BioID (LAB): an optically activated proximity labeling system to study protein-protein interactions". Journal of Cell Science, 27 de setembro de 2023. http://dx.doi.org/10.1242/jcs.261430.
Texto completo da fonteKushner, Jared S., Aaron Rodriques, Sergey Zakharov, Alexander Katchman, STAVROS FANOURAKIS e Steven Marx. "Abstract 12045: Mapping the CaV1.2 Interactome in Rat Heart in vivo". Circulation 146, Suppl_1 (8 de novembro de 2022). http://dx.doi.org/10.1161/circ.146.suppl_1.12045.
Texto completo da fonteZhang, Bo, Yuanbing Zhang e Ji-Long Liu. "Highly effective proximate labeling in Drosophila". G3 Genes|Genomes|Genetics 11, n.º 5 (16 de março de 2021). http://dx.doi.org/10.1093/g3journal/jkab077.
Texto completo da fonteSu, Yanting, Yuanyuan Guo, Jieyu Guo, Ting Zeng, Ting Wang e Wu Liu. "Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology". BMC Genomics 24, n.º 1 (24 de março de 2023). http://dx.doi.org/10.1186/s12864-023-09238-z.
Texto completo da fonteSzczesniak, Laura M., Caden G. Bonzerato e Richard J. H. Wojcikiewicz. "Identification of the Bok Interactome Using Proximity Labeling". Frontiers in Cell and Developmental Biology 9 (31 de maio de 2021). http://dx.doi.org/10.3389/fcell.2021.689951.
Texto completo da fonteLau, Chun Sing, Adam Dowle, Gavin H. Thomas, Philipp Girr e Luke C. M. Mackinder. "A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii". Plant Cell, 17 de maio de 2023. http://dx.doi.org/10.1093/plcell/koad131.
Texto completo da fonteLi, Xiaofang, Yanping Wei, Qili Fei, Guilin Fu, Yu Gan e Chuanlin Shi. "TurboID‐mediated proximity labeling for screening interacting proteins of FIP37 in Arabidopsis". Plant Direct 7, n.º 12 (dezembro de 2023). http://dx.doi.org/10.1002/pld3.555.
Texto completo da fonteYheskel, Matanel, Simone Sidoli e Julie Secombe. "Proximity labeling reveals a new in vivo network of interactors for the histone demethylase KDM5". Epigenetics & Chromatin 16, n.º 1 (18 de fevereiro de 2023). http://dx.doi.org/10.1186/s13072-023-00481-y.
Texto completo da fonteHaidar-Ahmad, Nathaline, Kyle Tomaro, Mathieu Lavallée-Adam e François-Xavier Campbell-Valois. "The promiscuous biotin ligase TurboID reveals the proxisome of the T3SS chaperone IpgC in Shigella flexneri". mSphere, 31 de outubro de 2024. http://dx.doi.org/10.1128/msphere.00553-24.
Texto completo da fonteZhang, Kaixin, Yinyin Li, Tengbo Huang e Ziwei Li. "Potential application of TurboID-based proximity labeling in studying the protein interaction network in plant response to abiotic stress". Frontiers in Plant Science 13 (16 de agosto de 2022). http://dx.doi.org/10.3389/fpls.2022.974598.
Texto completo da fonteZhang, Qianshen, Zhiyan Wen, Xin Zhang, Jiajie She, Xiaoling Wang, Zongyu Gao, Ruiqi Wang et al. "RETICULON-LIKE PROTEIN B2 is a pro-viral factor co-opted for the biogenesis of viral replication organelles in plants". Plant Cell, 22 de maio de 2023. http://dx.doi.org/10.1093/plcell/koad146.
Texto completo da fontePark, Sohyeon, Xiaorong Wang, Yajin Mo, Sicheng Zhang, Xiangpeng Li, Katie C. Fong, Clinton Yu et al. "Proximity Labeling Expansion Microscopy (PL-ExM) Evaluates Interactome Labeling Techniques". Journal of Materials Chemistry B, 2024. http://dx.doi.org/10.1039/d4tb00516c.
Texto completo da fonteChen, Rui, Ningxia Zhang, Yubin Zhou e Ji Jing. "Optical Sensors and Actuators for Probing Proximity-Dependent Biotinylation in Living Cells". Frontiers in Cellular Neuroscience 16 (16 de fevereiro de 2022). http://dx.doi.org/10.3389/fncel.2022.801644.
Texto completo da fonteKreis, Elena, Katharina König, Melissa Misir, Justus Niemeyer, Frederik Sommer e Michael Schroda. "TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response". Plant Physiology, 13 de junho de 2023. http://dx.doi.org/10.1093/plphys/kiad335.
Texto completo da fonte