Artigos de revistas sobre o tema "Transhumeral prosthesis control"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 46 melhores artigos de revistas para estudos sobre o assunto "Transhumeral prosthesis control".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Tereshenko, Vlad, Riccardo Giorgino, Kyle R. Eberlin, Ian L. Valerio, Jason M. Souza, Mario Alessandri-Bonetti, Giuseppe M. Peretti e Oskar C. Aszmann. "Emerging Value of Osseointegration for Intuitive Prosthetic Control after Transhumeral Amputations: A Systematic Review". Plastic and Reconstructive Surgery - Global Open 12, n.º 5 (maio de 2024): e5850. http://dx.doi.org/10.1097/gox.0000000000005850.
Texto completo da fontede Backer-Bes, Femke, Maaike Lange, Michael Brouwers e Iris van Wijk. "De Hoogstraat Xperience Prosthesis Transhumeral: An Innovative Test Prosthesis". JPO Journal of Prosthetics and Orthotics 36, n.º 3 (julho de 2024): 193–97. http://dx.doi.org/10.1097/jpo.0000000000000510.
Texto completo da fonteSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq, Muhammad Faizan Shah, Shaheer Muhammad, Razaullah Khan e Mohamed Badran. "fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees". Sensors 22, n.º 3 (18 de janeiro de 2022): 726. http://dx.doi.org/10.3390/s22030726.
Texto completo da fonteMolina Arias, Ludwin, Marek Iwaniec, Paulina Pirowska, Magdalena Smoleń e Piotr Augustyniak. "Head and Voice-Controlled Human-Machine Interface System for Transhumeral Prosthesis". Electronics 12, n.º 23 (24 de novembro de 2023): 4770. http://dx.doi.org/10.3390/electronics12234770.
Texto completo da fonteAlshammary, Nasser A., Daniel A. Bennett e Michael Goldfarb. "Synergistic Elbow Control for a Myoelectric Transhumeral Prosthesis". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, n.º 2 (fevereiro de 2018): 468–76. http://dx.doi.org/10.1109/tnsre.2017.2781719.
Texto completo da fonteAhmed, Muhammad Hannan, Jiazheng Chai, Shingo Shimoda e Mitsuhiro Hayashibe. "Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion". Sensors 23, n.º 9 (22 de abril de 2023): 4188. http://dx.doi.org/10.3390/s23094188.
Texto completo da fonteOʼShaughnessy, Kristina D., Gregory A. Dumanian, Robert D. Lipschutz, Laura A. Miller, Kathy Stubblefield e Todd A. Kuiken. "Targeted Reinnervation to Improve Prosthesis Control in Transhumeral Amputees". Journal of Bone & Joint Surgery 90, n.º 2 (fevereiro de 2008): 393–400. http://dx.doi.org/10.2106/jbjs.g.00268.
Texto completo da fonteNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon e Guanglin Li. "A Self-Learning and Adaptive Control Scheme for Phantom Prosthesis Control Using Combined Neuromuscular and Brain-Wave Bio-Signals". Engineering Proceedings 2, n.º 1 (14 de novembro de 2020): 59. http://dx.doi.org/10.3390/ecsa-7-08169.
Texto completo da fonteNsugbe, Ejay, Carol Phillips, Mike Fraser e Jess McIntosh. "Gesture recognition for transhumeral prosthesis control using EMG and NIR". IET Cyber-Systems and Robotics 2, n.º 3 (1 de setembro de 2020): 122–31. http://dx.doi.org/10.1049/iet-csr.2020.0008.
Texto completo da fonteHebert, Jacqueline S., K. Ming Chan e Michael R. Dawson. "Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases". Prosthetics and Orthotics International 40, n.º 3 (março de 2016): 303–10. http://dx.doi.org/10.1177/0309364616633919.
Texto completo da fonteCifuentes-Cuadros, Alonso A., Enzo Romero, Sebastian Caballa, Daniela Vega-Centeno e Dante A. Elias. "The LIBRA NeuroLimb: Hybrid Real-Time Control and Mechatronic Design for Affordable Prosthetics in Developing Regions". Sensors 24, n.º 1 (22 de dezembro de 2023): 70. http://dx.doi.org/10.3390/s24010070.
Texto completo da fonteFite, Kevin B., Thomas J. Withrow, Xiangrong Shen, Keith W. Wait, Jason E. Mitchell e Michael Goldfarb. "A Gas-Actuated Anthropomorphic Prosthesis for Transhumeral Amputees". IEEE Transactions on Robotics 24, n.º 1 (fevereiro de 2008): 159–69. http://dx.doi.org/10.1109/tro.2007.914845.
Texto completo da fonteLenzi, Tommaso, James Lipsey e Jonathon W. Sensinger. "The RIC Arm—A Small Anthropomorphic Transhumeral Prosthesis". IEEE/ASME Transactions on Mechatronics 21, n.º 6 (dezembro de 2016): 2660–71. http://dx.doi.org/10.1109/tmech.2016.2596104.
Texto completo da fonteSimon, Ann M., Kristi L. Turner, Laura A. Miller, Gregory A. Dumanian, Benjamin K. Potter, Mark D. Beachler, Levi J. Hargrove e Todd A. Kuiken. "Myoelectric prosthesis hand grasp control following targeted muscle reinnervation in individuals with transradial amputation". PLOS ONE 18, n.º 1 (26 de janeiro de 2023): e0280210. http://dx.doi.org/10.1371/journal.pone.0280210.
Texto completo da fonteMaas, Bart, Zack A. Wright, Blair A. Lock, Corry K. van der Sluis e Raoul M. Bongers. "Using Serious Games to Measure Upper-Limb Myoelectric Pattern Recognition Prosthesis Control Performance in an At-Home Environment". JPO Journal of Prosthetics and Orthotics 36, n.º 3 (3 de abril de 2024): 153–60. http://dx.doi.org/10.1097/jpo.0000000000000503.
Texto completo da fonteGu, Yikun, Dapeng Yang, Luke Osborn, Daniel Candrea, Hong Liu e Nitish Thakor. "An adaptive socket with auto-adjusting air bladders for interfacing transhumeral prosthesis: A pilot study". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 233, n.º 8 (5 de junho de 2019): 812–22. http://dx.doi.org/10.1177/0954411919853960.
Texto completo da fonteSegura, Diego, Enzo Romero, Victoria E. Abarca e Dante A. Elias. "Upper Limb Prostheses by the Level of Amputation: A Systematic Review". Prosthesis 6, n.º 2 (19 de março de 2024): 277–300. http://dx.doi.org/10.3390/prosthesis6020022.
Texto completo da fonteWang, Bingbin, Levi Hargrove, Xinqi Bao e Ernest N. Kamavuako. "Surface EMG Statistical and Performance Analysis of Targeted-Muscle-Reinnervated (TMR) Transhumeral Prosthesis Users in Home and Laboratory Settings". Sensors 22, n.º 24 (14 de dezembro de 2022): 9849. http://dx.doi.org/10.3390/s22249849.
Texto completo da fonteAhmed, Muhammad Hannan, Kyo Kutsuzawa e Mitsuhiro Hayashibe. "Transhumeral Arm Reaching Motion Prediction through Deep Reinforcement Learning-Based Synthetic Motion Cloning". Biomimetics 8, n.º 4 (15 de agosto de 2023): 367. http://dx.doi.org/10.3390/biomimetics8040367.
Texto completo da fonteNsugbe, Ejay, Oluwarotimi Williams Samuel, Mojisola Grace Asogbon e Guanglin Li. "Phantom motion intent decoding for transhumeral prosthesis control with fused neuromuscular and brain wave signals". IET Cyber-Systems and Robotics 3, n.º 1 (março de 2021): 77–88. http://dx.doi.org/10.1049/csy2.12009.
Texto completo da fonteSchlüter, Christoph, Washington Caraguay e Doris Cáliz Ramos. "Development of a low-cost EMG-data acquisition armband to control an above-elbow prosthesis". Journal of Physics: Conference Series 2232, n.º 1 (1 de maio de 2022): 012019. http://dx.doi.org/10.1088/1742-6596/2232/1/012019.
Texto completo da fonteSchofield, Jonathon S., Katherine R. Schoepp, Michael Stobbe, Paul D. Marasco e Jacqueline S. Hebert. "Fabrication and application of an adjustable myoelectric transhumeral prosthetic socket". Prosthetics and Orthotics International 43, n.º 5 (29 de março de 2019): 564–67. http://dx.doi.org/10.1177/0309364619836353.
Texto completo da fonteLi, Sujiao, Wanjing Sun, Wei Li e Hongliu Yu. "Enhancing Robustness of Surface Electromyography Pattern Recognition at Different Arm Positions for Transhumeral Amputees Using Deep Adversarial Inception Domain Adaptation". Applied Sciences 14, n.º 8 (18 de abril de 2024): 3417. http://dx.doi.org/10.3390/app14083417.
Texto completo da fontePulliam, Christopher L., Joris M. Lambrecht e Robert F. Kirsch. "Electromyogram-based neural network control of transhumeral prostheses". Journal of Rehabilitation Research and Development 48, n.º 6 (2011): 739. http://dx.doi.org/10.1682/jrrd.2010.12.0237.
Texto completo da fonteHallworth, Ben W., James A. Austin, Heather E. Williams, Mayank Rehani, Ahmed W. Shehata e Jacqueline S. Hebert. "A Modular Adjustable Transhumeral Prosthetic Socket for Evaluating Myoelectric Control". IEEE Journal of Translational Engineering in Health and Medicine 8 (2020): 1–10. http://dx.doi.org/10.1109/jtehm.2020.3006416.
Texto completo da fonteMerad, M., E. de Montalivet, M. Legrand, E. Mastinu, M. Ortiz-Catalan, A. Touillet, N. Martinet, J. Paysant, A. Roby-Brami e N. Jarrasse. "Assessment of an Automatic Prosthetic Elbow Control Strategy Using Residual Limb Motion for Transhumeral Amputated Individuals With Socket or Osseointegrated Prostheses". IEEE Transactions on Medical Robotics and Bionics 2, n.º 1 (fevereiro de 2020): 38–49. http://dx.doi.org/10.1109/tmrb.2020.2970065.
Texto completo da fonteKALIKI, RAHUL R., RAHMAN DAVOODI e GERALD E. LOEB. "PREDICTION OF ELBOW TRAJECTORY FROM SHOULDER ANGLES USING NEURAL NETWORKS". International Journal of Computational Intelligence and Applications 07, n.º 03 (setembro de 2008): 333–49. http://dx.doi.org/10.1142/s1469026808002296.
Texto completo da fonteJarrasse, N., D. Müller, E. De Montalivet, F. Richer, M. Merad, A. Touillet, N. Martinet e J. Paysant. "A simple movement based control approach to ease the control of a myoelectric elbow prosthetics in transhumeral amputees". Annals of Physical and Rehabilitation Medicine 61 (julho de 2018): e471. http://dx.doi.org/10.1016/j.rehab.2018.05.1100.
Texto completo da fonteCooke, Deirdre M., Matthew Ames e Saul Geffen. "Life without limbs: Technology to the rescue". Prosthetics and Orthotics International 40, n.º 4 (27 de abril de 2015): 517–21. http://dx.doi.org/10.1177/0309364615579316.
Texto completo da fonteLontis, Eugen Romulus, Ken Yoshida e Winnie Jensen. "Non-Invasive Sensory Input Results in Changes in Non-Painful and Painful Sensations in Two Upper-Limb Amputees". Prosthesis 6, n.º 1 (19 de dezembro de 2023): 1–23. http://dx.doi.org/10.3390/prosthesis6010001.
Texto completo da fonteWATANABE, Takahiro, Kengo OHNISHI e Keiji IMADO. "B211 Fundamental experiment for mechanics-based adjustment of the Bowden cable control system for body-powered transhumeral prostheses". Proceedings of the JSME Conference on Frontiers in Bioengineering 2007.18 (2007): 133–34. http://dx.doi.org/10.1299/jsmebiofro.2007.18.133.
Texto completo da fonteZbinden, Jan, Paolo Sassu, Enzo Mastinu, Eric J. Earley, Maria Munoz-Novoa, Rickard Brånemark e Max Ortiz-Catalan. "Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes". Science Translational Medicine 15, n.º 704 (12 de julho de 2023). http://dx.doi.org/10.1126/scitranslmed.abq3665.
Texto completo da fonteEarley, Eric J., Anton Berneving, Jan Zbinden e Max Ortiz-Catalan. "Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition". Frontiers in Human Neuroscience 16 (19 de outubro de 2022). http://dx.doi.org/10.3389/fnhum.2022.1030207.
Texto completo da fonteRazak, N. A. Abd, H. Gholizadeh, N. Hasnan, N. A. Abu Osman, S. S. Mohd Fadzil e N. A. Hashim. "An anthropomorphic transhumeral prosthesis socket developed based on an oscillometric pump and controlled by force-sensitive resistor pressure signals". Biomedical Engineering / Biomedizinische Technik 62, n.º 1 (1 de janeiro de 2017). http://dx.doi.org/10.1515/bmt-2015-0106.
Texto completo da fonte"Towards Control of a Transhumeral Prosthesis with EEG Signals". Bioengineering 5, n.º 2 (22 de março de 2018): 26. http://dx.doi.org/10.3390/bioengineering5020026.
Texto completo da fonteToedtheide, Alexander, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Jensen e Sami Haddadin. "A transhumeral prosthesis with an artificial neuromuscular system: Sim2real-guided design, modeling, and control". International Journal of Robotics Research, 20 de fevereiro de 2024. http://dx.doi.org/10.1177/02783649231218719.
Texto completo da fonteSattar, Neelum Yousaf, Zareena Kausar, Syed Ali Usama, Umer Farooq e Umar Shahbaz Khan. "EMG Based Control of Transhumeral Prosthesis Using Machine Learning Algorithms". International Journal of Control, Automation and Systems, 27 de julho de 2021. http://dx.doi.org/10.1007/s12555-019-1058-5.
Texto completo da fonteSaid, Hakim, Todd Kuiken, Robert Lipzchutz, Laura Miller e Gregory Dumanian. "Nerve Transfers in Transhumeral Amputation: Creating Myoneurosomes for Improved Myoelectric Prosthesis Control". Journal of Reconstructive Microsurgery 21, n.º 07 (13 de outubro de 2005). http://dx.doi.org/10.1055/s-2005-918994.
Texto completo da fonteMastinu, Enzo, Leonard F. Engels, Francesco Clemente, Mariama Dione, Paolo Sassu, Oskar Aszmann, Rickard Brånemark et al. "Neural feedback strategies to improve grasping coordination in neuromusculoskeletal prostheses". Scientific Reports 10, n.º 1 (16 de julho de 2020). http://dx.doi.org/10.1038/s41598-020-67985-5.
Texto completo da fonteSegas, Effie, Sébastien Mick, Vincent Leconte, Océane Dubois, Rémi Klotz, Daniel Cattaert e Aymar de Rugy. "Intuitive movement-based prosthesis control enables arm amputees to reach naturally in virtual reality". eLife 12 (17 de outubro de 2023). http://dx.doi.org/10.7554/elife.87317.3.
Texto completo da fonteJarrassé, Nathanaël, Etienne de Montalivet, Florian Richer, Caroline Nicol, Amélie Touillet, Noël Martinet, Jean Paysant e Jozina B. de Graaf. "Phantom-Mobility-Based Prosthesis Control in Transhumeral Amputees Without Surgical Reinnervation: A Preliminary Study". Frontiers in Bioengineering and Biotechnology 6 (29 de novembro de 2018). http://dx.doi.org/10.3389/fbioe.2018.00164.
Texto completo da fonteJasti, Harshitha. "Utilizing EEG Signal Data and Motion to Aid in Prosthetic Hand Motion". Journal of Student Research 12, n.º 4 (30 de novembro de 2023). http://dx.doi.org/10.47611/jsrhs.v12i4.5883.
Texto completo da fonteToedtheide, Alexander, Edmundo Pozo Fortunić, Johannes Kühn, Elisabeth Rose Jensen e Sami Haddadin. "A Wearable Force-Sensitive and Body-Aware Exoprosthesis for a Transhumeral Prosthesis Socket". IEEE Transactions on Robotics, 2023, 1–21. http://dx.doi.org/10.1109/tro.2023.3251947.
Texto completo da fonteChateaux, Manon, Olivier Rossel, Fabien Vérité, Caroline Nicol, Amélie Touillet, Jean Paysant, Nathanaël Jarrassé e Jozina B. De Graaf. "New insights into muscle activity associated with phantom hand movements in transhumeral amputees". Frontiers in Human Neuroscience 18 (30 de agosto de 2024). http://dx.doi.org/10.3389/fnhum.2024.1443833.
Texto completo da fonteChi, Albert. "Improved Control of a Virtual Prosthesis Using a Pattern Recognition Algorithm and an Interactive Training Environment in a Transhumeral Amputee Demonstrating Local Reinnervation". Biomedical Journal of Scientific & Technical Research 18, n.º 3 (28 de maio de 2019). http://dx.doi.org/10.26717/bjstr.2019.18.003143.
Texto completo da fonteBrauckmann, Vesta, Jorge Mayor, Luisa Ernst e Jennifer Ernst. "How a robotic visualization system can facilitate targeted muscle reinnervation". Journal of Reconstructive Microsurgery Open, 21 de julho de 2023. http://dx.doi.org/10.1055/a-2134-8633.
Texto completo da fonte