Artigos de revistas sobre o tema "Transition L-H"

Siga este link para ver outros tipos de publicações sobre o tema: Transition L-H.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Transition L-H".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Tsui, K. H., e C. E. Navia. "Tokamak L/H mode transition". Physics of Plasmas 19, n.º 1 (janeiro de 2012): 012505. http://dx.doi.org/10.1063/1.3671975.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chen, Liang, Guosheng Xu, Lingming Shao, Wei Gao, Yifeng Wang, Yanmin Duan, Shouxin Wang et al. "Comparison of dynamical features between the fast H-L and the H-I-L transition for EAST RF-heated plasmas". Physica Scripta 97, n.º 1 (1 de janeiro de 2022): 015601. http://dx.doi.org/10.1088/1402-4896/ac4635.

Texto completo da fonte
Resumo:
Abstract In this paper, a comparison of dynamical features between the fast H-L and the H-I-L transition, which can be identified by the intermediate phase, or ‘I-phase’, has been made for radio-frequency (RF) heated deuterium plasmas in EAST. The fast H-L transition is characterized by a rapid release of stored energy during the transition transient, while the H-I-L transition exhibits a ‘soft’ H-mode termination. One important distinction between the transitions has been observed by dedicated probe measurements slightly inside the separatrix, with respect to the radial gradient of the floating potential, which corresponds to the E × B flow and/or the electron temperature gradient. The potential gradient inside the separatrix oscillates and persists during the stationary I-phase, and shows a larger amplitude than that before the fast H-L transition. The reduction of the gradient leads to the final transition to the L-mode for both the fast H-L and the H-I-L transition. These findings indicate that the mean E × B flow shear and/or edge electron temperature gradient play a critical role underlying the H-L transition physics. In addition, the back transition in EAST is found to be sensitive to magnetic configuration, where the vertical configuration, i.e., inner strike-point located at vertical target, favours access to the H-I-L transition, while the horizontal shape facilitates achievement of the fast H-L transition. The divertor recycling level normalized to electron density is higher before the fast H-L transition, as compared to that before the I-phase, which strongly suggest that the density of the recycled neutrals is an important ingredient in determining the back transition behaviour.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Toda, Shinichiro, Sanae-I. Itoh, Masatoshi Yagi, Kimitaka Itoh e Atsushi Fukuyama. "Probabilistic Nature in L/H Transition". Journal of the Physical Society of Japan 68, n.º 11 (15 de novembro de 1999): 3520–27. http://dx.doi.org/10.1143/jpsj.68.3520.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rozhansky, V., M. Tendler e S. Voskoboinikov. "Dynamics of the L - H transition". Plasma Physics and Controlled Fusion 38, n.º 8 (1 de agosto de 1996): 1327–30. http://dx.doi.org/10.1088/0741-3335/38/8/031.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shaing, K. C., C. T. Hsu e P. J. Christenson. "L-H transition in tokamaks and stellarators". Plasma Physics and Controlled Fusion 36, n.º 7A (1 de julho de 1994): A75—A80. http://dx.doi.org/10.1088/0741-3335/36/7a/007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fukuda, T. "`Hidden' variables affecting the L-H transition". Plasma Physics and Controlled Fusion 40, n.º 5 (1 de maio de 1998): 543–55. http://dx.doi.org/10.1088/0741-3335/40/5/003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Estrada, T., E. Ascasíbar, T. Happel, C. Hidalgo, E. Blanco, R. Jiménez-Gómez, M. Liniers, D. López-Bruna, F. L. Tabarés e D. Tafalla. "L-H Transition Experiments in TJ-II". Contributions to Plasma Physics 50, n.º 6-7 (23 de julho de 2010): 501–6. http://dx.doi.org/10.1002/ctpp.200900024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Schorlepp, Timo, Pavel Sasorov e Baruch Meerson. "Short-time large deviations of the spatially averaged height of a Kardar–Parisi–Zhang interface on a ring". Journal of Statistical Mechanics: Theory and Experiment 2023, n.º 12 (1 de dezembro de 2023): 123202. http://dx.doi.org/10.1088/1742-5468/ad0a94.

