Literatura científica selecionada sobre o tema "Trajectoire phugoïde"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Trajectoire phugoïde".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Trajectoire phugoïde"
Vinh, Nguyen X., Vincent T. Coppola e L. de-Olive Ferreira. "Phugoid motion for grazing-entry trajectories at near-circular speeds". Journal of Spacecraft and Rockets 33, n.º 2 (março de 1996): 206–13. http://dx.doi.org/10.2514/3.26742.
Texto completo da fonteKumar, G. Naresh, AK Sarkar e SE Talole. "Dynamic pressure based mid-course guidance scheme for hypersonic boost-glide vehicle". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n.º 9 (24 de agosto de 2018): 3211–22. http://dx.doi.org/10.1177/0954410018795265.
Texto completo da fonteJebakumar, S. K., Abhay A. Pashilkar e N. Sundararajan. "A Novel Design Approach for Low Speed Recovery of High Performance Fighter Aircraft". Defence Science Journal 72, n.º 4 (26 de agosto de 2022): 505–15. http://dx.doi.org/10.14429/dsj.72.17821.
Texto completo da fonteBertran, Eduard, Paula Tercero e Alex Sànchez-Cerdà. "UAV generalized longitudinal model for autopilot controller designs". Aircraft Engineering and Aerospace Technology 94, n.º 3 (16 de novembro de 2021): 380–91. http://dx.doi.org/10.1108/aeat-08-2020-0156.
Texto completo da fonteChen, Huatao, Kun Zhao, Juan L. G. Guirao e Dengqing Cao. "Analytical predictor–corrector entry guidance for hypersonic gliding vehicles". International Journal of Nonlinear Sciences and Numerical Simulation, 15 de dezembro de 2020. http://dx.doi.org/10.1515/ijnsns-2019-0290.
Texto completo da fonteBharath Swaminathan e Ranjith Mohan. "An Investigation on the Stability of Dynamic Soaring Orbits". Journal of Aerospace Sciences and Technologies, 28 de julho de 2023, 21–34. http://dx.doi.org/10.61653/joast.v73i1.2021.86.
Texto completo da fonteTeses / dissertações sobre o assunto "Trajectoire phugoïde"
Alatorre, Sevilla Armando. "Landing of a fixed-wing unmanned aerial vehicle in a limited area". Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2801.
Texto completo da fonteThe development of this thesis consists of designing some control strategies that allow a fixedwing drone with classical configuration to perform a safe landing in a limited area. The main challenge is to reduce the aircraft’s airspeed avoiding stall conditions. The developed control strategies are focused on two approaches: the first approach consists of the designing airspeed reduction maneuvers for a fixed-wing vehicle to be captured by a recovery system and for a safe landing at a desired coordinate. The next approach is focused on landing a fixed-wing drone on a moving ground vehicle. A dynamic landing trajectory was designed to lead a fixedwing vehicle to the position of a ground vehicle, reaching its position in a defined distance. Moreover, this trajectory was used in a cooperative control design. The control strategy consists of the synchronization of both vehicles to reach the same position at a desired distance. The aerial vehicle tracks the dynamic landing trajectory, and the ground vehicle controls its speed. In addition, we will propose a control architecture with a different focus, where the ground vehicle performs the tracking task of the aerial vehicle’s position in order to be captured. And, the drone’s task is to track a descending flight until the top of the ground vehicle. However, considering the speed difference between both vehicles. Therefore, we propose a new control architecture defining that the aircraft performs an airspeed reduction strategy before beginning its landing stage. The aircraft will navigate to a minimum airspeed, thus, allowing the ground vehicle to reach the fixed-wing drone’s position by increasing its speed. The control laws of each strategy were determined by developing the Lyapunov stability analysis, thus, the stability is guaranteed in each flight stage. Finally, the control strategies were implemented on prototypes allowing us to validate their performance and obtain satisfactory results for safe landing of a fixed-wing drone with classical configuration
Trabalhos de conferências sobre o assunto "Trajectoire phugoïde"
Delbene, A., C. de Souza, P. Castillo, B. Vidolov e M. Baglietto. "Trajectory generation and tracking for phugoid maneuvers using a mini-airplane". In 2020 28th Mediterranean Conference on Control and Automation (MED). IEEE, 2020. http://dx.doi.org/10.1109/med48518.2020.9183146.
Texto completo da fonte