Artigos de revistas sobre o tema "Transcriptomic data analysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Transcriptomic data analysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gorbunova, Vera. "COMPARATIVE TRANSCRIPTOMIC OF LONGEVITY". Innovation in Aging 7, Supplement_1 (1 de dezembro de 2023): 432. http://dx.doi.org/10.1093/geroni/igad104.1423.
Texto completo da fonteDries, Ruben, Jiaji Chen, Natalie del Rossi, Mohammed Muzamil Khan, Adriana Sistig e Guo-Cheng Yuan. "Advances in spatial transcriptomic data analysis". Genome Research 31, n.º 10 (outubro de 2021): 1706–18. http://dx.doi.org/10.1101/gr.275224.121.
Texto completo da fonteNesterenko, Maksim, e Aleksei Miroliubov. "From head to rootlet: comparative transcriptomic analysis of a rhizocephalan barnacle Peltogaster reticulata (Crustacea: Rhizocephala)". F1000Research 11 (27 de maio de 2022): 583. http://dx.doi.org/10.12688/f1000research.110492.1.
Texto completo da fonteNesterenko, Maksim, e Aleksei Miroliubov. "From head to rootlet: comparative transcriptomic analysis of a rhizocephalan barnacle Peltogaster reticulata (Crustacea: Rhizocephala)". F1000Research 11 (9 de janeiro de 2023): 583. http://dx.doi.org/10.12688/f1000research.110492.2.
Texto completo da fonteMacrander, Jason, Jyothirmayi Panda, Daniel Janies, Marymegan Daly e Adam M. Reitzel. "Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data". PeerJ 6 (31 de julho de 2018): e5361. http://dx.doi.org/10.7717/peerj.5361.
Texto completo da fonteOchsner, Scott A., Christopher M. Watkins, Apollo McOwiti, Xueping Xu, Yolanda F. Darlington, Michael D. Dehart, Austin J. Cooney, David L. Steffen, Lauren B. Becnel e Neil J. McKenna. "Transcriptomine, a web resource for nuclear receptor signaling transcriptomes". Physiological Genomics 44, n.º 17 (1 de setembro de 2012): 853–63. http://dx.doi.org/10.1152/physiolgenomics.00033.2012.
Texto completo da fonteRiquelme-Perez, Miriam, Fernando Perez-Sanz, Jean-François Deleuze, Carole Escartin, Eric Bonnet e Solène Brohard. "DEVEA: an interactive shiny application for Differential Expression analysis, data Visualization and Enrichment Analysis of transcriptomics data". F1000Research 11 (24 de março de 2023): 711. http://dx.doi.org/10.12688/f1000research.122949.2.
Texto completo da fonteKriger, Draco, Michael A. Pasquale, Brigitte G. Ampolini e Jonathan R. Chekan. "Mining raw plant transcriptomic data for new cyclopeptide alkaloids". Beilstein Journal of Organic Chemistry 20 (11 de julho de 2024): 1548–59. http://dx.doi.org/10.3762/bjoc.20.138.
Texto completo da fonteParmar, Sourabh. "Transcriptomics Analysis using Galaxy and other Online Servers for Rheumatoid Arthritis". International Journal for Research in Applied Science and Engineering Technology 9, n.º VII (10 de julho de 2021): 459–66. http://dx.doi.org/10.22214/ijraset.2021.36331.
Texto completo da fonteLi, Youcheng, Leann Lac, Qian Liu e Pingzhao Hu. "ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning". PLOS Computational Biology 20, n.º 6 (27 de junho de 2024): e1012254. http://dx.doi.org/10.1371/journal.pcbi.1012254.
Texto completo da fonteKlingenberg, Heiner, e Peter Meinicke. "How to normalize metatranscriptomic count data for differential expression analysis". PeerJ 5 (17 de outubro de 2017): e3859. http://dx.doi.org/10.7717/peerj.3859.
Texto completo da fonteShields, Denis C., e Aisling M. O'Halloran. "Integrating Genotypic Data with Transcriptomic and Proteomic Data". Comparative and Functional Genomics 3, n.º 1 (2002): 22–27. http://dx.doi.org/10.1002/cfg.135.
Texto completo da fonteBarral-Arca, Ruth, Alberto Gómez-Carballa, Miriam Cebey-López, Xabier Bello, Federico Martinón-Torres e Antonio Salas. "A Meta-Analysis of Multiple Whole Blood Gene Expression Data Unveils a Diagnostic Host-Response Transcript Signature for Respiratory Syncytial Virus". International Journal of Molecular Sciences 21, n.º 5 (6 de março de 2020): 1831. http://dx.doi.org/10.3390/ijms21051831.
Texto completo da fonteLv, Zhuo, Shuaijun Jiang, Shuxin Kong, Xu Zhang, Jiahui Yue, Wanqi Zhao, Long Li e Shuyan Lin. "Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants". Plants 13, n.º 12 (18 de junho de 2024): 1679. http://dx.doi.org/10.3390/plants13121679.
Texto completo da fonteHaider, Saad, e Ranadip Pal. "Integrated Analysis of Transcriptomic and Proteomic Data". Current Genomics 14, n.º 2 (1 de fevereiro de 2013): 91–110. http://dx.doi.org/10.2174/1389202911314020003.
Texto completo da fonteCheon, Seongmin, Sung-Gwon Lee, Hyun-Hee Hong, Hyun-Gwan Lee, Kwang Young Kim e Chungoo Park. "A guide to phylotranscriptomic analysis for phycologists". Algae 36, n.º 4 (15 de dezembro de 2021): 333–40. http://dx.doi.org/10.4490/algae.2021.36.12.7.
Texto completo da fonteQiu, Xin, Qing-Qing Jiang, Wei-Wei Guo, Ning Yu e Shi-ming Yang. "Study on Screening Core Biomarkers of Noise and Drug-Induced Hearing Loss Based on Transcriptomics". Global Medical Genetics 10, n.º 04 (dezembro de 2023): 357–69. http://dx.doi.org/10.1055/s-0043-1777069.
Texto completo da fonteGoddard, Thomas R., Keeley J. Brookes, Riddhi Sharma, Armaghan Moemeni e Anto P. Rajkumar. "Dementia with Lewy Bodies: Genomics, Transcriptomics, and Its Future with Data Science". Cells 13, n.º 3 (25 de janeiro de 2024): 223. http://dx.doi.org/10.3390/cells13030223.
Texto completo da fonteJiang, Peng. "Abstract IA002: Inference of intercellular signaling activities in tumor spatial and single-cell transcriptomics, with applications in identifying cancer immunotherapy targets". Molecular Cancer Therapeutics 22, n.º 12_Supplement (1 de dezembro de 2023): IA002. http://dx.doi.org/10.1158/1535-7163.targ-23-ia002.
Texto completo da fonteAshwin, Helen, Karin Seifert, Sarah Forrester, Najmeeyah Brown, Sandy MacDonald, Sally James, Dimitris Lagos et al. "Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis". Wellcome Open Research 3 (29 de outubro de 2018): 135. http://dx.doi.org/10.12688/wellcomeopenres.14867.1.
Texto completo da fonteAshwin, Helen, Karin Seifert, Sarah Forrester, Najmeeyah Brown, Sandy MacDonald, Sally James, Dimitris Lagos et al. "Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis". Wellcome Open Research 3 (2 de janeiro de 2019): 135. http://dx.doi.org/10.12688/wellcomeopenres.14867.2.
Texto completo da fonteWang, Changli, Lijun Chen, Yaobin Chen, Wenwen Jia, Xunhui Cai, Yufeng Liu, Fenghu Ji et al. "Abnormal global alternative RNA splicing in COVID-19 patients". PLOS Genetics 18, n.º 4 (14 de abril de 2022): e1010137. http://dx.doi.org/10.1371/journal.pgen.1010137.
Texto completo da fonteQian, Zhenwei, Jinglin Qin, Yiwen Lai, Chen Zhang e Xiannian Zhang. "Large-Scale Integration of Single-Cell RNA-Seq Data Reveals Astrocyte Diversity and Transcriptomic Modules across Six Central Nervous System Disorders". Biomolecules 13, n.º 4 (19 de abril de 2023): 692. http://dx.doi.org/10.3390/biom13040692.
Texto completo da fonteZheng, Zhihong, Enguo Chen, Weiguo Lu, Gary Mouradian, Matthew Hodges, Mingyu Liang, Pengyuan Liu e Yan Lu. "Single‐Cell Transcriptomic Analysis". Comprehensive Physiology 10, n.º 2 (abril de 2020): 767–83. https://doi.org/10.1002/j.2040-4603.2020.tb00127.x.
Texto completo da fonteCastro-Martínez, José A., Eva Vargas, Leticia Díaz-Beltrán e Francisco J. Esteban. "Comparative Analysis of Shapley Values Enhances Transcriptomics Insights across Some Common Uterine Pathologies". Genes 15, n.º 6 (1 de junho de 2024): 723. http://dx.doi.org/10.3390/genes15060723.
Texto completo da fonteHynst, Jakub, Karla Plevova, Lenka Radova, Vojtech Bystry, Karol Pal e Sarka Pospisilova. "Bioinformatic pipelines for whole transcriptome sequencing data exploitation in leukemia patients with complex structural variants". PeerJ 7 (12 de junho de 2019): e7071. http://dx.doi.org/10.7717/peerj.7071.
Texto completo da fonteDovrou, Aikaterini, Ekaterini Bei, Stelios Sfakianakis, Kostas Marias, Nickolas Papanikolaou e Michalis Zervakis. "Synergies of Radiomics and Transcriptomics in Lung Cancer Diagnosis: A Pilot Study". Diagnostics 13, n.º 4 (15 de fevereiro de 2023): 738. http://dx.doi.org/10.3390/diagnostics13040738.
Texto completo da fonteOrtiz, Randy, Priyanka Gera, Christopher Rivera e Juan C. Santos. "Pincho: A Modular Approach to High Quality De Novo Transcriptomics". Genes 12, n.º 7 (22 de junho de 2021): 953. http://dx.doi.org/10.3390/genes12070953.
Texto completo da fonteDybska, Emilia, Jan Krzysztof Nowak e Jarosław Walkowiak. "Transcriptomic Context of RUNX3 Expression in Monocytes: A Cross-Sectional Analysis". Biomedicines 11, n.º 6 (13 de junho de 2023): 1698. http://dx.doi.org/10.3390/biomedicines11061698.
Texto completo da fonteGanopoulou, Maria, Aliki Xanthopoulou, Michail Michailidis, Lefteris Angelis, Ioannis Ganopoulos e Theodoros Moysiadis. "Exploring the Robustness of Causal Structures in Omics Data: A Sweet Cherry Proteogenomic Perspective". Agronomy 14, n.º 1 (19 de dezembro de 2023): 8. http://dx.doi.org/10.3390/agronomy14010008.
Texto completo da fonteUdaondo, Zulema, Kanchana Sittikankaew, Tanaporn Uengwetwanit, Thidathip Wongsurawat, Chutima Sonthirod, Piroon Jenjaroenpun, Wirulda Pootakham, Nitsara Karoonuthaisiri e Intawat Nookaew. "Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon". Life 11, n.º 8 (23 de agosto de 2021): 862. http://dx.doi.org/10.3390/life11080862.
Texto completo da fontePatel, Hamel, Richard J. B. Dobson e Stephen J. Newhouse. "A Meta-Analysis of Alzheimer’s Disease Brain Transcriptomic Data". Journal of Alzheimer's Disease 68, n.º 4 (23 de abril de 2019): 1635–56. http://dx.doi.org/10.3233/jad-181085.
Texto completo da fontePian, Cong, Mengyuan He e Yuanyuan Chen. "Pathway-Based Personalized Analysis of Pan-Cancer Transcriptomic Data". Biomedicines 9, n.º 11 (20 de outubro de 2021): 1502. http://dx.doi.org/10.3390/biomedicines9111502.
Texto completo da fonteWicker, N. "Density of points clustering, application to transcriptomic data analysis". Nucleic Acids Research 30, n.º 18 (15 de setembro de 2002): 3992–4000. http://dx.doi.org/10.1093/nar/gkf511.
Texto completo da fonte王, 琳. "Statistical Methods for Spatially Re-solved Transcriptomic Data Analysis". Bioprocess 13, n.º 01 (2023): 57–63. http://dx.doi.org/10.12677/bp.2023.131008.
Texto completo da fonteKontogianni, Georgia, Konstantinos Voutetakis, Georgia Piroti, Katerina Kypreou, Irene Stefanaki, Efstathios Iason Vlachavas, Eleftherios Pilalis, Alexander Stratigos, Aristotelis Chatziioannou e Olga Papadodima. "A Comprehensive Analysis of Cutaneous Melanoma Patients in Greece Based on Multi-Omic Data". Cancers 15, n.º 3 (28 de janeiro de 2023): 815. http://dx.doi.org/10.3390/cancers15030815.
Texto completo da fonteXin, Ruihao, Qian Cheng, Xiaohang Chi, Xin Feng, Hang Zhang, Yueying Wang, Meiyu Duan et al. "Computational Characterization of Undifferentially Expressed Genes with Altered Transcription Regulation in Lung Cancer". Genes 14, n.º 12 (1 de dezembro de 2023): 2169. http://dx.doi.org/10.3390/genes14122169.
Texto completo da fonteXi, Dandan, Xiaofeng Li, Changwei Zhang, Lu Gao, Yuying Zhu, Shiwei Wei, Ying Li, Mingmin Jiang, Hongfang Zhu e Zhaohui Zhang. "The Combined Analysis of Transcriptome and Metabolome Provides Insights into Purple Leaves in Eruca vesicaria subsp. sativa". Agronomy 12, n.º 9 (27 de agosto de 2022): 2046. http://dx.doi.org/10.3390/agronomy12092046.
Texto completo da fonteDe Toma, Ilario, Cesar Sierra e Mara Dierssen. "Meta-analysis of transcriptomic data reveals clusters of consistently deregulated gene and disease ontologies in Down syndrome". PLOS Computational Biology 17, n.º 9 (27 de setembro de 2021): e1009317. http://dx.doi.org/10.1371/journal.pcbi.1009317.
Texto completo da fonteCasanova Ferrer, Franc, María Pascual, Marta R. Hidalgo, Pablo Malmierca-Merlo, Consuelo Guerri e Francisco García-García. "Unveiling Sex-Based Differences in the Effects of Alcohol Abuse: A Comprehensive Functional Meta-Analysis of Transcriptomic Studies". Genes 11, n.º 9 (21 de setembro de 2020): 1106. http://dx.doi.org/10.3390/genes11091106.
Texto completo da fonteHilliard, Matthew, Q. Peter He e Jin Wang. "Dynamic Transcriptomic Data Analysis by Integrating Data-driven and Model-guided Approaches". IFAC-PapersOnLine 51, n.º 19 (2018): 104–7. http://dx.doi.org/10.1016/j.ifacol.2018.09.021.
Texto completo da fonteXu, Zhongneng, e Shuichi Asakawa. "Physiological RNA dynamics in RNA-Seq analysis". Briefings in Bioinformatics 20, n.º 5 (29 de junho de 2018): 1725–33. http://dx.doi.org/10.1093/bib/bby045.
Texto completo da fonteLiu, Boxiang, Yanjun Li e Liang Zhang. "Analysis and Visualization of Spatial Transcriptomic Data". Frontiers in Genetics 12 (27 de janeiro de 2022). http://dx.doi.org/10.3389/fgene.2021.785290.
Texto completo da fonteXu, Zhicheng, Weiwen Wang, Tao Yang, Ling Li, Xizheng Ma, Jing Chen, Jieyu Wang et al. "STOmicsDB: a comprehensive database for spatial transcriptomics data sharing, analysis and visualization". Nucleic Acids Research, 11 de novembro de 2023. http://dx.doi.org/10.1093/nar/gkad933.
Texto completo da fonteSánchez-Baizán, Núria, Laia Ribas e Francesc Piferrer. "Improved biomarker discovery through a plot twist in transcriptomic data analysis". BMC Biology 20, n.º 1 (24 de setembro de 2022). http://dx.doi.org/10.1186/s12915-022-01398-w.
Texto completo da fonteSun, Yidi, Lingling Kong, Jiayi Huang, Hongyan Deng, Xinling Bian, Xingfeng Li, Feifei Cui et al. "A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data". Briefings in Functional Genomics, 11 de junho de 2024. http://dx.doi.org/10.1093/bfgp/elae023.
Texto completo da fonteRocque, Brittany, Kate Guion, Pranay Singh, Sarah Bangerth, Lauren Pickard, Jashdeep Bhattacharjee, Sofia Eguizabal et al. "Technical optimization of spatially resolved single-cell transcriptomic datasets to study clinical liver disease". Scientific Reports 14, n.º 1 (13 de fevereiro de 2024). http://dx.doi.org/10.1038/s41598-024-53993-2.
Texto completo da fonteP. Agostinho, Sofia, Mariana A. Branco, Diogo E. S. Nogueira, Maria Margarida Diogo, Joaquim M. S. Cabral, Ana L. N. Fred e Carlos A. V. Rodrigues. "Unsupervised analysis of whole transcriptome data from human pluripotent stem cells cardiac differentiation". Scientific Reports 14, n.º 1 (7 de fevereiro de 2024). http://dx.doi.org/10.1038/s41598-024-52970-z.
Texto completo da fonteBaik, Jae Young, Mansu Kim, Jingxuan Bao, Qi Long e Li Shen. "Identifying Alzheimer’s genes via brain transcriptome mapping". BMC Medical Genomics 15, S2 (19 de maio de 2022). http://dx.doi.org/10.1186/s12920-022-01260-6.
Texto completo da fonteLi, Runze, Xu Chen e Xuerui Yang. "Navigating the landscapes of spatial transcriptomics: How computational methods guide the way". WIREs RNA 15, n.º 2 (março de 2024). http://dx.doi.org/10.1002/wrna.1839.
Texto completo da fonte