Texto completo da fonte
Resumo:
Abstract Using the optimal fluctuation method, we evaluate the short-time probability distribution P ( H ˉ , L , t = T ) of the spatially averaged height H ˉ = ( 1 / L ) ∫ 0 L h ( x , t = T ) d x of a one-dimensional interface h ( x , t ) governed by the Kardar–Parisi–Zhang equation ∂ t h = ν ∂ x 2 h + λ 2 ∂ x h 2 + D ξ x , t on a ring of length L. The process starts from a flat interface, h ( x , t = 0 ) = 0 . Both at λ H ˉ < 0 and at sufficiently small positive λ H ˉ the optimal (that is, the least-action) path h ( x , t ) of the interface, conditioned on H ˉ , is uniform in space, and the distribution P ( H ˉ , L , T ) is Gaussian. However, at sufficiently large λ H ˉ > 0 the spatially uniform solution becomes sub-optimal and gives way to non-uniform optimal paths. We study these, and the resulting non-Gaussian distribution P ( H ˉ , L , T ) , analytically and numerically. The loss of optimality of the uniform solution occurs via a dynamical phase transition of either first or second order, depending on the rescaled system size ℓ = L / ν T , at a critical value H ˉ = H ˉ c ( ℓ ) . At large but finite ℓ the transition is of first order. Remarkably, it becomes an ‘accidental’ second-order transition in the limit of ℓ → ∞ , where a large-deviation behavior − ln P ( H ¯ , L , T ) ≃ ( L / T ) f ( H ¯ ) (in the units λ = ν = D = 1 ) is observed. At small ℓ the transition is of second order, while at ℓ = O ( 1 ) transitions of both types occur.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Shaing, K. C., e P. J. Christenson. "Ion collisionality and L–H transition in tokamaks". Physics of Fluids B: Plasma Physics 5, n.º 3 (março de 1993): 666–68. http://dx.doi.org/10.1063/1.860511.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Meyer, H., M. F. M. De Bock, N. J. Conway, S. J. Freethy, K. Gibson, J. Hiratsuka, A. Kirk et al. "L–H transition and pedestal studies on MAST". Nuclear Fusion 51, n.º 11 (24 de outubro de 2011): 113011. http://dx.doi.org/10.1088/0029-5515/51/11/113011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Berionni, V., P. Morel e Ö. D. Gürcan. "Multi-shell transport model for L-H transition". Physics of Plasmas 24, n.º 12 (dezembro de 2017): 122310. http://dx.doi.org/10.1063/1.4998569.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

XU, Guosheng, e Xingquan WU. "Understanding L–H transition in tokamak fusion plasmas". Plasma Science and Technology 19, n.º 3 (21 de fevereiro de 2017): 033001. http://dx.doi.org/10.1088/2058-6272/19/3/033001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Fuji, Y., K. Itoh, A. Fukuyama e S. I. Itoh. "Transport Modeling of L/H Transition in Tokamaks". Fusion Technology 27, n.º 3T (abril de 1995): 485–88. http://dx.doi.org/10.13182/fst95-a11947134.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Itoh, S.-I., K. Itoh e S. Toda. "Statistical theory of L H transition in tokamaks*". Plasma Physics and Controlled Fusion 45, n.º 5 (25 de abril de 2003): 823–40. http://dx.doi.org/10.1088/0741-3335/45/5/322.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Rogers, B. N., J. F. Drake e A. Zeiler. "Tokamak edge turbulence and the L-H transition". Czechoslovak Journal of Physics 48, S2 (fevereiro de 1998): 50. http://dx.doi.org/10.1007/s10582-998-0020-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Tavallaei, Narguess, Mohammad Ramezanpour e Behrooz Olfatian Gillan. "Structural transition between $L^{p}(G)$ and $L^{p}(G/H)$". Banach Journal of Mathematical Analysis 9, n.º 3 (2015): 194–205. http://dx.doi.org/10.15352/bjma/09-3-14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Moyer, R. A., T. L. Rhodes, C. L. Rettig, E. J. Doyle, K. H. Burrell, J. Cuthbertson, R. J. Groebner et al. "Study of the phase transition dynamics of the L to H transition". Plasma Physics and Controlled Fusion 41, n.º 2 (1 de janeiro de 1999): 243–49. http://dx.doi.org/10.1088/0741-3335/41/2/007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hughes, J. W., A. E. Hubbard, D. A. Mossessian, B. LaBombard, T. M. Biewer, R. S. Granetz, M. Greenwald et al. "H-Mode Pedestal and L-H Transition Studies on Alcator C-Mod". Fusion Science and Technology 51, n.º 3 (abril de 2007): 317–41. http://dx.doi.org/10.13182/fst07-a1425.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Miki, K., P. H. Diamond, Ö. D. Gürcan, G. R. Tynan, T. Estrada, L. Schmitz e G. S. Xu. "Spatio-temporal evolution of the L → I → H transition". Physics of Plasmas 19, n.º 9 (setembro de 2012): 092306. http://dx.doi.org/10.1063/1.4753931.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Stoltzfus-Dueck, T. "Parallel electron force balance and the L-H transition". Physics of Plasmas 23, n.º 5 (maio de 2016): 054505. http://dx.doi.org/10.1063/1.4951015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Carlstrom, T. N., K. H. Burrell, R. J. Groebner, A. W. Leonard, T. H. Osborne e D. M. Thomas. "Comparison of L-H transition measurements with physics models". Nuclear Fusion 39, n.º 11Y (novembro de 1999): 1941–47. http://dx.doi.org/10.1088/0029-5515/39/11y/338.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Bourdelle, C., C. F. Maggi, L. Chôné, P. Beyer, J. Citrin, N. Fedorczak, X. Garbet et al. "L to H mode transition: on the role ofZeff". Nuclear Fusion 54, n.º 2 (21 de janeiro de 2014): 022001. http://dx.doi.org/10.1088/0029-5515/54/2/022001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Miki, K., P. H. Diamond, L. Schmitz, D. C. McDonald, T. Estrada, Ö. D. Gürcan e G. R. Tynan. "Spatio-temporal evolution of the H → L back transition". Physics of Plasmas 20, n.º 6 (junho de 2013): 062304. http://dx.doi.org/10.1063/1.4812555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Janeschitz, G., G. W. Pacher, Yu Igitkhanov, H. D. Pacher, S. D. Pinches, O. Pogutse e M. Sugihara. "L–H transition in tokamak plasmas: 1.5-D simulations". Journal of Nuclear Materials 266-269 (março de 1999): 843–49. http://dx.doi.org/10.1016/s0022-3115(98)00615-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Bourdelle, C. "Staged approach towards physics-based L-H transition models". Nuclear Fusion 60, n.º 10 (8 de setembro de 2020): 102002. http://dx.doi.org/10.1088/1741-4326/ab9e15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Fukuyama, A., Y. Fuji, S.-I. Itoh, M. Yagi e K. Itoh. "Transport modelling of L - H transition and barrier formation". Plasma Physics and Controlled Fusion 38, n.º 8 (1 de agosto de 1996): 1319–22. http://dx.doi.org/10.1088/0741-3335/38/8/029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Toda, S., S.-I. Itoh, M. Yagi, A. Fukuyama e K. Itoh. "Double hysteresis in L/H transition and compound dithers". Plasma Physics and Controlled Fusion 38, n.º 8 (1 de agosto de 1996): 1337–41. http://dx.doi.org/10.1088/0741-3335/38/8/033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Connor, J. W., e H. R. Wilson. "A review of theories of the L-H transition". Plasma Physics and Controlled Fusion 42, n.º 1 (23 de dezembro de 1999): R1—R74. http://dx.doi.org/10.1088/0741-3335/42/1/201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Itoh, Sanae-Inoue, e Kimitaka Itoh. "Change of Transport at L- and H-Mode Transition". Journal of the Physical Society of Japan 59, n.º 11 (15 de novembro de 1990): 3815–18. http://dx.doi.org/10.1143/jpsj.59.3815.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Hirsch, M. "Overview of L-H Transition Experiments in Helical Devices". Contributions to Plasma Physics 50, n.º 6-7 (23 de julho de 2010): 487–92. http://dx.doi.org/10.1002/ctpp.200900029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Kim, Eun-Jin, e Abhiram Anand Thiruthummal. "Stochastic Dynamics of Fusion Low-to-High Confinement Mode (L-H) Transition: Correlation and Causal Analyses Using Information Geometry". Entropy 26, n.º 1 (22 de dezembro de 2023): 17. http://dx.doi.org/10.3390/e26010017.

Texto completo da fonte
Resumo:
We investigate the stochastic dynamics of the prey–predator model of the Low-to-High confinement mode (L-H) transition in magnetically confined fusion plasmas. By considering stochastic noise in the turbulence and zonal flows as well as constant and time-varying input power Q, we perform multiple stochastic simulations of over a million trajectories using GPU computing. Due to stochastic noise, some trajectories undergo the L-H transition while others do not, leading to a mixture of H-mode and dithering at a given time and/or input power. One of the consequences of this is that H-mode characteristics appear at a smaller input power Q<Qc (where Qc is the critical value for the L-H transition in the deterministic system) as a secondary peak of a probability density function (PDF) while dithering characteristics persists beyond the power threshold for Q>Qc as a second peak. The coexisting H-mode and dithering near Q=Qc leads to a prominent bimodal PDF with a gradual L-H transition rather than a sudden transition at Q=Qc and uncertainty in the input power. Also, a time-dependent input power leads to increased variability (dispersion) in stochastic trajectories and a more prominent bimodal PDF. We provide an interpretation of the results using information geometry to elucidate self-regulation between zonal flows, turbulence, and information causality rate to unravel causal relations involved in the L-H transition.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

WU, Xingquan, Guosheng XU, Baonian WAN, Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN, Ran CHEN, Ning YAN e Linming SHAO. "A new model of the L–H transition and H-mode power threshold". Plasma Science and Technology 20, n.º 9 (6 de julho de 2018): 094003. http://dx.doi.org/10.1088/2058-6272/aabb9e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Liu, Peng, Guosheng Xu, Huiqian Wang, Min Jiang, Liang Wang, Wei Zhang, Shaocheng Liu, Ning Yan e Siye Ding. "Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST". Plasma Science and Technology 15, n.º 7 (julho de 2013): 619–22. http://dx.doi.org/10.1088/1009-0630/15/7/03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Zweben, S. J., A. Diallo, M. Lampert, T. Stoltzfus-Dueck e S. Banerjee. "Edge turbulence velocity preceding the L-H transition in NSTX". Physics of Plasmas 28, n.º 3 (março de 2021): 032304. http://dx.doi.org/10.1063/5.0039153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Solano, E. R., G. Birkenmeier, E. Delabie, C. Silva, J. C. Hillesheim, A. Boboc, I. S. Carvalho et al. "L–H transition threshold studies in helium plasmas at JET". Nuclear Fusion 61, n.º 12 (22 de outubro de 2021): 124001. http://dx.doi.org/10.1088/1741-4326/ac2b76.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Shao, L. M., G. S. Xu, R. Chen, L. Chen, G. Birkenmeier, Y. M. Duan, W. Gao et al. "Small amplitude oscillations before the L-H transition in EAST". Plasma Physics and Controlled Fusion 60, n.º 3 (5 de fevereiro de 2018): 035012. http://dx.doi.org/10.1088/1361-6587/aaa57a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Toi, K., F. Watanabe, S. Ohdachi, S. Morita, X. Gao, K. Narihara, S. Sakakibara et al. "L-H Transition and Edge Transport Barrier Formation on LHD". Fusion Science and Technology 58, n.º 1 (agosto de 2010): 61–69. http://dx.doi.org/10.13182/fst10-a10794.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Strauss, H. R. "Drift stabilization of tearing modes and the L–H transition". Physics of Fluids B: Plasma Physics 4, n.º 4 (abril de 1992): 934–37. http://dx.doi.org/10.1063/1.860109.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Wang, Zhongtian, e G. Le Clair. "A model for the L-H mode transition in Tokamaks". Nuclear Fusion 32, n.º 11 (novembro de 1992): 2036–39. http://dx.doi.org/10.1088/0029-5515/32/11/i16.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Cordey, J. G., D. G. Muir, V. V. Parail, G. Vayakis, S. Ali-Arshad, D. V. Bartlett, D. J. Campbell et al. "Evolution of transport through the L-H transition in JET". Nuclear Fusion 35, n.º 5 (maio de 1995): 505–20. http://dx.doi.org/10.1088/0029-5515/35/5/i02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Fundamenski, W., F. Militello, D. Moulton e D. C. McDonald. "A new model of the L–H transition in tokamaks". Nuclear Fusion 52, n.º 6 (24 de abril de 2012): 062003. http://dx.doi.org/10.1088/0029-5515/52/6/062003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Xu, G. S., H. Q. Wang, M. Xu, B. N. Wan, H. Y. Guo, P. H. Diamond, G. R. Tynan et al. "Dynamics of L–H transition and I-phase in EAST". Nuclear Fusion 54, n.º 10 (16 de setembro de 2014): 103002. http://dx.doi.org/10.1088/0029-5515/54/10/103002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Andrew, Y., N. C. Hawkes, M. G. O'Mullane, R. Sartori, M. N. A. Beurskens, I. Coffey, E. Joffrin et al. "Edge ion parameters at the L–H transition on JET". Plasma Physics and Controlled Fusion 46, n.º 2 (23 de dezembro de 2003): 337–47. http://dx.doi.org/10.1088/0741-3335/46/2/002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gervasini, G., E. Lazzaro e E. Minardi. "Neoclassical transport and poloidal rotation at the L-H transition". Physica Scripta 52, n.º 4 (1 de outubro de 1995): 417–20. http://dx.doi.org/10.1088/0031-8949/52/4/012.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

KUIROUKIDIS, Ap, e G. N. THROUMOULOPOULOS. "Nonlinear translational symmetric equilibria relevant to the L–H transition". Journal of Plasma Physics 79, n.º 3 (12 de novembro de 2012): 257–65. http://dx.doi.org/10.1017/s0022377812000918.

Texto completo da fonte
Resumo:
AbstractNonlinear z-independent solutions to a generalized Grad–Shafranov equation (GSE) with up to quartic flux terms in the free functions and incompressible plasma flow non-parallel to the magnetic field are constructed quasi-analytically. Through an ansatz, the GSE is transformed to a set of three ordinary differential equations and a constraint for three functions of the coordinate x, in Cartesian coordinates (x,y), which then are solved numerically. Equilibrium configurations for certain values of the integration constants are displayed. Examination of their characteristics in connection with the impact of nonlinearity and sheared flow indicates that these equilibria are consistent with the L–H transition phenomenology. For flows parallel to the magnetic field, one equilibrium corresponding to the H state is potentially stable in the sense that a sufficient condition for linear stability is satisfied in an appreciable part of the plasma while another solution corresponding to the L state does not satisfy the condition. The results indicate that the sheared flow in conjunction with the equilibrium nonlinearity plays a stabilizing role.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Moyer, R. A., R. D. Lehmer, T. E. Evans, R. W. Conn e L. Schmitz. "Nonlinear analysis of turbulence across the L to H transition". Plasma Physics and Controlled Fusion 38, n.º 8 (1 de agosto de 1996): 1273–78. http://dx.doi.org/10.1088/0741-3335/38/8/021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Scott, B. "Warm-ion drift Alfvén turbulence and the L-H transition". Plasma Physics and Controlled Fusion 40, n.º 5 (1 de maio de 1998): 823–26. http://dx.doi.org/10.1088/0741-3335/40/5/050.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Kiviniemi, T. P., J. A. Heikkinen, A. G. Peeters, T. Kurki-Suonio e S. K. Sipilä. "Critical assessment of ion loss mechanisms for L-H transition". Plasma Physics and Controlled Fusion 42, n.º 5A (1 de maio de 2000): A185—A190. http://dx.doi.org/10.1088/0741-3335/42/5a/320.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Askinazi, L. G., A. A. Belokurov, V. V. Bulanin, A. D. Gurchenko, E. Z. Gusakov, T. P. Kiviniemi, S. V. Lebedev et al. "Physics of GAM-initiated L–H transition in a tokamak". Plasma Physics and Controlled Fusion 59, n.º 1 (2 de novembro de 2016): 014037. http://dx.doi.org/10.1088/0741-3335/59/1/014037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

González, S., J. Vega, A. Murari, A. Pereira, S. Dormido-Canto e J. M. Ramírez. "H/L transition time estimation in JET using conformal predictors". Fusion Engineering and Design 87, n.º 12 (dezembro de 2012): 2084–86. http://dx.doi.org/10.1016/j.fusengdes.2012.02.126.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia