Siga este link para ver outros tipos de publicações sobre o tema: Trees.

Artigos de revistas sobre o tema "Trees"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Trees".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Jasmine, Jasmine, Pankaj Bhambri e Dr O. P. Gupta Dr. O.P. Gupta. "Analyzing the Phylogenetic Trees with Tree- building Methods". Indian Journal of Applied Research 1, n.º 7 (1 de outubro de 2011): 83–85. http://dx.doi.org/10.15373/2249555x/apr2012/25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Brower, Andrew V. Z. "Trees and more trees". Cladistics 32, n.º 2 (6 de maio de 2015): 215–18. http://dx.doi.org/10.1111/cla.12122.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Alperin, J. L. "Trees and Brauer trees". Discrete Mathematics 83, n.º 1 (julho de 1990): 127–28. http://dx.doi.org/10.1016/0012-365x(90)90228-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chaffey, N. J. "Popular trees, specialist trees". New Phytologist 154, n.º 3 (6 de junho de 2002): 548–49. http://dx.doi.org/10.1046/j.1469-8137.2002.00434_3.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Steele, James, e Anne Kandler. "Language trees ≠ gene trees". Theory in Biosciences 129, n.º 2-3 (9 de junho de 2010): 223–33. http://dx.doi.org/10.1007/s12064-010-0096-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Pollin, Burton R. "Kilmer's Trees and Asselineau's Trees". Explicator 64, n.º 3 (março de 2006): 160–62. http://dx.doi.org/10.3200/expl.64.3.160-162.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Maddison, Wayne P. "Gene Trees in Species Trees". Systematic Biology 46, n.º 3 (1 de setembro de 1997): 523–36. http://dx.doi.org/10.1093/sysbio/46.3.523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Azais, Romain, Guillaume Cerutti, Didier Gemmerle; e Florian Ingels. "treex: a Python package for manipulating rooted trees". Journal of Open Source Software 4, n.º 38 (24 de junho de 2019): 1351. http://dx.doi.org/10.21105/joss.01351.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bahendwar, Isha Ashish, Ruchit Purshottam Bhardwaj e Prof S. G. Mundada. "Amortized Complexity Analysis for Red-Black Trees and Splay Trees". International Journal of Innovative Research in Computer Science & Technology 6, n.º 6 (novembro de 2018): 121–28. http://dx.doi.org/10.21276/ijircst.2018.6.6.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Muslih, A. M., N. E. Hidayat, T. Arlita, A. Farida, I. Dewiyanti e A. Sugara. "Mapping the tree damage index: A case study on the green lane in the urban area of Banda Aceh City". IOP Conference Series: Earth and Environmental Science 1352, n.º 1 (1 de maio de 2024): 012046. http://dx.doi.org/10.1088/1755-1315/1352/1/012046.

Texto completo da fonte
Resumo:
Abstract Climate change mitigation efforts implemented by the Government of Banda Aceh by building green lanes with trees. The level of the tree’s ability to absorb carbon is highly correlated with the vitality of the tree itself. The health status of a tree can be known by the tree’s damage level. The aim of the research is to provide information on how much damage to trees and the degree of severity. The research was carried out on green lanes on urban streets in Banda Aceh City as many as 8 lines. The object of research is vegetation with the tree growth phase category, and tree damage index assessment using the forest health monitoring method with indicators of tree damage conditions with parameters of damage location code, damage type code, and damage level code. Based on the results, most of the trees suffered light damage. Of the total number of trees observed, there were 1797 individuals, 252 trees were in good health, 1494 were lightly damaged, 40 trees were medium damaged and 11 trees were heavily damaged. The type of damage experienced was dominated by 46% open wound, 32% cancer, 11% brum (excessive branching) and 11% the rest with other kinds of damage.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Jones, Joe, e Olcay Jones. "Trees". Annals of Paediatric Rheumatology 3, n.º 2 (2014): 46. http://dx.doi.org/10.5455/apr.062020140706.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ward, J. P. "Trees". English 41, n.º 171 (1 de setembro de 1992): 234. http://dx.doi.org/10.1093/english/41.171.234.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

ACHARYA, SHANTA. "Trees". Critical Quarterly 37, n.º 3 (setembro de 1995): 74. http://dx.doi.org/10.1111/j.1467-8705.1995.tb01075.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Swann, B. "Trees". Interdisciplinary Studies in Literature and Environment 9, n.º 2 (1 de julho de 2002): 260. http://dx.doi.org/10.1093/isle/9.2.260.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Brash, Jorge, e Steven F. White. "Trees". Callaloo 26, n.º 4 (2003): 985–86. http://dx.doi.org/10.1353/cal.2003.0125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Epstein, Henri. "Trees". Nuclear Physics B 912 (novembro de 2016): 151–71. http://dx.doi.org/10.1016/j.nuclphysb.2016.04.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Staub, Julie Cadwallader. "Trees". Spiritus: A Journal of Christian Spirituality 19, n.º 2 (2019): 345. http://dx.doi.org/10.1353/scs.2019.0048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Raven, John, e Peter Crane. "Trees". Current Biology 17, n.º 9 (maio de 2007): R303—R304. http://dx.doi.org/10.1016/j.cub.2007.01.041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Andrews, Brian. "Trees". Ballarat Naturalist (2001:Apr) (abril de 2001): 5–6. http://dx.doi.org/10.5962/p.385486.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Leach, Amy. "When Trees Dream of Being Trees". Iowa Review 36, n.º 1 (abril de 2006): 54. http://dx.doi.org/10.17077/0021-065x.6166.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ma, Bin, Ming Li e Louxin Zhang. "From Gene Trees to Species Trees". SIAM Journal on Computing 30, n.º 3 (janeiro de 2000): 729–52. http://dx.doi.org/10.1137/s0097539798343362.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Duchamps, Jean-Jil. "Trees within trees II: Nested fragmentations". Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 56, n.º 2 (maio de 2020): 1203–29. http://dx.doi.org/10.1214/19-aihp999.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

JANSON, SVANTE. "Random Recursive Trees and Preferential Attachment Trees are Random Split Trees". Combinatorics, Probability and Computing 28, n.º 1 (21 de maio de 2018): 81–99. http://dx.doi.org/10.1017/s0963548318000226.

Texto completo da fonte
Resumo:
We consider linear preferential attachment trees, and show that they can be regarded as random split trees in the sense of Devroye (1999), although with infinite potential branching. In particular, this applies to the random recursive tree and the standard preferential attachment tree. An application is given to the sum over all pairs of nodes of the common number of ancestors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Sellin, Arne. "Sapwood–heartwood proportion related to tree diameter, age, and growth rate in Piceaabies". Canadian Journal of Forest Research 24, n.º 5 (1 de maio de 1994): 1022–28. http://dx.doi.org/10.1139/x94-133.

Texto completo da fonte
Resumo:
The relationships of sapwood radial width and transverse area to tree diameter, age, and growth rate were investigated in Piceaabies (L.) Karst. A total of 125 trees growing with (suppressed trees) and without (dominant trees) competition for light were sampled. Both sapwood and heartwood amounts showed an increase with diameter at the stem base, with the heartwood portion increasing more rapidly. In young trees sapwood prevails both in terms of diameter and transverse area. After trees have reached a certain age, the width of the sapwood band remains more or less constant (on average 7.8 cm for dominant and 2.0 cm for suppressed trees), and the heartwood amount exceeds that of sapwood. The percentage of heartwood in suppressed trees is substantially greater than in dominant trees of the same age. Sapwood amount is closely correlated with the tree diameter, but not with age. Tree age controls the number of rings in sapwood, while the sapwood width depends on the tree's radial growth rate as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zelinka, Bohdan. "Partitionability of trees". Czechoslovak Mathematical Journal 38, n.º 4 (1988): 677–81. http://dx.doi.org/10.21136/cmj.1988.102263.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Vololazskiy, Yevgen V. "A Modification of the Frechet Distance for Nonisomorphic Trees". Control Systems and Computers, n.º 2-3 (292-293) (julho de 2021): 20–27. http://dx.doi.org/10.15407/csc.2021.02.020.

Texto completo da fonte
Resumo:
The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider class of trees. A polynomial-time algorithm is given to determine whether one tree’s similarity to another is less than a given number.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Huff, Tristan D., e John D. Bailey. "Longevity and dynamics of fatally and nonfatally topped Douglas-fir in the Coast Range of Oregon". Canadian Journal of Forest Research 39, n.º 11 (novembro de 2009): 2224–33. http://dx.doi.org/10.1139/x09-141.

Texto completo da fonte
Resumo:
Worldwide, snags are an important, but often lacking, component of forest ecosystems. We revisited artificially topped Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) trees 16–18 years after treatment in a replicated experiment in western Oregon. Some trees had been topped such that no live crown was retained (fatally topped), while others retained some portion of their live crown after topping (nonfatally topped). Topped trees were created under three different silvicultural regimes: clearcut, two story, and group selection. Twenty-three percent (61 of 262) of nonfatally topped trees remained living 16–18 years after treatment; 4% (19 of 482) of fatally topped trees had broken at some point up the bole by 16–18 years after treatment. Silvicultural regime, post-treatment height, stem diameter, stem lean, and ground slope were considered as potential explanatory variables in logistic regression models explaining mortality and breakage. A nonfatally topped tree’s odds of surviving 16–18 years after treatment was greater in the mature matrix of group selection stands than in clearcuts or two-story stands. A fatally topped tree’s odds of breaking within 16–18 years of treatment decreased as DBH increased. If carefully created, artificially topping trees can be a useful silvicultural tool to increase structural heterogeneity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Bereczky, Nikolett, Amalia Duch, Krisztián Németh e Salvador Roura. "Quad-kd trees: A general framework for kd trees and quad trees". Theoretical Computer Science 616 (fevereiro de 2016): 126–40. http://dx.doi.org/10.1016/j.tcs.2015.12.030.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Page, Roderic D. M. "Extracting Species Trees From Complex Gene Trees: Reconciled Trees And Vertebrate Phylogeny". Molecular Phylogenetics and Evolution 14, n.º 1 (janeiro de 2000): 89–106. http://dx.doi.org/10.1006/mpev.1999.0676.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kala, Duran. "Epidemiology and Ecological Distribution of Tree Tumors in the Territory of Landscape Reserve “Teply stan”". International Journal of Biology 8, n.º 1 (11 de novembro de 2015): 42. http://dx.doi.org/10.5539/ijb.v8n1p42.

Texto completo da fonte
Resumo:
<p class="1Body">This study focuses tumors of woody trees in the territory of landscape reserve “Teply stan” in Moscow. Abnormal swellings on the trunk of woody trees are called Tumor. Formation of a swell is an evidence of an infringement of metabolism in a tree's body, is a disease of a tree and is a cause of a tree's premature death. Tumor prevents transportation of water and minerals from roots towards the leaves of a tree and transportation of organic matters from the leaves towards roots. The purpose of this study is to find out some appropriatenesses of spreading of tumors of trees in the landscape reserve “Teply stan”.</p><p class="1Body">In this study, landscape reserve divided into 9 study sections according to ecological conditions. Surveillance of all trees and statistical analysis of tumor trees in studied section of landscape reserve have done. The results showed that 57 of the counted 25 thousands trees have tumors. 50 of the tumors trees are belong to birch<em> (Betula pendula)</em>.Trees with tumors are distributed non-uniformly, generally in central and east parts of landscape reserve that had ecologic pollution. Mainly birch <em>(Betula pendula)</em><em>,</em> oak <em>(Quercus rubor)</em><em> </em>and linden <em>(Tilia cordata)</em> are damaged by tumors in the studied territory. The most effected trees with tumors are birch <em>(Betula pendula)</em><em> </em>tree population. The direct proportion between ecological situation and the number of tumors have found.</p>
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Huck, Andreas. "Independent Trees in Planar Graphs Independent trees". Graphs and Combinatorics 15, n.º 1 (março de 1999): 29–77. http://dx.doi.org/10.1007/pl00021190.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Liu, Liang, e Lili Yu. "Estimating Species Trees from Unrooted Gene Trees". Systematic Biology 60, n.º 5 (28 de março de 2011): 661–67. http://dx.doi.org/10.1093/sysbio/syr027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Gowers, Emily. "Trees and Family Trees in the Aeneid". Classical Antiquity 30, n.º 1 (1 de abril de 2011): 87–118. http://dx.doi.org/10.1525/ca.2011.30.1.87.

Texto completo da fonte
Resumo:
Tree-chopping in the Aeneid has long been seen as a disturbingly violent symbol of the Trojans' colonization of Italy. The paper proposes a new reading of the poem which sees Aeneas as progressive extirpator not just of foreign rivals but also of his own Trojan relatives. Although the Romans had no family “trees” as such, their genealogical stemmata (“garlands”) had “branches” (rami) and “stock” (stirps), and their vocabulary of family relationships takes many of its metaphors from planting, adoption, and uprooting, while plant life is often described in human metaphors. Imperial historians use the growth and collapse of trees to mark the rise and fall of dynasties; natural historians like Columella and Pliny use metaphors of adoption, abortion, and adultery to characterize the perversions of agriculture and horticulture. It is thus no coincidence that Aeneas' encounters with Hector, Priam, Deiphobus, and others often take place against a background of real or metaphorical trees (tree similes, headless or mutilated human trunks, ancient trees and woods). These encourage us to see an element of dynastic encroachment in scenes that look pious and peaceable but confirm Aeneas' ascendancy and claim to Trojan succession. The Polydorus episode in particular can be read not just as a grotesque interlude but as a nightmare about endlessly reproducing heirs; one loose strand from Priam's house is allowed to remain, while Virgil deals imperfectly with the problem of Aeneas' own successors. The paper ends by re-examining Virgil's account of grafting in Georgics 2 and arguing that it is viewed positively, perhaps in order to cast Augustus' adoption of heirs as a miracle solution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Simion, Rodica. "Trees with 1-factors and oriented trees". Discrete Mathematics 88, n.º 1 (março de 1991): 93–104. http://dx.doi.org/10.1016/0012-365x(91)90061-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Page, Roderic D. M., e Michael A. Charleston. "Trees within trees: phylogeny and historical associations". Trends in Ecology & Evolution 13, n.º 9 (setembro de 1998): 356–59. http://dx.doi.org/10.1016/s0169-5347(98)01438-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Chvátal, Vašek, Dieter Rautenbach e Philipp Matthias Schäfer. "Finite Sholander trees, trees, and their betweenness". Discrete Mathematics 311, n.º 20 (outubro de 2011): 2143–47. http://dx.doi.org/10.1016/j.disc.2011.06.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Yan, Sherry H. F., e Xuezi Liu. "2-noncrossing trees and 5-ary trees". Discrete Mathematics 309, n.º 20 (outubro de 2009): 6135–38. http://dx.doi.org/10.1016/j.disc.2009.03.044.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Frati, Fabrizio, Markus Geyer e Michael Kaufmann. "Planar packing of trees and spider trees". Information Processing Letters 109, n.º 6 (fevereiro de 2009): 301–7. http://dx.doi.org/10.1016/j.ipl.2008.11.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Liu, Hua Qun, Jia Wang e Liu Ping Feng. "Research on Motion Model of “Wind-Blowing & Trees-Swinging” and “Leaves-Falling & Branches-Broken” Based on Fractal Theory". Advanced Materials Research 989-994 (julho de 2014): 2139–43. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2139.

Texto completo da fonte
Resumo:
Fractal technology can simulate the growth of trees very well.There have been many research on using fractal theory to model trees,but most methods have not further explore the tree’s natural phenomena such as swinging driven by wind Firstly, this paper gave a modeling method to generate the trees based on the three-dimensional fractal L system; Secondly, according to the hierarchy of the strength characteristics of the wind and trees progression, this paper also gave the wind model to simulate the natural wind farm.In the end , this paper made some simulation about the model of “Wind-Blowing & Tree-Swing and Leaves-Falling & Braches-Broken” .
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Moussaid, Abdellatif, Sanaa El Fkihi e Yahya Zennayi. "Tree Crowns Segmentation and Classification in Overlapping Orchards Based on Satellite Images and Unsupervised Learning Algorithms". Journal of Imaging 7, n.º 11 (17 de novembro de 2021): 241. http://dx.doi.org/10.3390/jimaging7110241.

Texto completo da fonte
Resumo:
Smart agriculture is a new concept that combines agriculture and new technologies to improve the yield’s quality and quantity as well as facilitate many tasks for farmers in managing orchards. An essential factor in smart agriculture is tree crown segmentation, which helps farmers automatically monitor their orchards and get information about each tree. However, one of the main problems, in this case, is when the trees are close to each other, which means that it would be difficult for the algorithm to delineate the crowns correctly. This paper used satellite images and machine learning algorithms to segment and classify trees in overlapping orchards. The data used are images from the Moroccan Mohammed VI satellite, and the study region is the OUARGHA citrus orchard located in Morocco. Our approach starts by segmenting the rows inside the parcel and finding all the trees there, getting their canopies, and classifying them by size. In general, the model inputs the parcel’s image and other field measurements to classify the trees into three classes: missing/weak, normal, or big. Finally, the results are visualized in a map containing all the trees with their classes. For the results, we obtained a score of 0.93 F-measure in rows segmentation. Additionally, several field comparisons were performed to validate the classification, dozens of trees were compared and the results were very good. This paper aims to help farmers to quickly and automatically classify trees by crown size, even if there are overlapping orchards, in order to easily monitor each tree’s health and understand the tree’s distribution in the field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Hasibuan, Moses, Indriyanto . e Melya Riniarti. "Inventarisasi Pohon Plus Dalam Blok Koleksi Di Taman Hutan Raya Wan Abdul Rachman". Jurnal Sylva Lestari 1, n.º 1 (17 de fevereiro de 2019): 9. http://dx.doi.org/10.23960/jsl119-16.

Texto completo da fonte
Resumo:
Plus tree inventory was an activity for collecting and compiling data.Collection block was an area within Great Forest Park region that contains different types of plant, either endemic or non-endemic plants, which serves for protection and preservation, research, science, education, support the cultivation, culture, tourism and recreation.The information about the existence of plus trees on the collection block still rare.So, plus tree inventory still necessary to fulfill the data.This research was held in Wan Abdul Rachman Great Forest Park Collection Block at February to March 2012.The aim of this research is to identify the trees which has plus tree criterias.Data collected by using line terraced layers method which placed systematically.The collected data include the types of trees, trunk diameter, branch height, trunk straightness, tree’s health condition, fruit production, branch corner, sphericity form of circumference stem, and the location of the plus tree.Based on the results, there were 9 species of trees that identified as plus trees,7 species of wooden trees, which are 3 taboo trees (Tetrameles nudiflora), 1 dadap tree (Erythrina fusca), 1 purple coral tree (Pterospermum javanicum), 1 sandpaper tree (Ficus ampelas), 6 kapok trees (Ceiba pentandra), 1 red cedar tree (Toona sureni), 1 mindi tree (Melia azedarach) and 2 species of MPTS trees, 1 durian tree (Durio zibethinus), and 1 mango tree (Mangifera indica).Total number of individual tree that meets the plus tree criterias are 16 trees.Keywords: inventory, plus trees
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Milius, Susan. "Bleeding Trees". Science News 162, n.º 5 (3 de agosto de 2002): 70. http://dx.doi.org/10.2307/4013813.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Colledge, Eleanor. "Falling trees". Canadian Family Physician 67, n.º 4 (abril de 2021): e106-e106. http://dx.doi.org/10.46747/cfp.6704e106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Roudeau, Cécile. "Jewett’s Trees". Études anglaises Vol. 74, n.º 4 (7 de fevereiro de 2022): 399–416. http://dx.doi.org/10.3917/etan.744.0399.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Mims, Forrest M. "Amber Trees". Science 258, n.º 5086 (20 de novembro de 1992): 1290. http://dx.doi.org/10.1126/science.258.5086.1290.d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Holden, Constance. "Precolumbian Trees". Science 255, n.º 5052 (27 de março de 1992): 1639. http://dx.doi.org/10.1126/science.255.5052.1639.b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Rieseberg, Loren H. "Rare Trees". Science 271, n.º 5245 (5 de janeiro de 1996): 16. http://dx.doi.org/10.1126/science.271.5245.16.a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Perez, Craig Santos. "Family Trees". World Literature Today 93, n.º 4 (2019): 71. http://dx.doi.org/10.1353/wlt.2019.0148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Tsun Haggarty, Holly. "Stacking Trees". Journal of the Canadian Association for Curriculum Studies 19, n.º 1 (13 de dezembro de 2021): 11–15. http://dx.doi.org/10.25071/1916-4467.40769.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Sater, Maxwell. "Hardy’s Trees". Nineteenth-Century Literature 76, n.º 1 (1 de junho de 2021): 92–115. http://dx.doi.org/10.1525/ncl.2021.76.1.92.

Texto completo da fonte
Resumo:
Maxwell Sater, “Hardy's Trees: Ecology and the Question of Knowledge in The Woodlanders” (pp. 92–115) This essay attends to one of the stranger episodes in Thomas Hardy’s fiction: the inexplicably linked deaths of John South and the elm tree outside his house. I argue that this subplot is of central importance to The Woodlanders (1887) and to Hardy’s ecological thinking more generally. Hardy posits an episode that resists narrative accommodation: simply, it does not make sense. Its senselessness, I contend, indexes a broader discomfort with, and rejection of, what Stanley Cavell would call relations of knowing as the foundation of ecology. By reading The Woodlanders alongside Cavell, I suggest that Hardy develops an ecological mode of relation dependent neither on knowledge of nor on continuity with nonhuman worlds but, rather, on a negotiation of the epistemological and ontological limits inhering between, in this instance, humans and trees. For Hardy, humane ecological relations are possible in spite of those limits; in fact, seeking to transcend them, as the elm tree plot parodically demonstrates, can be counterproductive.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia