Siga este link para ver outros tipos de publicações sobre o tema: Transcription factors.

Artigos de revistas sobre o tema "Transcription factors"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Transcription factors".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Wilson, Nicola K., Fernando J. Calero-Nieto, Rita Ferreira e Berthold Göttgens. "Transcriptional regulation of haematopoietic transcription factors". Stem Cell Research & Therapy 2, n.º 1 (2011): 6. http://dx.doi.org/10.1186/scrt47.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

BARNES, P. J., e I. M. ADCOCK. "Transcription factors". Clinical Experimental Allergy 25, s2 (novembro de 1995): 46–49. http://dx.doi.org/10.1111/j.1365-2222.1995.tb00421.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hawkins, R. "Transcription Factors". Journal of Medical Genetics 33, n.º 12 (1 de dezembro de 1996): 1054. http://dx.doi.org/10.1136/jmg.33.12.1054-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Papavassiliou, Athanasios G. "Transcription Factors". New England Journal of Medicine 332, n.º 1 (5 de janeiro de 1995): 45–47. http://dx.doi.org/10.1056/nejm199501053320108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Locker, J. "Transcription Factors". Biomedicine & Pharmacotherapy 52, n.º 1 (janeiro de 1998): 47. http://dx.doi.org/10.1016/s0753-3322(97)86247-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Locker., J. "Transcription Factors". Journal of Steroid Biochemistry and Molecular Biology 64, n.º 5-6 (março de 1998): 316. http://dx.doi.org/10.1016/s0960-0760(96)00245-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Handel, Malcolm L., e Laila Girgis. "Transcription factors". Best Practice & Research Clinical Rheumatology 15, n.º 5 (dezembro de 2001): 657–75. http://dx.doi.org/10.1053/berh.2001.0186.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Parker, C. S. "Transcription factors". Current Opinion in Cell Biology 1, n.º 3 (junho de 1989): 512–18. http://dx.doi.org/10.1016/0955-0674(89)90013-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Geng, Yanbiao, Peter Laslo, Kevin Barton e Chyung-Ru Wang. "Transcriptional Regulation ofCD1D1by Ets Family Transcription Factors". Journal of Immunology 175, n.º 2 (7 de julho de 2005): 1022–29. http://dx.doi.org/10.4049/jimmunol.175.2.1022.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Senecal, Adrien, Brian Munsky, Florence Proux, Nathalie Ly, Floriane E. Braye, Christophe Zimmer, Florian Mueller e Xavier Darzacq. "Transcription Factors Modulate c-Fos Transcriptional Bursts". Cell Reports 8, n.º 1 (julho de 2014): 75–83. http://dx.doi.org/10.1016/j.celrep.2014.05.053.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Zhang, Yuli, e Linlin Hou. "Alternate Roles of Sox Transcription Factors beyond Transcription Initiation". International Journal of Molecular Sciences 22, n.º 11 (31 de maio de 2021): 5949. http://dx.doi.org/10.3390/ijms22115949.

Texto completo da fonte
Resumo:
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Bloor, Adrian, Ekaterina Kotsopoulou, Penny Hayward, Brian Champion e Anthony Green. "RFP represses transcriptional activation by bHLH transcription factors". Oncogene 24, n.º 45 (27 de junho de 2005): 6729–36. http://dx.doi.org/10.1038/sj.onc.1208828.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Zhang, Lang, Haoyue Yu, Pan Wang, Qingyang Ding e Zhao Wang. "Screening of transcription factors with transcriptional initiation activity". Gene 531, n.º 1 (novembro de 2013): 64–70. http://dx.doi.org/10.1016/j.gene.2013.07.054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Thiel, Gerald, Lisbeth A. Guethlein e Oliver G. Rössler. "Insulin-Responsive Transcription Factors". Biomolecules 11, n.º 12 (15 de dezembro de 2021): 1886. http://dx.doi.org/10.3390/biom11121886.

Texto completo da fonte
Resumo:
The hormone insulin executes its function via binding and activating of the insulin receptor, a receptor tyrosine kinase that is mainly expressed in skeletal muscle, adipocytes, liver, pancreatic β-cells, and in some areas of the central nervous system. Stimulation of the insulin receptor activates intracellular signaling cascades involving the enzymes extracellular signal-regulated protein kinase-1/2 (ERK1/2), phosphatidylinositol 3-kinase, protein kinase B/Akt, and phospholipase Cγ as signal transducers. Insulin receptor stimulation is correlated with multiple physiological and biochemical functions, including glucose transport, glucose homeostasis, food intake, proliferation, glycolysis, and lipogenesis. This review article focuses on the activation of gene transcription as a result of insulin receptor stimulation. Signal transducers such as protein kinases or the GLUT4-induced influx of glucose connect insulin receptor stimulation with transcription. We discuss insulin-responsive transcription factors that respond to insulin receptor activation and generate a transcriptional network executing the metabolic functions of insulin. Importantly, insulin receptor stimulation induces transcription of genes encoding essential enzymes of glycolysis and lipogenesis and inhibits genes encoding essential enzymes of gluconeogenesis. Overall, the activation or inhibition of insulin-responsive transcription factors is an essential aspect of orchestrating a wide range of insulin-induced changes in the biochemistry and physiology of insulin-responsive tissues.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Bakshi, Madhunita, e Ralf Oelmüller. "WRKY transcription factors". Plant Signaling & Behavior 9, n.º 2 (fevereiro de 2014): e27700. http://dx.doi.org/10.4161/psb.27700.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Massague, J. "Smad transcription factors". Genes & Development 19, n.º 23 (1 de dezembro de 2005): 2783–810. http://dx.doi.org/10.1101/gad.1350705.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Steinke, John, e Larry Borish. "Beyond Transcription Factors". Allergy & Clinical Immunology International - Journal of the World Allergy Organization 16, n.º 01 (2004): 20–27. http://dx.doi.org/10.1027/0838-1925.16.1.20.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Engelkamp, Dieter. "Pathological transcription factors". Trends in Genetics 16, n.º 5 (maio de 2000): 233–34. http://dx.doi.org/10.1016/s0168-9525(99)01963-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Yeh, Jennifer E., Patricia A. Toniolo e David A. Frank. "Targeting transcription factors". Current Opinion in Oncology 25, n.º 6 (novembro de 2013): 652–58. http://dx.doi.org/10.1097/01.cco.0000432528.88101.1a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Wolffe, A. "Architectural transcription factors". Science 264, n.º 5162 (20 de maio de 1994): 1100–1101. http://dx.doi.org/10.1126/science.8178167.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Rushton, Paul J., Imre E. Somssich, Patricia Ringler e Qingxi J. Shen. "WRKY transcription factors". Trends in Plant Science 15, n.º 5 (maio de 2010): 247–58. http://dx.doi.org/10.1016/j.tplants.2010.02.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Warren, Alan J. "Eukaryotic transcription factors". Current Opinion in Structural Biology 12, n.º 1 (fevereiro de 2002): 107–14. http://dx.doi.org/10.1016/s0959-440x(02)00296-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Tan, Song, e Timothy J. Richmond. "Eukaryotic transcription factors". Current Opinion in Structural Biology 8, n.º 1 (fevereiro de 1998): 41–48. http://dx.doi.org/10.1016/s0959-440x(98)80008-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Reese, Joseph C. "Basal transcription factors". Current Opinion in Genetics & Development 13, n.º 2 (abril de 2003): 114–18. http://dx.doi.org/10.1016/s0959-437x(03)00013-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wolberger, Cynthia. "Combinatorial transcription factors". Current Opinion in Genetics & Development 8, n.º 5 (outubro de 1998): 552–59. http://dx.doi.org/10.1016/s0959-437x(98)80010-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Struhl, Kevin. "Yeast transcription factors". Current Opinion in Cell Biology 5, n.º 3 (junho de 1993): 513–20. http://dx.doi.org/10.1016/0955-0674(93)90018-l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Crunkhorn, Sarah. "Targeting transcription factors". Nature Reviews Drug Discovery 18, n.º 1 (28 de dezembro de 2018): 18. http://dx.doi.org/10.1038/nrd.2018.231.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

D'Arcangelo, Gabriel la, e Tom Curran. "Smart transcription factors". Nature 376, n.º 6538 (julho de 1995): 292–93. http://dx.doi.org/10.1038/376292a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Latchman, D. S. "Eukaryotic transcription factors". Biochemical Journal 270, n.º 2 (1 de setembro de 1990): 281–89. http://dx.doi.org/10.1042/bj2700281.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Latchman, David S. "Inhibitory transcription factors". International Journal of Biochemistry & Cell Biology 28, n.º 9 (setembro de 1996): 965–74. http://dx.doi.org/10.1016/1357-2725(96)00039-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Carter, Matthew E., e Anne Brunet. "FOXO transcription factors". Current Biology 17, n.º 4 (fevereiro de 2007): R113—R114. http://dx.doi.org/10.1016/j.cub.2007.01.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Polyanovsky, Oleg L., e Alexander G. Stepchenko. "Eukaryotic transcription factors". BioEssays 12, n.º 5 (maio de 1990): 205–10. http://dx.doi.org/10.1002/bies.950120503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Yamada, Yasuyuki, e Fumihiko Sato. "Transcription Factors in Alkaloid Engineering". Biomolecules 11, n.º 11 (18 de novembro de 2021): 1719. http://dx.doi.org/10.3390/biom11111719.

Texto completo da fonte
Resumo:
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix–loop–helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

WATANABE, A., M. ARAI, N. KOITABASHI, M. YAMAZAKI, K. NIWANO e M. KURABAYASHI. "Mitochondrial transcription factors regulate SERCA2 gene transcription". Journal of Molecular and Cellular Cardiology 41, n.º 6 (dezembro de 2006): 1049. http://dx.doi.org/10.1016/j.yjmcc.2006.08.046.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Becskei, Attila. "Tuning up Transcription Factors for Therapy". Molecules 25, n.º 8 (20 de abril de 2020): 1902. http://dx.doi.org/10.3390/molecules25081902.

Texto completo da fonte
Resumo:
The recent developments in the delivery and design of transcription factors put their therapeutic applications within reach, exemplified by cell replacement, cancer differentiation and T-cell based cancer therapies. The success of such applications depends on the efficacy and precision in the action of transcription factors. The biophysical and genetic characterization of the paradigmatic prokaryotic repressors, LacI and TetR and the designer transcription factors, transcription activator-like effector (TALE) and CRISPR-dCas9 revealed common principles behind their efficacy, which can aid the optimization of transcriptional activators and repressors. Further studies will be required to analyze the linkage between dissociation constants and enzymatic activity, the role of phase separation and squelching in activation and repression and the long-range interaction of transcription factors with epigenetic regulators in the context of the chromosomes. Understanding these mechanisms will help to tailor natural and synthetic transcription factors to the needs of specific applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Chávez, Joselyn, Damien P. Devos e Enrique Merino. "Complementary Tendencies in the Use of Regulatory Elements (Transcription Factors, Sigma Factors, and Riboswitches) in Bacteria and Archaea". Journal of Bacteriology 203, n.º 2 (19 de outubro de 2020): e00413-20. http://dx.doi.org/10.1128/jb.00413-20.

Texto completo da fonte
Resumo:
ABSTRACTIn prokaryotes, the key players in transcription initiation are sigma factors and transcription factors that bind to DNA to modulate the process, while premature transcription termination at the 5′ end of the genes is regulated by attenuation and, in particular, by attenuation associated with riboswitches. In this study, we describe the distribution of these regulators across phylogenetic groups of bacteria and archaea and find that their abundance not only depends on the genome size, as previously described, but also varies according to the phylogeny of the organism. Furthermore, we observed a tendency for organisms to compensate for the low frequencies of a particular type of regulatory element (i.e., transcription factors) with a high frequency of other types of regulatory elements (i.e., sigma factors). This study provides a comprehensive description of the more abundant COG, KEGG, and Rfam families of transcriptional regulators present in prokaryotic genomes.IMPORTANCE In this study, we analyzed the relationship between the relative frequencies of the primary regulatory elements in bacteria and archaea, namely, transcription factors, sigma factors, and riboswitches. In bacteria, we reveal a compensatory behavior for transcription factors and sigma factors, meaning that in phylogenetic groups in which the relative number of transcription factors was low, we found a tendency for the number of sigma factors to be high and vice versa. For most of the phylogenetic groups analyzed here, except for Firmicutes and Tenericutes, a clear relationship with other mechanisms was not detected for transcriptional riboswitches, suggesting that their low frequency in most genomes does not constitute a significant impact on the global variety of transcriptional regulatory elements in prokaryotic organisms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Poulat, Francis. "Non-Coding Genome, Transcription Factors, and Sex Determination". Sexual Development 15, n.º 5-6 (2021): 295–307. http://dx.doi.org/10.1159/000519725.

Texto completo da fonte
Resumo:
In vertebrates, gonadal sex determination is the process by which transcription factors drive the choice between the testicular and ovarian identity of undifferentiated somatic progenitors through activation of 2 different transcriptional programs. Studies in animal models suggest that sex determination always involves sex-specific transcription factors that activate or repress sex-specific genes. These transcription factors control their target genes by recognizing their regulatory elements in the non-coding genome and their binding motifs within their DNA sequence. In the last 20 years, the development of genomic approaches that allow identifying all the genomic targets of a transcription factor in eukaryotic cells gave the opportunity to globally understand the function of the nuclear proteins that control complex genetic programs. Here, the major transcription factors involved in male and female vertebrate sex determination and the genomic profiling data of mouse gonads that contributed to deciphering their transcriptional regulation role will be reviewed.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Gao, T. W., W. W. Zhang, A. P. Song, C. An, J. J. Xin, J. F. Jiang, Z. Y. Guan, F. D. Chen e S. M. Chen. "Phylogenetic and transcriptional analysis of chrysanthemum GRAS transcription factors". Biologia Plantarum 62, n.º 4 (27 de junho de 2018): 711–20. http://dx.doi.org/10.1007/s10535-018-0816-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Fox, Rebecca M., e Deborah J. Andrew. "Transcriptional regulation of secretory capacity by bZip transcription factors". Frontiers in Biology 10, n.º 1 (17 de novembro de 2014): 28–51. http://dx.doi.org/10.1007/s11515-014-1338-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Cai, Bin, Cheng-Hui Li, Ai-Sheng Xiong, Ri-He Peng, Jun Zhou, Feng Gao, Zhen Zhang e Quan-Hong Yao. "DGTF: A Database of Grape Transcription Factors". Journal of the American Society for Horticultural Science 133, n.º 3 (maio de 2008): 459–61. http://dx.doi.org/10.21273/jashs.133.3.459.

Texto completo da fonte
Resumo:
The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Granadino, B., C. Perez-Sanchez e J. Rey-Campos. "Fork Head Transcription Factors". Current Genomics 1, n.º 4 (1 de dezembro de 2000): 353–82. http://dx.doi.org/10.2174/1389202003351319.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

IMAGAWA, Masayoshi. "Transcription Factors in Eukaryotes." Seibutsu Butsuri 33, n.º 3 (1993): 154–58. http://dx.doi.org/10.2142/biophys.33.154.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Wilanowski, Tomasz, e Sebastian Dworkin. "Transcription Factors in Cancer". International Journal of Molecular Sciences 23, n.º 8 (18 de abril de 2022): 4434. http://dx.doi.org/10.3390/ijms23084434.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Rusk, Nicole. "Transcription factors without footprints". Nature Methods 11, n.º 10 (29 de setembro de 2014): 988–89. http://dx.doi.org/10.1038/nmeth.3128.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Williams, Ruth. "Imaging individual transcription factors". Journal of Cell Biology 177, n.º 6 (4 de junho de 2007): 946a. http://dx.doi.org/10.1083/jcb.1776rr1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Huang, H., e D. J. Tindall. "Dynamic FoxO transcription factors". Journal of Cell Science 120, n.º 15 (17 de julho de 2007): 2479–87. http://dx.doi.org/10.1242/jcs.001222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

KAMBE, FUKUSHI, e HISAO SEO. "Thyroid-Specific Transcription Factors." Endocrine Journal 44, n.º 6 (1997): 775–84. http://dx.doi.org/10.1507/endocrj.44.775.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Shelest, Ekaterina. "Transcription factors in fungi". FEMS Microbiology Letters 286, n.º 2 (setembro de 2008): 145–51. http://dx.doi.org/10.1111/j.1574-6968.2008.01293.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Převorovský, Martin, František Půta e Petr Folk. "Fungal CSL transcription factors". BMC Genomics 8, n.º 1 (2007): 233. http://dx.doi.org/10.1186/1471-2164-8-233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Tomanek, L. "TILAPIA'S HYPEROSMOTIC TRANSCRIPTION FACTORS". Journal of Experimental Biology 208, n.º 8 (15 de abril de 2005): vii. http://dx.doi.org/10.1242/jeb.01540.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia