Literatura científica selecionada sobre o tema "Transformation de Fourier-Mukai"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Transformation de Fourier-Mukai".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Transformation de Fourier-Mukai"

1

Biswas, Indranil, e Andreas Krug. "Fourier–Mukai transformation and logarithmic Higgs bundles on punctual Hilbert schemes". Journal of Geometry and Physics 150 (abril de 2020): 103597. http://dx.doi.org/10.1016/j.geomphys.2020.103597.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Minamide, Hiroki, Shintarou Yanagida e Kōta Yoshioka. "The wall-crossing behavior for Bridgeland’s stability conditions on abelian and K3 surfaces". Journal für die reine und angewandte Mathematik (Crelles Journal) 2018, n.º 735 (1 de fevereiro de 2018): 1–107. http://dx.doi.org/10.1515/crelle-2015-0010.

Texto completo da fonte
Resumo:
AbstractThe wall-crossing behavior for Bridgeland’s stability conditions on the derived category of coherent sheaves on K3 or abelian surface is studied. We introduce two types of walls. One is called the wall for categories, where thet-structure encoded by stability condition is changed. The other is the wall for stabilities, where stable objects with prescribed Mukai vector may get destabilized. Some fundamental properties of walls and chambers are studied, including the behavior under Fourier–Mukai transforms. A wall-crossing formula of the counting of stable objects will also be derived. As an application, we will explain previous results on the birational maps induced by Fourier–Mukai transforms on abelian surfaces. These transformations turns out to coincide with crossing walls of certain property.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kawatani, Kotaro. "Fourier–Mukai transformations on K3 surfaces with ρ=1 and Atkin–Lehner involutions". Journal of Algebra 417 (novembro de 2014): 103–15. http://dx.doi.org/10.1016/j.jalgebra.2014.06.022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Biswas, Indranil, Umesh V. Dubey, Manish Kumar e A. J. Parameswaran. "Quot schemes and Fourier-Mukai transformation". Complex Manifolds 10, n.º 1 (1 de janeiro de 2023). http://dx.doi.org/10.1515/coma-2023-0152.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Arvanitakis, Alex S., Christopher Blair e Dan Thompson. "A QP perspective on topology change in Poisson-Lie T-duality". Journal of Physics A: Mathematical and Theoretical, 12 de maio de 2023. http://dx.doi.org/10.1088/1751-8121/acd503.

Texto completo da fonte
Resumo:
Abstract We describe topological T-duality and Poisson-Lie T-duality in terms of QP (differential graded symplectic) manifolds and their canonical transformations. Duality is mediated by a QP-manifold on doubled non-abelian ``correspondence'' space, from which we can perform mutually dual symplectic reductions, where certain canonical transformations play a vital role. In the presence of spectator coordinates, we show how the introduction of a bibundle structure on correspondence space realises changes in the global fibration structure under Poisson-Lie duality. Our approach can be directly translated to the worldsheet to derive dual string current algebras. Finally, the canonical transformations appearing in our reduction procedure naturally suggest a Fourier-Mukai integral transformation for Poisson-Lie T-duality.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hausel, Tamás, e Nigel Hitchin. "Very stable Higgs bundles, equivariant multiplicity and mirror symmetry". Inventiones mathematicae, 21 de janeiro de 2022. http://dx.doi.org/10.1007/s00222-021-01093-7.

Texto completo da fonte
Resumo:
AbstractWe define and study the existence of very stable Higgs bundles on Riemann surfaces, how it implies a precise formula for the multiplicity of the very stable components of the global nilpotent cone and its relationship to mirror symmetry. The main ingredients are the Bialynicki-Birula theory of $${\mathbb {C}}^*$$ C ∗ -actions on semiprojective varieties, $${\mathbb {C}}^*$$ C ∗ characters of indices of $${\mathbb {C}}^*$$ C ∗ -equivariant coherent sheaves, Hecke transformation for Higgs bundles, relative Fourier–Mukai transform along the Hitchin fibration, hyperholomorphic structures on universal bundles and cominuscule Higgs bundles.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hicks, Jeffrey. "Tropical Lagrangians in toric del-Pezzo surfaces". Selecta Mathematica 27, n.º 1 (6 de janeiro de 2021). http://dx.doi.org/10.1007/s00029-020-00614-1.

Texto completo da fonte
Resumo:
AbstractWe look at how one can construct from the data of a dimer model a Lagrangian submanifold in $$(\mathbb {C}^*)^n$$ ( C ∗ ) n whose valuation projection approximates a tropical hypersurface. Each face of the dimer corresponds to a Lagrangian disk with boundary on our tropical Lagrangian submanifold, forming a Lagrangian mutation seed. Using this we find tropical Lagrangian tori $$L_{T^2}$$ L T 2 in the complement of a smooth anticanonical divisor of a toric del-Pezzo whose wall-crossing transformations match those of monotone SYZ fibers. An example is worked out for the mirror pair $$(\mathbb {CP}^2{\setminus } E, W), {\check{X}}_{9111}$$ ( CP 2 \ E , W ) , X ˇ 9111 . We find a symplectomorphism of $$\mathbb {CP}^2{\setminus } E$$ CP 2 \ E interchanging $$L_{T^2}$$ L T 2 and a SYZ fiber. Evidence is provided that this symplectomorphism is mirror to fiberwise Fourier–Mukai transform on $${\check{X}}_{9111}$$ X ˇ 9111 .
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Demulder, Saskia, e Thomas Raml. "Poisson-Lie T-duality defects and target space fusion". Journal of High Energy Physics 2022, n.º 11 (29 de novembro de 2022). http://dx.doi.org/10.1007/jhep11(2022)165.

Texto completo da fonte
Resumo:
Abstract Topological defects have long been known to encode symmetries and dualities between physical systems. In the context of string theory, defects have been intensively studied at the level of the worldsheet. Although marked by a number of pioneering milestones, the target space picture of defects is much less understood. In this paper, we show, at the level of the target space, that Poisson-Lie T-duality can be encoded as a topological defect. With this result at hand, we can postulate the kernel capturing the Fourier-Mukai transform associated to the action of Poisson-Lie T-duality on the RR-sector. Topological defects have the remarkable property that they can be fused together or, alternatively, with worldsheet boundary conditions. We study how fusion of the proposed generalised T-duality topological defect consistently leads to the known duality transformations for boundary conditions. Finally, taking a step back from generalised T-duality, we tackle the general problem of understanding the effect of fusion at the level of the target space. We propose to use the framework of Dirac geometry and formulate the fusion of topological defects and D-branes in this language.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Transformation de Fourier-Mukai"

1

Liu, Haohao. "Integral points, monodromy, generic vanishing and Fourier-Mukai transform". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS112.

Texto completo da fonte
Resumo:
Cette thèse est une compilation de plusieurs résultats vaguement liés. Ils concernent la non-densité des points entiers sur les variétés algébriques, la méthode de Lawrence-Venkatesh-Sawin et la géométrie analytique complexe. Dans Chapitre 2, parallèlement au principe alternatif d'Ullmo et Yafaev sur les points rationnels des variétés de Shimura, nous montrons que la conjecture de Lang sur les points intégraux des variétés de Shimura est soit vraie, soit très fausse. Le Chapitre 3 est un complément à la comparaison des monodromies dans les travaux respectifs de Lawrence-Sawin et Krämer-Maculan. Nous prouvons qu'il existe de nombreux caractères, tels que le groupe de monodromie correspondant est normal dans le groupe tannakien générique. Le Chapitre 4 contient un théorème de l'annulation générique pour les variétés dans la classe Fujiki C. En particulier, cela s'applique aux variétés algébriques complexes propres lisses ainsi qu'aux variétés kählériennes compactes. Dans Chapitre 5, nous prouvons un analogue de la formule d'inversion de Fourier pour la transformation de Fourier-Mukai sur des tores complexes. Il corrige une inexactitude dans la littérature. En application, nous retrouvons la classification de Matsushima-Morimoto des fibrés vectoriels homogènes sur des tores complexes. Le Chapitre 6 est une transformation de Fourier-Mukai analytique sur les D-modules, dont la version algébrique a été étudiée par Laumon et Rothstein. Nous étendons leur résultat de dualité des variétés abéliennes aux tores complexes. En application, nous réprouvons le théorème de Morimoto, selon lequel sur un tore complexe, tout fibré vectoriel admettant une connexion admet une connexion intégrable
This dissertation is a compilation of several loosely related results.They concern the nondensity of integral points on algebraic varieties, the Lawrence-Venkatesh-Sawin's method and complex analytic geometry.In Chapter 2, parallel to Ullmo and Yafaev's alternative principle on rational points of Shimura varieties, we show that Lang's conjecture about integral points on Shimura varieties is either true or very false.Chapter 3 is a complement to the monodromy comparison step in Lawrence-Sawin's and Krämer-Maculan's respective work. We prove that there are many characters, such that the corresponding monodromy group is normal in the generic Tannakian group.Chapter 4 contains a generic vanishing theorem for Fujiki class C. In particular, it applies to smooth proper complex algebraic varieties as well as compact Kähler manifolds. In Chapter 5, we prove an analog of the Fourier inversion formula for the Fourier-Mukai transform on complex tori. It corrects a misstatement in the literature. As an application, we recover Matsushima-Morimoto's classification of homogeneous vector bundles on complex tori.Chapter 6 is a lift of the analytic Fourier-Mukai to D-modules, whose algebraic version is studied by Laumon and Rothstein. We extend their duality result from abelian varieties to complex tori. As an application, we reprove Morimoto's theorem that on a complex torus, every vector bundle admitting a connection admits a flat connection
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Toledo, Castro Angel Israel. "Espaces de produits tensoriels sur la catégorie dérivée d'une variété". Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4001.

Texto completo da fonte
Resumo:
Dans cette thèse on est intéressé à l'étude des catégories dérivées d'une variété lisse et projective sur un corps. En particulier on étude l'information géométrique et catégorielle d'une variété et sa catégorie dérivée pour mieux comprendre l'ensemble de structures monoïdales qu'on peut munir à la catégorie dérivée. La motivation de ce projet s'inspire en deux théorèmes. L'un c'est le théorème de reconstruction de Bondal-Orlov qu'établisse que la catégorie dérivée d'une variété avec diviseur (anti-)canonique ample est assez pour récupérer la variété. D'un autre côté, on a la construction du spectrum de Balmer qu'utilise le produit tensoriel dérivé pour récupérer un nombre plus grand de variétés à partir de sa catégorie dérivée de complexes parfaits comme une catégorie monoïdale. L'existence de différentes structures monoïdales est par contre garanti par l'existence des variétés avec des catégories dérivées équivalentes. On a pour but alors comprendre quel est le rôle de les produits tensoriels dans l'existence (ou non existence) de ces types de variétés. Les résultats principaux qu'on a obtenu sont : Si X est une variété avec diviseur (anti-)canonique ample, et ⊠ est une structure de catégorie tensoriel triangulée sur Db(X) tel que le spectrum de Balmer Spc(Db(X),⊠) est isomorphe à X, alors pour tous F,G∈Db(X), on a F⊠G≃F⊗G où ⊗ c'est le produit tensoriel dérivée. On utilise le théorème de Morita pour les dg-catégories de Toën pour donner une caractérisation d'une structure tronquée en termes de bimodules sur un produit des dg-algèbres, qu'induisent une structure de catégorie tensoriel triangulée sur la catégorie homotopique. On a étudié la théorie de déformation de ces structures dans le sens de la cohomologie de Davydov-Yetter. On montre qu'il existe une correspondance entre un des groupes de cohomologie et l'ensemble de associateurs dont le produit tensoriel peut s'en déformer. On utilise des techniques à un niveau des catégories triangulées et aussi des perspectives de la théorie des catégories supérieurs comme des dg-catégories et quasi-catégories
In this thesis we are interested in studying derived categories of smooth projective varieties over a field. Concretely, we study the geometric and categorical information from the variety and from it's derived category in order to understand the set of monoidal structures one can equip the derived category with. The motivation for this project comes from two theorems. The first is Bondal-Orlov reconstruction theorem which says that the derived category of a variety with ample (anti-)canonical bundle is enough to recover the variety. On the other hand, we have Balmer's spectrum construction which uses the derived tensor product to recover a much larger number of varieties from it's derived category of perfect complexes as a monoidal category. The existence of different monoidal structure is in turn guaranteed by the existence of varieties with equivalent derived categories. We have as a goal then to understand the role of the tensor products in the existence (or not ) of these sort of varieties. The main results we obtained are If X is a variety with ample (anti-)canonical bundle, and ⊠ is a tensor triangulated category on Db(X) such that the Balmer spectrum Spc(Db(X),⊠) is isomorphic to X, then for any F,G∈Db(X) we have F⊠G≃F⊗G where ⊗ is the derived tensor product. We have used Toën's Morita theorem for dg-categories to give a characterization of a truncated structure in terms of bimodules over a product of dg-algebras, which induces a tensor triangulated category at the level of homotopy categories. We studied the deformation theory of these structures in the sense of Davydov-Yetter cohomology, concretely showing that there is a relationship between one of these cohomology groups and the set of associators that the tensor product can deform into. We utilise techniques at the level of triangulated categories and also perspectives from higher category theory like dg-categories and quasi-categories
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Transformation de Fourier-Mukai"

1

Huybrechts, Daniel. Fourier-Mukai Transforms in Algebraic Geometry. Ebsco Publishing, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Huybrechts, Daniel. Fourier-Mukai Transforms in Algebraic Geometry. Oxford University Press, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Huybrechts, Daniel. Fourier-Mukai Transforms in Algebraic Geometry (Oxford Mathematical Monographs). Oxford University Press, USA, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nahm and Fourier--Mukai Transforms in Geometry and Mathematical Physics (Progress in Mathematical Physics). Birkhäuser Boston, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Transformation de Fourier-Mukai"

1

Leung, Naichung Conan, e Shing‐Tung Yau. "Mirror Symmetry of Fourier—Mukai Transformation for Elliptic Calabi—Yau Manifolds". In The Many Facets of Geometry, 299–323. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia