Artigos de revistas sobre o tema "Tubular-interstitial fibrosis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Tubular-interstitial fibrosis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wyczanska, Maja, Jana Rohling, Ursula Keller, Marcus R. Benz, Carsten Kirschning e Bärbel Lange-Sperandio. "TLR2 mediates renal apoptosis in neonatal mice subjected experimentally to obstructive nephropathy". PLOS ONE 18, n.º 11 (28 de novembro de 2023): e0294142. http://dx.doi.org/10.1371/journal.pone.0294142.
Texto completo da fonteChristensen, Erik I., e Pierre J. Verroust. "Interstitial fibrosis: tubular hypothesis versus glomerular hypothesis". Kidney International 74, n.º 10 (novembro de 2008): 1233–36. http://dx.doi.org/10.1038/ki.2008.421.
Texto completo da fonteRascio, Federica, Paola Pontrelli, Giuseppe Stefano Netti, Elisabetta Manno, Barbara Infante, Simona Simone, Giuseppe Castellano et al. "IgE-Mediated Immune Response and Antibody-Mediated Rejection". Clinical Journal of the American Society of Nephrology 15, n.º 10 (9 de setembro de 2020): 1474–83. http://dx.doi.org/10.2215/cjn.02870320.
Texto completo da fonteEskild-Jensen, Anni, Lene Fogt Paulsen, Lise Wogensen, Ping Olesen, Lea Pedersen, Jørgen Frøkiær e Jens Randel Nyengaard. "AT1 receptor blockade prevents interstitial and glomerular apoptosis but not fibrosis in pigs with neonatal induced partial unilateral ureteral obstruction". American Journal of Physiology-Renal Physiology 292, n.º 6 (junho de 2007): F1771—F1781. http://dx.doi.org/10.1152/ajprenal.00479.2006.
Texto completo da fonteWang, Shi-Nong, e Raimund Hirschberg. "Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis". American Journal of Physiology-Renal Physiology 278, n.º 4 (1 de abril de 2000): F554—F560. http://dx.doi.org/10.1152/ajprenal.2000.278.4.f554.
Texto completo da fonteThomas, S. E., S. Anderson, K. L. Gordon, T. T. Oyama, S. J. Shankland e R. J. Johnson. "Tubulointerstitial disease in aging: evidence for underlying peritubular capillary damage, a potential role for renal ischemia." Journal of the American Society of Nephrology 9, n.º 2 (fevereiro de 1998): 231–42. http://dx.doi.org/10.1681/asn.v92231.
Texto completo da fonteLeong, Khai Gene, Elyce Ozols, John Kanellis, David J. Nikolic-Paterson e Frank Y. Ma. "Cyclophilin A Promotes Inflammation in Acute Kidney Injury but Not in Renal Fibrosis". International Journal of Molecular Sciences 21, n.º 10 (22 de maio de 2020): 3667. http://dx.doi.org/10.3390/ijms21103667.
Texto completo da fonteWang, Shudan, Ming Wu, Luis Chiriboga, Chaim Putterman, Anna Broder e H. Michael Belmont. "4336 Renal Tubular Complement C9 Deposition is Associated with Renal Tubular Damage and Fibrosis in Lupus Nephritis". Journal of Clinical and Translational Science 4, s1 (junho de 2020): 144. http://dx.doi.org/10.1017/cts.2020.424.
Texto completo da fontePichler, R. H., N. Franceschini, B. A. Young, C. Hugo, T. F. Andoh, E. A. Burdmann, S. J. Shankland, C. E. Alpers, W. M. Bennett e W. G. Couser. "Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin." Journal of the American Society of Nephrology 6, n.º 4 (outubro de 1995): 1186–96. http://dx.doi.org/10.1681/asn.v641186.
Texto completo da fonteWang, Hao, Yujiao Deng, Limeng He, Yan Deng e Wei Zhang. "Renal Interstitial Fibrosis Detected on 18F-AlF-NOTA-FAPI-04 PET/CT in a Patient With Multiple Myeloma". Clinical Nuclear Medicine 48, n.º 10 (2 de setembro de 2023): 896–98. http://dx.doi.org/10.1097/rlu.0000000000004804.
Texto completo da fonteShappell, S. B., T. Gurpinar, J. Lechago, W. N. Suki e L. D. Truong. "Chronic obstructive uropathy in severe combined immunodeficient (SCID) mice: lymphocyte infiltration is not required for progressive tubulointerstitial injury." Journal of the American Society of Nephrology 9, n.º 6 (junho de 1998): 1008–17. http://dx.doi.org/10.1681/asn.v961008.
Texto completo da fonteWen, Jin, Zhengwei Ma, Man J. Livingston, Wei Zhang, Yanggang Yuan, Chunyuan Guo, Yutao Liu, Ping Fu e Zheng Dong. "Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease". American Journal of Physiology-Renal Physiology 319, n.º 4 (1 de outubro de 2020): F664—F673. http://dx.doi.org/10.1152/ajprenal.00292.2020.
Texto completo da fonteEddy, A. A. "Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions." Journal of the American Society of Nephrology 5, n.º 6 (dezembro de 1994): 1273–87. http://dx.doi.org/10.1681/asn.v561273.
Texto completo da fonteForbes, Michael S., Barbara A. Thornhill, Jordan J. Minor, Katherine A. Gordon, Carolina I. Galarreta e Robert L. Chevalier. "Fight-or-flight: murine unilateral ureteral obstruction causes extensive proximal tubular degeneration, collecting duct dilatation, and minimal fibrosis". American Journal of Physiology-Renal Physiology 303, n.º 1 (1 de julho de 2012): F120—F129. http://dx.doi.org/10.1152/ajprenal.00110.2012.
Texto completo da fonteWang, S., M. Wu, L. Chiriboga, C. Putterman, B. Goilav, A. R. Broder e H. M. Belmont. "OP0043 RENAL TUBULAR COMPLEMENT C9 DEPOSITION IS ASSOCIATED WITH RENAL TUBULAR DAMAGE AND FIBROSIS IN LUPUS NEPHRITIS". Annals of the Rheumatic Diseases 79, Suppl 1 (junho de 2020): 28.2–29. http://dx.doi.org/10.1136/annrheumdis-2020-eular.2394.
Texto completo da fonteHaas, Mark. "Chronic allograft nephropathy or interstitial fibrosis and tubular atrophy". Current Opinion in Nephrology and Hypertension 23, n.º 3 (maio de 2014): 245–50. http://dx.doi.org/10.1097/01.mnh.0000444811.26884.2d.
Texto completo da fonteMuramatsu, Masaki, Yoji Hyodo, Abigail Lee, Atsushi Aikawa, Carmelo Puliatti, Magdi Yaqoob e Michael Sheaff. "Transplant nephrectomy; pathological features of 124 consecutive cases in a single center study over 10 years". Journal of Nephropathology 8, n.º 3 (21 de junho de 2019): 23. http://dx.doi.org/10.15171/jnp.2019.23.
Texto completo da fonteMao, Haiping, Zhilian Li, Yi Zhou, Zhijian Li, Shougang Zhuang, Xin An, Baiyu Zhang et al. "HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy". American Journal of Physiology-Renal Physiology 295, n.º 1 (julho de 2008): F202—F214. http://dx.doi.org/10.1152/ajprenal.00468.2007.
Texto completo da fonteWei, Qingqing, Jennifer Su, Guie Dong, Ming Zhang, Yuqing Huo e Zheng Dong. "Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells". American Journal of Physiology-Renal Physiology 316, n.º 6 (1 de junho de 2019): F1162—F1172. http://dx.doi.org/10.1152/ajprenal.00422.2018.
Texto completo da fonteGupta, Kanishk. "Karyomegalic Interstitial Nephritis-A Rare Cause Of Chronic Tubulointerstitial Nephritis". Nephrology & Renal Therapy 6, n.º 3 (31 de dezembro de 2020): 1–3. http://dx.doi.org/10.24966/nrt-7313/100042.
Texto completo da fonteWarner, Gina M., Jingfei Cheng, Bruce E. Knudsen, Catherine E. Gray, Ansgar Deibel, Justin E. Juskewitch, Lilach O. Lerman, Stephen C. Textor, Karl A. Nath e Joseph P. Grande. "Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension". American Journal of Physiology-Renal Physiology 302, n.º 11 (1 de junho de 2012): F1455—F1464. http://dx.doi.org/10.1152/ajprenal.00645.2011.
Texto completo da fonteWu, Jinhao, Chao Huang, Gang Kan, Hanyu Xiao, Xiaoping Zhang e Jun Yang. "Silymarin Regulates Tgf-β1/Smad3 Signaling Pathway and Improves Renal Tubular Interstitial Fibrosis Caused by Obstructive Nephropathy". Current Topics in Nutraceutical Research 19, n.º 4 (17 de março de 2021): 508–13. http://dx.doi.org/10.37290/ctnr2641-452x.19:508-513.
Texto completo da fonteKimura, Kuniko, Masayuki Iwano, Debra F. Higgins, Yukinari Yamaguchi, Kimihiko Nakatani, Koji Harada, Atsushi Kubo et al. "Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis". American Journal of Physiology-Renal Physiology 295, n.º 4 (outubro de 2008): F1023—F1029. http://dx.doi.org/10.1152/ajprenal.90209.2008.
Texto completo da fonteVIELHAUER, VOLKER, HANS-JOACHIM ANDERS, MATTHIAS MACK, JOSEF CIHAK, FRANK STRUTZ, MANFRED STANGASSINGER, BRUNO LUCKOW, HERMANN-JOSEF GRÖNE e DETLEF SCHLÖNDORFF. "Obstructive Nephropathy in the Mouse: Progressive Fibrosis Correlates with Tubulointerstitial Chemokine Expression and Accumulation of CC Chemokine Receptor 2- and 5-Positive Leukocytes". Journal of the American Society of Nephrology 12, n.º 6 (junho de 2001): 1173–87. http://dx.doi.org/10.1681/asn.v1261173.
Texto completo da fonteKuruş, Meltem, Murat Ugras e Mukaddes Esrefoglu. "Effect of resveratrol on tubular damage and interstitial fibrosis in kidneys of rats exposed to cigarette smoke". Toxicology and Industrial Health 25, n.º 8 (setembro de 2009): 539–44. http://dx.doi.org/10.1177/0748233709346755.
Texto completo da fonteBurdmann, E. A., T. F. Andoh, C. C. Nast, A. Evan, B. A. Connors, T. M. Coffman, J. Lindsley e W. M. Bennett. "Prevention of experimental cyclosporin-induced interstitial fibrosis by losartan and enalapril". American Journal of Physiology-Renal Physiology 269, n.º 4 (1 de outubro de 1995): F491—F499. http://dx.doi.org/10.1152/ajprenal.1995.269.4.f491.
Texto completo da fontePang, Maoyin, Jagan Kothapally, Haiping Mao, Evelyn Tolbert, Murugavel Ponnusamy, Y. Eugene Chin e Shougang Zhuang. "Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy". American Journal of Physiology-Renal Physiology 297, n.º 4 (outubro de 2009): F996—F1005. http://dx.doi.org/10.1152/ajprenal.00282.2009.
Texto completo da fonteQuimby, Jessica M., Shannon M. McLeland, Rachel E. Cianciolo, Katharine F. Lunn, Jody P. Lulich, Andrea Erikson e Lara B. Barron. "Frequency of histologic lesions in the kidneys of cats without kidney disease". Journal of Feline Medicine and Surgery 24, n.º 12 (dezembro de 2022): e472-e480. http://dx.doi.org/10.1177/1098612x221123768.
Texto completo da fonteDebelle, Frédéric D., Joëlle L. Nortier, Eric G. De Prez, Christian H. Garbar, Anne R. Vienne, Isabelle J. Salmon, Monique M. Deschodt-Lanckman e Jean-Louis Vanherweghem. "Aristolochic Acids Induce Chronic Renal Failure with Interstitial Fibrosis in Salt-Depleted Rats". Journal of the American Society of Nephrology 13, n.º 2 (fevereiro de 2002): 431–36. http://dx.doi.org/10.1681/asn.v132431.
Texto completo da fonteRekhtina, I. G., E. V. Kazarina, E. S. Stolyarevich, A. M. Kovrigina, V. N. Dvirnyk, S. M. Kulikov e L. P. Mendeleeva. "Morphological and immunohistochemical predictors of renal response to therapy patients with myeloma cast nephropathy and dialysis-dependent acute kidney injury". Terapevticheskii arkhiv 92, n.º 7 (1 de setembro de 2020): 63–69. http://dx.doi.org/10.26442/00403660.2020.07.000776.
Texto completo da fonteTampe, Désirée, Laura Schridde, Peter Korsten, Philipp Ströbel, Michael Zeisberg, Samy Hakroush e Björn Tampe. "Different Patterns of Kidney Fibrosis Are Indicative of Injury to Distinct Renal Compartments". Cells 10, n.º 8 (6 de agosto de 2021): 2014. http://dx.doi.org/10.3390/cells10082014.
Texto completo da fonteSun, Ke, Zhenliang Fan e Junfeng Fan. "A study on the mechanism of cordycepin in regulating autophagy and alleviating renal tubular interstitial fibrosis". Tropical Journal of Pharmaceutical Research 23, n.º 3 (14 de abril de 2024): 529–35. http://dx.doi.org/10.4314/tjpr.v23i3.6.
Texto completo da fonteRanganathan, Punithavathi, Calpurnia Jayakumar e Ganesan Ramesh. "Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling". American Journal of Physiology-Renal Physiology 304, n.º 8 (15 de abril de 2013): F1054—F1065. http://dx.doi.org/10.1152/ajprenal.00650.2012.
Texto completo da fonteHuang, Ming, Shuai Zhu, Huihui Huang, Jinzhao He, Kenji Tsuji, William W. Jin, Dongping Xie et al. "Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis". Journal of the American Society of Nephrology 30, n.º 11 (25 de outubro de 2019): 2073–90. http://dx.doi.org/10.1681/asn.2018111162.
Texto completo da fonteWang, Xiaohua, Yang Zhou, Ruoyun Tan, Mingxia Xiong, Weichun He, Li Fang, Ping Wen, Lei Jiang e Junwei Yang. "Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy". American Journal of Physiology-Renal Physiology 299, n.º 5 (novembro de 2010): F973—F982. http://dx.doi.org/10.1152/ajprenal.00216.2010.
Texto completo da fonteGui, Yuan, e Chunsun Dai. "mTOR Signaling in Kidney Diseases". Kidney360 1, n.º 11 (3 de setembro de 2020): 1319–27. http://dx.doi.org/10.34067/kid.0003782020.
Texto completo da fonteYamashita, Noriyuki, Tetsuro Kusaba, Tomohiro Nakata, Aya Tomita, Tomoharu Ida, Noriko Watanabe-Uehara, Kisho Ikeda et al. "Intratubular epithelial-mesenchymal transition and tubular atrophy after kidney injury in mice". American Journal of Physiology-Renal Physiology 319, n.º 4 (1 de outubro de 2020): F579—F591. http://dx.doi.org/10.1152/ajprenal.00108.2020.
Texto completo da fonteKida, Yujiro, Kinji Asahina, Hirobumi Teraoka, Inna Gitelman e Tetsuji Sato. "Twist Relates to Tubular Epithelial-Mesenchymal Transition and Interstitial Fibrogenesis in the Obstructed Kidney". Journal of Histochemistry & Cytochemistry 55, n.º 7 (19 de março de 2007): 661–73. http://dx.doi.org/10.1369/jhc.6a7157.2007.
Texto completo da fonteGinley, Brandon, Kuang-Yu Jen, Seung Seok Han, Luís Rodrigues, Sanjay Jain, Agnes B. Fogo, Jonathan Zuckerman et al. "Automated Computational Detection of Interstitial Fibrosis, Tubular Atrophy, and Glomerulosclerosis". Journal of the American Society of Nephrology 32, n.º 4 (23 de fevereiro de 2021): 837–50. http://dx.doi.org/10.1681/asn.2020050652.
Texto completo da fonteHart, Allyson, Scott Jackson, Bertram L. Kasiske, Michael S. Mauer, Behzad Najafian, Arthur J. Matas, Richard Spong e Hassan N. Ibrahim. "Uric Acid and Allograft Loss From Interstitial Fibrosis/Tubular Atrophy". Transplantation 97, n.º 10 (maio de 2014): 1066–71. http://dx.doi.org/10.1097/01.tp.0000440952.29757.66.
Texto completo da fonteWilson, Parker C., Michael Kashgarian e Gilbert Moeckel. "Interstitial inflammation and interstitial fibrosis and tubular atrophy predict renal survival in lupus nephritis". Clinical Kidney Journal 11, n.º 2 (31 de agosto de 2017): 207–18. http://dx.doi.org/10.1093/ckj/sfx093.
Texto completo da fonteMorales, Enrique, Hernando Trujillo, Teresa Bada, Marina Alonso, Eduardo Gutiérrez, Esther Rodríguez, Elena Gutiérrez, María Galindo e Manuel Praga. "What is the value of repeat kidney biopsies in patients with lupus nephritis?" Lupus 30, n.º 1 (20 de outubro de 2020): 25–34. http://dx.doi.org/10.1177/0961203320965703.
Texto completo da fonteCahyawati, Putu Nita, Ngatidjan ., Dwi Cahyani Ratna Sari, Muhammad Mansyur Romi, Nur Arfian, Muhammad Mansyur Romi, Muhammad Mansyur Romi, Nur Arfian e Nur Arfian. "SIMVASTATIN ATTENUATES RENAL FAILURE IN MICE WITH A 5/6 SUBTOTAL NEPHRECTOMY". International Journal of Pharmacy and Pharmaceutical Sciences 9, n.º 5 (1 de maio de 2017): 12. http://dx.doi.org/10.22159/ijpps.2017v9i5.12261.
Texto completo da fonteCui, Wenpeng, Hasiyeti Maimaitiyiming, Xinyu Qi, Heather Norman, Qi Zhou, Xiaojun Wang, Jian Fu e Shuxia Wang. "Increasing cGMP-dependent protein kinase activity attenuates unilateral ureteral obstruction-induced renal fibrosis". American Journal of Physiology-Renal Physiology 306, n.º 9 (1 de maio de 2014): F996—F1007. http://dx.doi.org/10.1152/ajprenal.00657.2013.
Texto completo da fonteYao, Lan, M. Frances Wright, Brandon C. Farmer, Laura S. Peterson, Amir M. Khan, Jianyong Zhong, Leslie Gewin, Chuan-Ming Hao, Hai-Chun Yang e Agnes B. Fogo. "Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction". Nephrology Dialysis Transplantation 34, n.º 12 (10 de abril de 2019): 2042–50. http://dx.doi.org/10.1093/ndt/gfz050.
Texto completo da fonteFine, L. G., e J. T. Norman. "Renal growth responses to acute and chronic injury: routes to therapeutic intervention." Journal of the American Society of Nephrology 2, n.º 10 (abril de 1992): S206. http://dx.doi.org/10.1681/asn.v210s206.
Texto completo da fonteYang, Junwei, e Youhua Liu. "Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy". American Journal of Physiology-Renal Physiology 284, n.º 2 (1 de fevereiro de 2003): F349—F357. http://dx.doi.org/10.1152/ajprenal.00154.2002.
Texto completo da fonteTorsello, Barbara, Sofia De Marco, Silvia Bombelli, Ingrid Cifola, Ivana Morabito, Lara Invernizzi, Chiara Meregalli et al. "High glucose induces an activated state of partial epithelial-mesenchymal transition in human primary tubular cell cultures". PLOS ONE 18, n.º 2 (24 de fevereiro de 2023): e0279655. http://dx.doi.org/10.1371/journal.pone.0279655.
Texto completo da fonteEddy, A. A. "Molecular insights into renal interstitial fibrosis." Journal of the American Society of Nephrology 7, n.º 12 (dezembro de 1996): 2495–508. http://dx.doi.org/10.1681/asn.v7122495.
Texto completo da fonteMa, Frank Y., Jian Liu, A. Richard Kitching, Carl L. Manthey e David J. Nikolic-Paterson. "Targeting renal macrophage accumulation via c-fms kinase reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney". American Journal of Physiology-Renal Physiology 296, n.º 1 (janeiro de 2009): F177—F185. http://dx.doi.org/10.1152/ajprenal.90498.2008.
Texto completo da fonte